
Real-Time Soft Shadows
Using a Single Light Sample

Florian Kirsch

Hasso-Plattner-Institute for Software Engineering
at the University of Potsdam
Prof.-Dr.-Helmert-Straße 2-3
D-14482 Potsdam, Germany

kirsch@hpi.uni-potsdam.de

Jürgen Döllner
Hasso-Plattner-Institute for Software Engineering

at the University of Potsdam
Prof.-Dr.-Helmert-Straße 2-3
D-14482 Potsdam, Germany

doellner@hpi.uni-potsdam.de

ABSTRACT
We present a real-time rendering algorithm that generates soft shadows of dynamic scenes using a single light
sample. As a depth-map algorithm it can handle arbitrary shadowed surfaces. The shadow-casting surfaces,
however, should satisfy a few geometric properties to prevent artifacts. Our algorithm is based on a bivariate
attenuation function, whose result modulates the intensity of a light causing shadows. The first argument specifies
the distance of the occluding point to the shadowed point; the second argument measures how deep the shadowed
point is inside the shadow. The attenuation function can be implemented using dependent texture accesses; the
complete implementation of the algorithm can be accelerated by today�s graphics hardware. We outline the
implementation, and discuss details of artifact prevention and filtering.

Keywords
Soft Shadow Algorithms, Shadow Mapping, Graphics Hardware, Hardware-Accelerated Rendering

1. INTRODUCTION
Soft shadows play an important role for perceiving
the arrangement of objects in a 3-dimensional scene.
The location of a shadow mediates the relative po-
sitions of a light source, shadow blocker and receiver.
The sharpness of the shadow�s penumbra clarifies
distance relationships between blocker and receiver.
Soft shadows also provide a far more realistic
impression of an image compared to hard shadows
since in real-life there are no perfect point lights.

Currently, no algorithm is known that renders physi-
cally correct and dynamically updated soft shadows
in arbitrary scenes and in real-time. This is in contrast
to hard shadow algorithms. Dynamic soft shadow
algorithms require simplifications to achieve inter-
active frame rates, including:

• Restrictions of the type of occluding and shadow-
receiving shapes.

• Forbidden self-shadowing.

• Disregarding shape and size of an area light, and
reducing the shadow computation on a single
light-source position.

• Abandoning the goal of physical correctness,
aiming only for convincing soft shadows.

The algorithm we present in this paper belongs to the
group of depth-map algorithms. It is suited for real-
time rendering, and, therefore, sacrifices physical
correctness � it samples a single light position.
Requirements of participating shapes are rather
general if compared to other known real-time soft
shadow algorithms:

• Any shape can be receiver of shadows without the
need to treat every planar surface of the shape
separately.

• Any shape can block light with the following
restriction: In order to avoid artifacts it is ad-
vantageous if different blockers overlapping in
light space do not differ too much in z-direction.

• Self-shadowing is possible; i.e., a shape can cast a
shadow upon itself. However, these shadows will
most likely have no penumbra.

We calculate the shadow as attenuation of the un-
shadowed light. The attenuation value at a point to be
shaded is given by the result of a bivariate function:

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG�2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency � Science Press

The first argument, the shadow depth, is the distance
between the occluding point and the possibly sha-
dowed point; the second, the shadow width, denotes
the distance from a point to the nearest point that is
geometrically illuminated. With today�s graphics
hardware, the attenuation function can be evaluated
using a dependent texture access.

Our method is very fast because the only significant
overhead compared to a hard shadow depth-map
algorithm is the generation of the texture map
containing shadow-width values. This is a simple
operation that can be performed by the CPU or,
through texture compositing, by graphics hardware.
Our soft shadow algorithm appears to be one of the
first of its kind that renders shadows entirely using
today�s graphics hardware. Therefore, even for
dynamic shadows, frame rates that exceed 60 fps are
achieved for 3D scenes of moderate complexity.

This paper proceeds in discussing related works. In
Section 3, the algorithm is discussed from a theo-
retical point of view, and properties of the attenuation
function are presented. Section 4 describes our imple-
mentation, Section 5 contains practical hints for
quality improvement, and Section 6 gives a perfor-
mance comparison. The paper concludes in Section 7.

2. RELATED WORK
Hard Shadow Algorithms
To render hard shadows, two kinds of algorithms are
widely used for real-time calculation of dynamic
shadows. The first approach are shadow volume algo-
rithms, first described by Crow [Cro77]. Here,
shadow calculation takes place in object space by
means of invisible semi-infinite shadow volumes.
These are built by extruding occluding polygons into
direction of the light. A pixel inside a shadow volume
is known to be in shadow. The shadow volume algo-
rithm was adapted to real-time graphics hardware by
Heidmann [Hei91].

Depth-map shadow algorithms, first proposed by
Williams [Wil78], are the second kind. Depth-maps
are depth images of the scene rendered from the
position of light in a pre-processing step. In the main
rendering pass, for shadow testing, a point is
transformed from camera space into light space. If the
resulting z-value is greater than the corresponding
value in the depth-map, then the point is considered
to be in shadow. Projective shadows were the key to
adapt depth-map shadows in real-time rendering
systems [Seg92].

Williams� depth-map shadows can be simplified to a
less general algorithm that is sometimes referred as
projective shadows [Huu99]. During pre-processing,
shadow blockers are rendered from the light source

with black color; the background color is white. For
shadow calculation, the resulting image � the
occlusion map � is projected from the light source
onto receiving shapes, and the resulting texture
values directly modulate the shading intensities. This
algorithm obviously does not permit self-shadowing.
Despite, it is often used in practice because of its
simplicity and its low hardware requirements. Our
soft shadow algorithm is related to projective
shadows, since it may use an occlusion map in order
to generate the shadow-width map (see Section 4).

Soft Shadow Algorithms
It is possible to render soft shadows using hard
shadow algorithms of either category (e.g., Brotman
and Badler [Bro84]). To simulate an area light,
several point light sources are distributed over its
surface, calculating the shadow for each of these
lights, and accumulating the resulting shading
intensities. In practice, this idea is hardly usable due
to the following reasons:

• It requires a significant number of point light
samples to achieve smooth intensity changes in
the penumbra: The number of different intensities
exceeds the number of light source samples by
only one.

• With today�s real-time graphics hardware, an
accumulation buffer is required for good visual
quality: Many light samples reduce the intensity
resolution available for each light sample. Using a
common frame buffer providing 8 bits per color
channel leads to banding artifacts. Accumulation
buffers provide enough accuracy but are not
accelerated by today�s graphics hardware; they
are emulated in software and, therefore, slow
down rendering performance significantly.

Apart from the latter accumulation method, few
shadow volume algorithms address soft shadow
generation for interactive rendering. One exception is
Chin and Feiner�s Area SVBSP tree [Chi92] that, for
static polygonal environments, stores penumbra and
umbra regions in a pair of BSP trees.

Most other algorithms for soft shadows are based on
variants of Williams� depth-map algorithm. We first
cover algorithms to reduce aliasing effects by
softening the shadow boundary. To do so, Reeves et
al. proposed �percentage closer filtering� [Ree87],
which is nowadays integrated in rendering hardware
that provides dedicated support for depth textures,
but which can be also implemented deploying
standard graphics hardware without relying on
dedicated hardware support [Bra01]. When using
projective shadows, blurring the occlusion map can
create a similar effect. These methods sometimes are
cited in the context of soft shadows. Although

generating soft shadow edges, they cannot simulate
an important property of soft shadows though: The
distance between occluding shape and shadowed
shape is not taken into account, so the size of the
penumbra is invariant.

Heckbert and Herf aim to calculate physically correct
soft shadows by generating a radiance texture for
each polygon [Hec97]. Such a texture contains all
illumination information for the polygon, generated
by sampling many light sources and accumulating the
resulting intensities. In practice, the algorithm has the
same limitations as Brotman and Badler�s. It is
possible to employ convolution operations to appro-
ximate the radiance textures, thus significantly redu-
cing the number of light samples [Sol98]. This refine-
ment, however, seems to be inappropriate for real-
time rendering since for every radiance texture, e.g.,
every receiving polygon, an FFT must be calculated.

Haines describes soft shadows using plateaus
[Hai01]. For each planar surface in shadow, a texture
is created that contains the projection of the blocker.
To simulate the penumbra, a cone is rendered for
each silhouette edge of the blocker, and added to the
texture.

Heckbert�s at al. and Haines� algorithms are seriously
restricted by the fact that for every planar surface in
shadow, a separate texture is required. Our soft
shadow algorithm has the advantage that it requires
only a single texture for the whole scene, even if
curved shapes are shadowed.

Heidrich describes a soft shadow algorithm suited for
linear light sources [Hei00]. For simple scenes, his
algorithm requires only two light samples. For the
light source a depth map and a visibility map is built.
The visibility map contains the percentage of the
whole light that reaches a point in the scene. This
somehow resembles our notion of a shadow-width
map. However, an edge detection process is needed
for the generation of the visibility map, scaling badly
with scene complexity. In our algorithm, generation
time of the shadow-width map is independent of the
scene geometry.

Single Sample Soft Shadow Algorithms
Parker et al. compute soft shadows using a single
light sample [Par98]. Their algorithm is suitable to
ray tracing: around an occluder, a bigger object is
constructed whose opacity lowers towards the outer
boundary. The contribution of a light is modulated by
the opacity term, while also taking into account the
relative positions of occluding and receiving shapes
and the light source.

Recently Brabec et al. adopted Parker�s algorithm to
work on depth maps [Bra02]. During shadow calcu-

lation, after transforming a point into light space, they
search the neighborhood of the transformed point in
the depth map. If the point is lit but in the
neighborhood a blocked pixel is found, the point is
darkened a bit, taking into account the distance to the
next blocked pixel. If otherwise the point is shadowed
but in the neighborhood unblocked pixels are found,
the point is not fully darkened but illuminated pro-
portional to the distance to the next unblocked pixel.

Brabec�s algorithm is suited for interactive frame
rates. The shadow calculation is performed on the
CPU, since the graphics hardware is not able to do
the neighborhood search. The algorithm allows no
self-shadowing. Otherwise, for its performance, the
quality of shadows is good, despite the fact that they
are not physically correct.

Our algorithm is strongly related to Brabec�s algo-
rithm: Instead of searching the neighborhood in the
depth map, we look up the distance to the next
unblocked pixel in a second texture, the shadow-
width map. This allows for shadow computation
using graphics hardware, lifting rendering perfor-
mance to real-time speed. As a limitation, shadows
can be rendered only in such areas where a pixel is
geometrically in shadow. Hence, our shadows are
smaller than their physically correct counterparts �
typically not noticed by the human viewer.

3. ALGORITHM
Pre-processing
During a pre-processing step, our algorithm
constructs two distinct images from the point of view
of the light source, which are accessed later to
calculate the intensity of a fragment:

• The first image is the depth-map as known in
Williams� shadow algorithm.

• The second image we call shadow-width map. It
is constructed as follows: Assume a plane A
behind all shadow blockers that is perpendicular
to the light�s direction. Then, the shadow width

)(sw of a point in the plane is given by its
distance to the nearest point on the plane that is
geometrically lit by the light � i.e., the shadow
width is the distance to the next unblocked pixel.

A linear transformation can transform any point p in
object space into light space, resulting in coordinates

)',','(' zyxp= . We use these coordinates to lookup
the corresponding value in the depth-map)','(yxz
resp. shadow-width map)','(yxw . Then, we define
the shadow depth of p as

pqpswAp
Aq

lightbydilluminate
�

min)(:�� =

sd

sw
Light

Source

Blocker

Receiving Shape

Figure 2. Geometric interpretation of shadow
width and shadow depth.

)','(-')(yxzzpsd =

and the shadow width of p as

)','()(yxwpsw = .

The shadow depth can be interpreted as distance from
p to the most distant point of a shape blocking the

light of p . The shadow width can be explained as
follows: If the light is a distant light,)(psw measures
the distance to the nearest point that is geometrically
illuminated. For point lights,)(psw approximates the
steradian with respect to the light source between the
nearest point fully illuminated and p (see Figure 2).
In both cases, we use)(psw to measure how deep a
point is in shadow.

Note that the shadow width of a point is zero if the
light source is visible from that point. In this case,
also the shadow depth of the point is zero since no
object casting a shadow is nearer the light than the
point itself. This means that 0)(=psd automatically
implies 0)(=psw and vice versa; and if 0�)(psd ,

)(psw must be 0� either.

Shadow Calculation
To calculate the illumination intensity for a given
point p , shadow depth and shadow width are used as
arguments of the attenuation function

))(),((pswpsdI , whereby

[]1,0�: ++×RRI .

))(),((pswpsdI calculates the attenuation of the
light source caused by a possible shadow at p . The
co-domain of I is []1,0 , where zero denotes that the
light is fully attenuated, i.e., a point is in the umbra of
the shadow, and one denotes that light is not
attenuated, i.e., a point is fully lit.

To provide soft shadows, I has the following
properties:

1. 1),(=swsdI if 0=sd or 0=sw , to ensure
that points are fully lit if they are visible from
the light source.

2.)','(),(swsdIswsdI = if '
'

sd
sw

sd
sw = . This pro-

perty ensures that when scaling both shadow
depth and shadow width by the same amount,
the light attenuation remains unchanged.

3.)',(),(swsdIswsdI � if 'swsw> . If also
0)',(>swsdI , we furthermore demand

)',(),(swsdIswsdI < . This property ensures
that when approaching a shadow boundary, the
light gets strictly monotonic brighter. In the
umbra, the light obviously cannot get any darker
than zero, so if 0)',(=swsdI , also

0),(=swsdI must hold.

4. For smooth attenuation, i.e., smooth intensity
changes,),(swsdI is continuous, which is not
physically correct but feasible from a human
perceptional point of view.

The following property directly follows from 2. & 3.:

5.),'(),(swsdIswsdI � if 'sdsd < , respectively
),'(),(swsdIswsdI < if additionally

0),'(>swsdI . This ensures an important visual
property of soft shadows: Where a shadowed
polygon approaches the light blocker, the
shadow boundary gets sharper.

Obviously, the choice of I is not unique, but
depends of the attenuation changes at the boundary of
the shadow. In general,),(swsdI can be any
function of the form

() otherwise
0if1

),(
sd
swf

sd
swsdI

== , clamped to []1,0 ,

Figure 1. Left: torus with soft shadow. Center: depth-map. Right: shadow-width map.

sw

sd 1

Figure 3. I(sd, sw) with cscale = 1 and cbias = 0.05.

where)(xf is a continuous and strictly monotonic
decreasing function that converges to one for 0�x .

In our implementation, we use the attenuation
function:

otherwise-1
0if1

),(
* sd

sw
scalebias cc

sd
swsdI +

=
= , clamped

to []1,0 (see also Figure 3).

biasc and scalec are non-negative constants. scalec
adjusts the softness of the shadow. Let sd be fixed;
if scalec is large),(swsdI becomes zero even for
small sw . In this case, yet close to the geometrical
shadow boundary the light is fully darkened. Conse-
quently, a large value of scalec shrinks the size of the
penumbra, whereas a small value enhances its size.

A valid value for biasc is zero. In certain cases, we
found a value slightly greater than zero advantageous
to reduce intensity artifacts at the outer border of the
soft shadow (see Section 5).

4. IMPLEMENTATION
To implement the presented algorithm in a way that it
can benefit from acceleration by graphics hardware,
the following steps must be taken for each fragment f
resulting from rasterizing primitives:

1. The shadow depth value sd must be available
for f.

2. The shadow width value sw must be available
for f.

3. The result of the attenuation function I with
sd and sw as arguments must be calculated.
It is multiplied with the regular fragment�s
color resulting in the final color, which is
copied into the frame-buffer.

Attenuation Function
Step 3 is the easiest to solve given today�s graphics
hardware that supports dependent texture accesses.
Suppose the former texture units have been set in a
way that sd and sw are determined correctly. Then,

),(swsdI can be looked up in a lookup-texture
containing intensity values.

Generating Shadow Depths
Step 1 is more difficult but can be solved by the
approach of Segal et al. [Seg92] and Heidrich
[Hei99]. Here, we summarize the approach of
Heidrich: The scene is rendered from the light source,
applying a texture that encodes the distance to the
light source in the alpha channel of the frame-buffer
(using texture coordinate generation). The resulting
alpha channel is copied into a texture, and represents
the depth-map. To calculate sd , this texture is
projected from the light source onto the scene in
object space. A second texture is applied to the scene,
which uses the texture that was formerly used to
create the depth-map. Thus, sd is the difference
between the fetched texture values of the first and the
second texture.

Heidrich calculates the difference of the alpha texture
values using texture environment functions. To use
the result in a dependent texture lookup, we must
calculate it at an earlier stage using texture shaders.
This is possible with per-fragment dot-product
facilities of current hardware: Instead of encoding the
depth values in the alpha channel, we use the green
channel. A value of one is stored in the red channel.
This texture is projected onto the scene using the first
texture unit. In the second texture stage, we calculate
the dot-product of the result of the first texture
lookup with (s, -1, 0), where s is generated to hold the
distance of a fragment to the light source 'z . This
results to

sdyxzz
greens

rbluetgreensred

==
=

++

)','('-
*1-*1

Generating Shadow Widths
For Step 2, we calculate a texture that contains
shadow width values; it is projected onto the scene to
make sw available for all fragments. For this, we
generate an inverted occlusion map at the same time
when generating the depth-map. The occlusion map is
rendered from the light source, choosing intensity of
one for shadow blockers, and zero for other objects.
The blue channel is used to store the occlusion map.

Figure 6. Without self-shadowing, reduced

artifacts.

In a post-processing step, the occlusion map can be
converted into a shadow-width map. The blue inten-
sity of a texel having a neighbor texel much darker is
replaced by the intensity of that neighbor texel plus a
small difference value. This is done for all texels in
the map, and the whole process is repeated conside-
ring different directions for the neighbors. Since the
difference value added to a neighbor�s intensity
always remains the same, the final blue intensity of a
texel approximately measures the distance to the
nearest texel that was not occluded by a shadow
casting object.

When the occlusion map is copied into system
memory, this algorithm is easily implemented re-
garding neighbor texels in the left, right, top, and
bottom direction. To avoid the costly frame-buffer
copy operation, a variant of the algorithm may be
also implemented that uses the graphics hardware.
The inverted occlusion map is used as texture. It is
bound to all available texture units, and the textures
are applied to a quad that covers the whole viewport.
One texture is applied unchanged. The other textures
are moved to the different neighbor directions, and
the small difference value is added to their texels.
The intensity of a rendered fragment results from the
minimum of all fetched texture values. The process is
repeated multiple times, each time employing a new
texture holding the actual frame-buffer, and with
doubled difference and neighbor distance. The
algorithm stops when the difference value is greater
than one (see Figure 4).

5. DISCUSSION
Possible Artifacts
Our algorithm handles all shadowed surfaces well.
For objects that cast a shadow, problems arise if
several light-blocking objects overlap in light space,
or several parts of a single concave light-blocking
object overlap. In both cases, only a single depth can
be stored in the depth-map at a position. This results
in shadow-depth discontinuities and to artifacts. As
visual effect shadows abruptly get softer along
shadow edges that cross other shadow edges (see
Figure 5). The effect is disturbing in particular when
it suddenly appears and disappears, for instance, in
the case of moving objects.

The shadow-width map can also have artifacts due to
united areas of projections of different blockers (or
parts of blockers) in the inverted occlusion map. The
results are shadow-width values that are too high. The
visual effect is mostly notable for moving blockers,
when shadow widths suddenly increase and the
shadow gets darker.

Self-Shadowing
Self-shadowing shapes, e.g., shapes that are both
blocker and receiver, are best treated as blocker when
generating the inverted occlusion map. For a possibly
shadowed point on a light blocker, the shadow width
will be too high because the region around the point
will enhance the blocker�s silhouette in the inverted

Figure 4. Generation of a shadow-width map from a sphere using texture compositing. Neighbors in 6
directions are sampled. From left to right: inverted occlusion map; result of algorithm after 4, 5, 6, 7, and
8 iterations. The starting difference value is 1/256.

Figure 5. Artifacts due to overlapping blockers.

occlusion map. Therefore, the shadow at the point
will be darker than expected. In practice, shadows
onto self-shadowing shapes often have no penumbra
at all.

If we avoid shapes that are both blocker and receiver,
the visual effect of depth-map artifacts can be re-
duced. In this case, the back faces of shadow-casting
shapes can be rendered into the depth-map using a �z-
greater� test. When calculating the shadow, the
shadow artifacts in the depth-map cause a shadow
with harder edge. As illustrated in Figure 6, this
strategy leads to visually more convincing results.

Filtering
If the geometry of the occluding shape is simple and
linear texture filtering is enabled, even shadow maps
with an extremely low resolution can yield an
acceptable quality (see Figure 7, which was created
using a depth-map resolution of 64×64 texels). Linear
filtering, however, has drawbacks since it produces
intensity discontinuities at the outer boundary of the
shadow. In Figure 7, this effect is visible where disk
and sphere are close. The reason for discontinuities is
that inside the shadow, the texture coordinates of the
texel in the lookup-texture differ completely from the
coordinates outside the shadow, which are (0, 0) �
linear filtering between them makes no sense. As a
future extension of the algorithm, programmable
texture filter functions, e.g., as exposed in the
GL_NV_fragment_program extension [Kil02], could
solve this filtering problem.

6. PERFORMANCE
For our performance study, a Pentium IV with 1.300
Mhz and GeForce3 Ti200 with 64MB graphics
hardware was used. For generating the shadow-width
map, we distinguished between the software method
and the graphics hardware method (Section 4).

The graphics hardware method, we recorded timing
results for several starting difference values. This
value decides how often the loop to create the sha-
dow-width map is performed (and, on the other side,
is responsible for the size of the penumbra). We also
distinguished between sampling three and six neigh-
bor texels to create the shadow-width map1. Our test
scene is depicted in Figure 8. The resolution of the
main window was 512×512 pixels. The results are
given in Table 1; numbers are in frames per second.

For moderate depth-map resolutions (e.g., 256×256),
the algorithm performs in real-time. For higher
resolutions, performance is at least interactive.

The results are nearly independent of the canvas
resolution. As expected, the resolutions of the depth-
map and the shadow-width map determine the
rendering speed since those textures are updated
every frame. If they are not dynamically updated, the

1 These numbers are best suited for GeForce3 hardware

since GeForce3 can apply four textures at once, and to
sample three neighbor texels, three textures and the main
texture must be applied.

Figure 7. Depth-map resolution of 64××××64. Where
blocker and shadow receiver are close, artifacts
are visible. Everywhere else the shadow is not
affected.

Depth-map resolution 256×256 512×512 1024×1024 2048×2048
Software 61.6 34.3 12.6 3.2
Hardware 1/1 (hard shadows) 97.9 79.8 42.9 17.0
Hardware ¼ 86.1 / 77.4 56.4 / 43.6 22.4 / 15.1 7.0 / 4.4
Hardware 1/16 77.5 / 64.4 43.6 / 30.0 15.2 / 9.2 4.4 / 2.5
Hardware 1/64 70.3 / 54.9 35.5 / 22.9 11.4 / 6.6 3.2 / 1.7
Hardware 1/256 64.0 / 47.5 29.3 / 17.8 8.8 / 4.9 2.4 / 1.3
Table 1. Performance in fps. Depth-map and shadow-width map are updated every frame, the
shadow-with map with software or differing graphics hardware algorithms. The hardware
algorithm samples three (left) or six (right) neighbor texels.

Figure 8. The scene used for performance study.

rendering speed is nearly indistinguishable from
common depth-map algorithms generating hard
shadows.

Currently, the performance of the software method is
limited by the operation that copies frame-buffer
contents to main memory. For testing purposes, we
disabled the creation of the shadow-width map,
leaving enabled the frame-buffer copy. The number
of frames per second increased only by about 40%
(depth-map resolution: 512×512).

Finally, the performance of the algorithm turns out to
be independent of the scene complexity, in particular,
if high resolutions for both kinds of shadow textures
are used.

7. CONCLUSION
The presented real-time rendering algorithm
generates soft shadows of dynamic scenes using a
single light sample. As its main advantage only a
single texture is required to render shadow of
arbitrary complex scenes. In addition, the algorithm
supports real-time rendering of shadows in dynamic
scenes. For shadows in static scenes, its performance
does not differ significantly from common depth-map
algorithms generating only hard shadows. Further-
more, the algorithm is fully accelerated by today�s
graphics hardware. The latter point is important since
currently, performance of graphics hardware ad-
vances faster than that of CPUs, and, therefore, we
expect that our algorithm will scale well with
upcoming graphics hardware.

As a direct extension of the depth-map shadow
algorithm by Williams, applications using that
algorithm can seamlessly integrate the presented soft
shadow algorithm.

Of course, the produced soft shadows are not
physically correct. But, they can satisfy the need for
more realism of interactive applications. Artifacts are
avoided if shadow blockers and self-shadowing
shapes are treated carefully.

As future work, we will investigate user parameters
that control soft shadow effects. It would be favorable
if those parameters could be determined auto-
matically.

The algorithm uses few and hardware-accelerated
resources. We anticipate that it cooperates well with
other rendering techniques such as bump-mapping,
planar or environmental reflections, and pro-
grammable shading.

8. REFERENCES
[Bra01] Brabec, S., and Seidel, H. P. Hardware-acce-

lerated rendering of antialiased shadows with

shadow maps. Computer Graphics International
(CGI 2001), 219-228, 2001.

[Bra02] Brabec, S., and Seidel, H. P. Single sample
soft shadows using depth maps. Graphics Inter-
face (GI 2002 Proceedings), 219-228, May 2002.

[Bro84] Brotman, L. S., and Badler, N. I. Generating
soft shadows with a depth buffer algorithm. IEEE
Computer Graphics and Applications, 4(10):71-
81, October 1984.

[Chi92] Chin, N., and Feiner, S. Fast object-precision
shadow generation for area light sources using
BSP trees. Computer Graphics (Symposium on
Interactive 3D Graphics), 25:21-30, 1992.

[Cro77] Crow, F. C. Shadow algorithms for computer
graphics. Computer Graphics (SIGGRAPH '77
Proceedings), 11(2):242-248, July 1977.

[Hai01] Haines, E. Soft planar shadows using
plateaus. Journal of Graphics Tools JGT, 6(1):19-
27, 2001.

[Hec97] Heckbert, P. S., and Herf, M. Simulating
soft shadows with graphics hardware. Technical
Report TR CMU-CS-97-104, Carnegie Mellon
University, January 1997.

[Hei91] Heidmann, T. Real shadows real time. Iris
Universe, 18:28-31, November 1991.

[Hei99] Heidrich, W. High-quality shading and
lighting for hardware-accelerated rendering. Ph.D.
Thesis, Universität Erlangen, Februar 1999.

[Hei00] Heidrich, W., Brabec, W., and Seidel, H. P.
Soft shadow maps for linear lights. Rendering
Techniques 2000: Proc. Eurographics Workshop
on Rendering, 11:269-280, June 2000.

[Huu99] Nguyen Hubert Huu. Casting shadows on
volumes. Game Developer, 6(3):44-53, 1999.

[Kil02] Kilgard, M. J. (editor). NVidia OpenGL ex-
tension specifications for the CineFX Architecture
(NV30). NVidia Corporation, August 2002.

[Par98] Parker, S., Shirley, P., and Smits, B. Single
sample soft shadows. Technical Report UUCS-
98-019, University of Utah, October 1998.

[Ree87] Reeves, W. T., Salesin, D. H., and Cook, R.
L. Rendering antialiased shadows with depth
maps. Computer Graphics (SIGGRAPH '87
Proceedings), 21(4):283-291, July 1987.

[Seg92] Segal, M., Korobkin, C., van Widenfelt, R.,
Foran, J., and Haeberli, P. E. Fast shadows and
lighting effects using texture mapping. Computer
Graphics (SIGGRAPH '92 Proceedings),
26(2):249-252, July 1992.

[Sol98] Soler, C., and Sillion, F. Fast calculation of
soft shadow textures using convolution. Computer
Graphics (SIGGRAPH '98 Proceedings), 321-
332, July 1998.

[Wil78] Williams, L. Casting curved shadows on
curved surfaces. Computer Graphics (SIGGRAPH
'78 Proceedings), 12(3):270-274, August 1978.

