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ABSTRACT 
We present a real-time rendering algorithm that generates soft shadows of dynamic scenes using a single light 
sample. As a depth-map algorithm it can handle arbitrary shadowed surfaces. The shadow-casting surfaces, 
however, should satisfy a few geometric properties to prevent artifacts. Our algorithm is based on a bivariate 
attenuation function, whose result modulates the intensity of a light causing shadows. The first argument specifies 
the distance of the occluding point to the shadowed point; the second argument measures how deep the shadowed 
point is inside the shadow. The attenuation function can be implemented using dependent texture accesses; the 
complete implementation of the algorithm can be accelerated by today�s graphics hardware. We outline the 
implementation, and discuss details of artifact prevention and filtering. 
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1. INTRODUCTION 
Soft shadows play an important role for perceiving 
the arrangement of objects in a 3-dimensional scene. 
The location of a shadow mediates the relative po-
sitions of a light source, shadow blocker and receiver. 
The sharpness of the shadow�s penumbra clarifies 
distance relationships between blocker and receiver. 
Soft shadows also provide a far more realistic 
impression of an image compared to hard shadows 
since in real-life there are no perfect point lights.  

Currently, no algorithm is known that renders physi-
cally correct and dynamically updated soft shadows 
in arbitrary scenes and in real-time. This is in contrast 
to hard shadow algorithms. Dynamic soft shadow 
algorithms require simplifications to achieve inter-
active frame rates, including:  

• Restrictions of the type of occluding and shadow-
receiving shapes.  

• Forbidden self-shadowing. 

• Disregarding shape and size of an area light, and 
reducing the shadow computation on a single 
light-source position. 

• Abandoning the goal of physical correctness, 
aiming only for convincing soft shadows. 

The algorithm we present in this paper belongs to the 
group of depth-map algorithms. It is suited for real-
time rendering, and, therefore, sacrifices physical 
correctness � it samples a single light position. 
Requirements of participating shapes are rather 
general if compared to other known real-time soft 
shadow algorithms: 

• Any shape can be receiver of shadows without the 
need to treat every planar surface of the shape 
separately. 

• Any shape can block light with the following 
restriction: In order to avoid artifacts it is ad-
vantageous if different blockers overlapping in 
light space do not differ too much in z-direction. 

• Self-shadowing is possible; i.e., a shape can cast a 
shadow upon itself. However, these shadows will 
most likely have no penumbra. 

We calculate the shadow as attenuation of the un-
shadowed light. The attenuation value at a point to be 
shaded is given by the result of a bivariate function: 
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The first argument, the shadow depth, is the distance 
between the occluding point and the possibly sha-
dowed point; the second, the shadow width, denotes 
the distance from a point to the nearest point that is 
geometrically illuminated. With today�s graphics 
hardware, the attenuation function can be evaluated 
using a dependent texture access.  

Our method is very fast because the only significant 
overhead compared to a hard shadow depth-map 
algorithm is the generation of the texture map 
containing shadow-width values. This is a simple 
operation that can be performed by the CPU or, 
through texture compositing, by graphics hardware. 
Our soft shadow algorithm appears to be one of the 
first of its kind that renders shadows entirely using 
today�s graphics hardware. Therefore, even for 
dynamic shadows, frame rates that exceed 60 fps are 
achieved for 3D scenes of moderate complexity. 

This paper proceeds in discussing related works. In 
Section 3, the algorithm is discussed from a theo-
retical point of view, and properties of the attenuation 
function are presented. Section 4 describes our imple-
mentation, Section 5 contains practical hints for 
quality improvement, and Section 6 gives a perfor-
mance comparison. The paper concludes in Section 7. 

2. RELATED WORK 
Hard Shadow Algorithms 
To render hard shadows, two kinds of algorithms are 
widely used for real-time calculation of dynamic 
shadows. The first approach are shadow volume algo-
rithms, first described by Crow [Cro77]. Here, 
shadow calculation takes place in object space by 
means of invisible semi-infinite shadow volumes. 
These are built by extruding occluding polygons into 
direction of the light. A pixel inside a shadow volume 
is known to be in shadow. The shadow volume algo-
rithm was adapted to real-time graphics hardware by 
Heidmann [Hei91].  

Depth-map shadow algorithms, first proposed by 
Williams [Wil78], are the second kind. Depth-maps 
are depth images of the scene rendered from the 
position of light in a pre-processing step. In the main 
rendering pass, for shadow testing, a point is 
transformed from camera space into light space. If the 
resulting z-value is greater than the corresponding 
value in the depth-map, then the point is considered 
to be in shadow. Projective shadows were the key to 
adapt depth-map shadows in real-time rendering 
systems [Seg92]. 

Williams� depth-map shadows can be simplified to a 
less general algorithm that is sometimes referred as 
projective shadows [Huu99]. During pre-processing, 
shadow blockers are rendered from the light source 

with black color; the background color is white. For 
shadow calculation, the resulting image � the 
occlusion map � is projected from the light source 
onto receiving shapes, and the resulting texture 
values directly modulate the shading intensities. This 
algorithm obviously does not permit self-shadowing. 
Despite, it is often used in practice because of its 
simplicity and its low hardware requirements. Our 
soft shadow algorithm is related to projective 
shadows, since it may use an occlusion map in order 
to generate the shadow-width map (see Section 4). 

Soft Shadow Algorithms 
It is possible to render soft shadows using hard 
shadow algorithms of either category (e.g., Brotman 
and Badler [Bro84]). To simulate an area light, 
several point light sources are distributed over its 
surface, calculating the shadow for each of these 
lights, and accumulating the resulting shading 
intensities. In practice, this idea is hardly usable due 
to the following reasons: 

• It requires a significant number of point light 
samples to achieve smooth intensity changes in 
the penumbra: The number of different intensities 
exceeds the number of light source samples by 
only one. 

• With today�s real-time graphics hardware, an 
accumulation buffer is required for good visual 
quality: Many light samples reduce the intensity 
resolution available for each light sample. Using a 
common frame buffer providing 8 bits per color 
channel leads to banding artifacts. Accumulation 
buffers provide enough accuracy but are not 
accelerated by today�s graphics hardware; they 
are emulated in software and, therefore, slow 
down rendering performance significantly.  

Apart from the latter accumulation method, few 
shadow volume algorithms address soft shadow 
generation for interactive rendering. One exception is 
Chin and Feiner�s Area SVBSP tree [Chi92] that, for 
static polygonal environments, stores penumbra and 
umbra regions in a pair of BSP trees. 

Most other algorithms for soft shadows are based on 
variants of Williams� depth-map algorithm. We first 
cover algorithms to reduce aliasing effects by 
softening the shadow boundary. To do so, Reeves et 
al. proposed �percentage closer filtering� [Ree87], 
which is nowadays integrated in rendering hardware 
that provides dedicated support for depth textures, 
but which can be also implemented deploying 
standard graphics hardware without relying on 
dedicated hardware support [Bra01]. When using 
projective shadows, blurring the occlusion map can 
create a similar effect. These methods sometimes are 
cited in the context of soft shadows. Although 



generating soft shadow edges, they cannot simulate 
an important property of soft shadows though: The 
distance between occluding shape and shadowed 
shape is not taken into account, so the size of the 
penumbra is invariant. 

Heckbert and Herf aim to calculate physically correct 
soft shadows by generating a radiance texture for 
each polygon [Hec97]. Such a texture contains all 
illumination information for the polygon, generated 
by sampling many light sources and accumulating the 
resulting intensities. In practice, the algorithm has the 
same limitations as Brotman and Badler�s. It is 
possible to employ convolution operations to appro-
ximate the radiance textures, thus significantly redu-
cing the number of light samples [Sol98]. This refine-
ment, however, seems to be inappropriate for real-
time rendering since for every radiance texture, e.g., 
every receiving polygon, an FFT must be calculated. 

Haines describes soft shadows using plateaus 
[Hai01]. For each planar surface in shadow, a texture 
is created that contains the projection of the blocker. 
To simulate the penumbra, a cone is rendered for 
each silhouette edge of the blocker, and added to the 
texture. 

Heckbert�s at al. and Haines� algorithms are seriously 
restricted by the fact that for every planar surface in 
shadow, a separate texture is required. Our soft 
shadow algorithm has the advantage that it requires 
only a single texture for the whole scene, even if 
curved shapes are shadowed. 

Heidrich describes a soft shadow algorithm suited for 
linear light sources [Hei00]. For simple scenes, his 
algorithm requires only two light samples. For the 
light source a depth map and a visibility map is built. 
The visibility map contains the percentage of the 
whole light that reaches a point in the scene. This 
somehow resembles our notion of a shadow-width 
map. However, an edge detection process is needed 
for the generation of the visibility map, scaling badly 
with scene complexity. In our algorithm, generation 
time of the shadow-width map is independent of the 
scene geometry. 

Single Sample Soft Shadow Algorithms 
Parker et al. compute soft shadows using a single 
light sample [Par98]. Their algorithm is suitable to 
ray tracing: around an occluder, a bigger object is 
constructed whose opacity lowers towards the outer 
boundary. The contribution of a light is modulated by 
the opacity term, while also taking into account the 
relative positions of occluding and receiving shapes 
and the light source.  

Recently Brabec et al. adopted Parker�s algorithm to 
work on depth maps [Bra02]. During shadow calcu-

lation, after transforming a point into light space, they 
search the neighborhood of the transformed point in 
the depth map. If the point is lit but in the 
neighborhood a blocked pixel is found, the point is 
darkened a bit, taking into account the distance to the 
next blocked pixel. If otherwise the point is shadowed 
but in the neighborhood unblocked pixels are found, 
the point is not fully darkened but illuminated pro-
portional to the distance to the next unblocked pixel. 

Brabec�s algorithm is suited for interactive frame 
rates. The shadow calculation is performed on the 
CPU, since the graphics hardware is not able to do 
the neighborhood search. The algorithm allows no 
self-shadowing. Otherwise, for its performance, the 
quality of shadows is good, despite the fact that they 
are not physically correct. 

Our algorithm is strongly related to Brabec�s algo-
rithm: Instead of searching the neighborhood in the 
depth map, we look up the distance to the next 
unblocked pixel in a second texture, the shadow-
width map. This allows for shadow computation 
using graphics hardware, lifting rendering perfor-
mance to real-time speed. As a limitation, shadows 
can be rendered only in such areas where a pixel is 
geometrically in shadow. Hence, our shadows are 
smaller than their physically correct counterparts � 
typically not noticed by the human viewer.  

3. ALGORITHM 
Pre-processing 
During a pre-processing step, our algorithm 
constructs two distinct images from the point of view 
of the light source, which are accessed later to 
calculate the intensity of a fragment: 

• The first image is the depth-map as known in 
Williams� shadow algorithm. 

• The second image we call shadow-width map. It 
is constructed as follows: Assume a plane A  
behind all shadow blockers that is perpendicular 
to the light�s direction. Then, the shadow width 

)(sw  of a point in the plane is given by its 
distance to the nearest point on the plane that is 
geometrically lit by the light � i.e., the shadow 
width is the distance to the next unblocked pixel. 

    

 

A linear transformation can transform any point p  in 
object space into light space, resulting in coordinates 

)',','(' zyxp= . We use these coordinates to lookup 
the corresponding value in the depth-map )','( yxz  
resp. shadow-width map )','( yxw . Then, we define 
the shadow depth of p  as  

pqpswAp
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Figure 2. Geometric interpretation of shadow 
width and shadow depth. 

)','(-')( yxzzpsd =  

and the shadow width of p  as 

)','()( yxwpsw = . 

The shadow depth can be interpreted as distance from 
p  to the most distant point of a shape blocking the 

light of p . The shadow width can be explained as 
follows: If the light is a distant light, )( psw  measures 
the distance to the nearest point that is geometrically 
illuminated. For point lights, )( psw  approximates the 
steradian with respect to the light source between the 
nearest point fully illuminated and p  (see Figure 2). 
In both cases, we use )( psw  to measure how deep a 
point is in shadow. 

Note that the shadow width of a point is zero if the 
light source is visible from that point. In this case, 
also the shadow depth of the point is zero since no 
object casting a shadow is nearer the light than the 
point itself. This means that 0)( =psd  automatically 
implies 0)( =psw  and vice versa; and if 0�)( psd , 

)( psw  must be 0�  either. 

Shadow Calculation 
To calculate the illumination intensity for a given 
point p , shadow depth and shadow width are used as 
arguments of the attenuation function 

))(),(( pswpsdI , whereby 

[ ]1,0�: ++×RRI . 

))(),(( pswpsdI  calculates the attenuation of the 
light source caused by a possible shadow at p . The 
co-domain of I  is [ ]1,0 , where zero denotes that the 
light is fully attenuated, i.e., a point is in the umbra of 
the shadow, and one denotes that light is not 
attenuated, i.e., a point is fully lit.  

To provide soft shadows, I  has the following 
properties: 

1. 1),( =swsdI  if 0=sd  or 0=sw , to ensure 
that points are fully lit if they are visible from 
the light source. 

2. )','(),( swsdIswsdI =  if '
'

sd
sw

sd
sw = . This pro-

perty ensures that when scaling both shadow 
depth and shadow width by the same amount, 
the light attenuation remains unchanged. 

3. )',(),( swsdIswsdI �  if 'swsw> . If also 
0)',( >swsdI , we furthermore demand 

)',(),( swsdIswsdI < . This property ensures 
that when approaching a shadow boundary, the 
light gets strictly monotonic brighter. In the 
umbra, the light obviously cannot get any darker 
than zero, so if 0)',( =swsdI , also 

0),( =swsdI must hold. 

4. For smooth attenuation, i.e., smooth intensity 
changes, ),( swsdI  is continuous, which is not 
physically correct but feasible from a human 
perceptional point of view. 

The following property directly follows from 2. & 3.: 

5. ),'(),( swsdIswsdI �  if 'sdsd < , respectively 
),'(),( swsdIswsdI <  if additionally 

0),'( >swsdI . This ensures an important visual 
property of soft shadows: Where a shadowed 
polygon approaches the light blocker, the 
shadow boundary gets sharper. 

Obviously, the choice of I  is not unique, but 
depends of the attenuation changes at the boundary of 
the shadow. In general, ),( swsdI  can be any 
function of the form  

( ) otherwise
0if1

),(
sd
swf
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swsdI
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Figure 1. Left: torus with soft shadow. Center: depth-map. Right: shadow-width map. 
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Figure 3. I(sd, sw) with cscale = 1 and cbias = 0.05. 

where )(xf  is a continuous and strictly monotonic 
decreasing function that converges to one for 0�x .  

In our implementation, we use the attenuation 
function: 

otherwise-1
0if1

),(
* sd

sw
scalebias cc

sd
swsdI +

=
= , clamped 

to [ ]1,0  (see also Figure 3). 

biasc  and scalec  are non-negative constants. scalec  
adjusts the softness of the shadow. Let sd  be fixed; 
if scalec is large ),( swsdI  becomes zero even for 
small sw . In this case, yet close to the geometrical 
shadow boundary the light is fully darkened. Conse-
quently, a large value of scalec shrinks the size of the 
penumbra, whereas a small value enhances its size.  

A valid value for biasc  is zero. In certain cases, we 
found a value slightly greater than zero advantageous 
to reduce intensity artifacts at the outer border of the 
soft shadow (see Section 5). 

4. IMPLEMENTATION 
To implement the presented algorithm in a way that it 
can benefit from acceleration by graphics hardware, 
the following steps must be taken for each fragment  f 
resulting from rasterizing primitives:  

1. The shadow depth value sd  must be available 
for  f. 

2. The shadow width value sw must be available 
for  f. 

3. The result of the attenuation function I  with 
sd  and sw  as arguments must be calculated. 
It is multiplied with the regular fragment�s 
color resulting in the final color, which is 
copied into the frame-buffer.  

Attenuation Function 
Step 3 is the easiest to solve given today�s graphics 
hardware that supports dependent texture accesses. 
Suppose the former texture units have been set in a 
way that sd  and sw  are determined correctly. Then, 

),( swsdI  can be looked up in a lookup-texture 
containing intensity values.  

Generating Shadow Depths 
Step 1 is more difficult but can be solved by the 
approach of Segal et al. [Seg92] and Heidrich 
[Hei99]. Here, we summarize the approach of 
Heidrich: The scene is rendered from the light source, 
applying a texture that encodes the distance to the 
light source in the alpha channel of the frame-buffer 
(using texture coordinate generation). The resulting 
alpha channel is copied into a texture, and represents 
the depth-map. To calculate sd , this texture is 
projected from the light source onto the scene in 
object space. A second texture is applied to the scene, 
which uses the texture that was formerly used to 
create the depth-map. Thus, sd  is the difference 
between the fetched texture values of the first and the 
second texture. 

Heidrich calculates the difference of the alpha texture 
values using texture environment functions. To use 
the result in a dependent texture lookup, we must 
calculate it at an earlier stage using texture shaders. 
This is possible with per-fragment dot-product 
facilities of current hardware: Instead of encoding the 
depth values in the alpha channel, we use the green 
channel. A value of one is stored in the red channel. 
This texture is projected onto the scene using the first 
texture unit. In the second texture stage, we calculate 
the dot-product of the result of the first texture 
lookup with (s, -1, 0), where s is generated to hold the 
distance of a fragment to the light source 'z . This 
results to 

sdyxzz
greens

rbluetgreensred

==
=

++
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Generating Shadow Widths 
For Step 2, we calculate a texture that contains 
shadow width values; it is projected onto the scene to 
make sw  available for all fragments. For this, we 
generate an inverted occlusion map at the same time 
when generating the depth-map. The occlusion map is 
rendered from the light source, choosing intensity of 
one for shadow blockers, and zero for other objects. 
The blue channel is used to store the occlusion map. 



 
Figure 6. Without self-shadowing, reduced 

artifacts. 

In a post-processing step, the occlusion map can be 
converted into a shadow-width map. The blue inten-
sity of a texel having a neighbor texel much darker is 
replaced by the intensity of that neighbor texel plus a 
small difference value. This is done for all texels in 
the map, and the whole process is repeated conside-
ring different directions for the neighbors. Since the 
difference value added to a neighbor�s intensity 
always remains the same, the final blue intensity of a 
texel approximately measures the distance to the 
nearest texel that was not occluded by a shadow 
casting object. 

When the occlusion map is copied into system 
memory, this algorithm is easily implemented re-
garding neighbor texels in the left, right, top, and 
bottom direction. To avoid the costly frame-buffer 
copy operation, a variant of the algorithm may be 
also implemented that uses the graphics hardware. 
The inverted occlusion map is used as texture. It is 
bound to all available texture units, and the textures 
are applied to a quad that covers the whole viewport. 
One texture is applied unchanged. The other textures 
are moved to the different neighbor directions, and 
the small difference value is added to their texels. 
The intensity of a rendered fragment results from the 
minimum of all fetched texture values. The process is 
repeated multiple times, each time employing a new 
texture holding the actual frame-buffer, and with 
doubled difference and neighbor distance. The 
algorithm stops when the difference value is greater 
than one (see Figure 4). 

5. DISCUSSION 
Possible Artifacts 
Our algorithm handles all shadowed surfaces well. 
For objects that cast a shadow, problems arise if 
several light-blocking objects overlap in light space, 
or several parts of a single concave light-blocking 
object overlap. In both cases, only a single depth can 
be stored in the depth-map at a position. This results 
in shadow-depth discontinuities and to artifacts. As 
visual effect shadows abruptly get softer along 
shadow edges that cross other shadow edges (see 
Figure 5). The effect is disturbing in particular when 
it suddenly appears and disappears, for instance, in 
the case of moving objects. 

The shadow-width map can also have artifacts due to 
united areas of projections of different blockers (or 
parts of blockers) in the inverted occlusion map. The 
results are shadow-width values that are too high. The 
visual effect is mostly notable for moving blockers, 
when shadow widths suddenly increase and the 
shadow gets darker. 

Self-Shadowing 
Self-shadowing shapes, e.g., shapes that are both 
blocker and receiver, are best treated as blocker when 
generating the inverted occlusion map. For a possibly 
shadowed point on a light blocker, the shadow width 
will be too high because the region around the point 
will enhance the blocker�s silhouette in the inverted 

 
Figure 4. Generation of a shadow-width map from a sphere using texture compositing. Neighbors in 6 
directions are sampled. From left to right: inverted occlusion map; result of algorithm after 4, 5, 6, 7, and 
8 iterations. The starting difference value is 1/256. 

 
Figure 5. Artifacts due to overlapping blockers. 



occlusion map. Therefore, the shadow at the point 
will be darker than expected. In practice, shadows 
onto self-shadowing shapes often have no penumbra 
at all.  

If we avoid shapes that are both blocker and receiver, 
the visual effect of depth-map artifacts can be re-
duced. In this case, the back faces of shadow-casting 
shapes can be rendered into the depth-map using a �z-
greater� test. When calculating the shadow, the 
shadow artifacts in the depth-map cause a shadow 
with harder edge. As illustrated in Figure 6, this 
strategy leads to visually more convincing results.  

Filtering 
If the geometry of the occluding shape is simple and 
linear texture filtering is enabled, even shadow maps 
with an extremely low resolution can yield an 
acceptable quality (see Figure 7, which was created 
using a depth-map resolution of 64×64 texels). Linear 
filtering, however, has drawbacks since it produces 
intensity discontinuities at the outer boundary of the 
shadow. In Figure 7, this effect is visible where disk 
and sphere are close. The reason for discontinuities is 
that inside the shadow, the texture coordinates of the 
texel in the lookup-texture differ completely from the 
coordinates outside the shadow, which are (0, 0) � 
linear filtering between them makes no sense. As a 
future extension of the algorithm, programmable 
texture filter functions, e.g., as exposed in the 
GL_NV_fragment_program extension [Kil02], could 
solve this filtering problem. 

6. PERFORMANCE 
For our performance study, a Pentium IV with 1.300 
Mhz and GeForce3 Ti200 with 64MB graphics 
hardware was used. For generating the shadow-width 
map, we distinguished between the software method 
and the graphics hardware method (Section 4).  

The graphics hardware method, we recorded timing 
results for several starting difference values. This 
value decides how often the loop to create the sha-
dow-width map is performed (and, on the other side, 
is responsible for the size of the penumbra). We also 
distinguished between sampling three and six neigh-
bor texels to create the shadow-width map1. Our test 
scene is depicted in Figure 8. The resolution of the 
main window was 512×512 pixels. The results are 
given in Table 1; numbers are in frames per second. 

For moderate depth-map resolutions (e.g., 256×256), 
the algorithm performs in real-time. For higher 
resolutions, performance is at least interactive. 

The results are nearly independent of the canvas 
resolution. As expected, the resolutions of the depth-
map and the shadow-width map determine the 
rendering speed since those textures are updated 
every frame. If they are not dynamically updated, the 

                                                           
1 These numbers are best suited for GeForce3 hardware 

since GeForce3 can apply four textures at once, and to 
sample three neighbor texels, three textures and the main 
texture must be applied. 

Figure 7. Depth-map resolution of 64××××64. Where 
blocker and shadow receiver are close, artifacts 
are visible. Everywhere else the shadow is not 
affected. 

Depth-map resolution 256×256 512×512 1024×1024 2048×2048 
Software 61.6 34.3 12.6 3.2 
Hardware 1/1 (hard shadows) 97.9 79.8 42.9 17.0 
Hardware ¼ 86.1 / 77.4 56.4 / 43.6 22.4 / 15.1 7.0 / 4.4 
Hardware 1/16 77.5 / 64.4 43.6 / 30.0 15.2 / 9.2 4.4 / 2.5 
Hardware 1/64 70.3 / 54.9 35.5 / 22.9 11.4 / 6.6 3.2 / 1.7 
Hardware 1/256 64.0 / 47.5 29.3 / 17.8 8.8 / 4.9 2.4 / 1.3 
Table 1. Performance in fps. Depth-map and shadow-width map are updated every frame, the 
shadow-with map with software or differing graphics hardware algorithms. The hardware 
algorithm samples three (left) or six (right) neighbor texels. 

Figure 8. The scene used for performance study.



rendering speed is nearly indistinguishable from 
common depth-map algorithms generating hard 
shadows.  

Currently, the performance of the software method is 
limited by the operation that copies frame-buffer 
contents to main memory. For testing purposes, we 
disabled the creation of the shadow-width map, 
leaving enabled the frame-buffer copy. The number 
of frames per second increased only by about 40% 
(depth-map resolution: 512×512). 

Finally, the performance of the algorithm turns out to 
be independent of the scene complexity, in particular, 
if high resolutions for both kinds of shadow textures 
are used.  

7. CONCLUSION 
The presented real-time rendering algorithm 
generates soft shadows of dynamic scenes using a 
single light sample. As its main advantage only a 
single texture is required to render shadow of 
arbitrary complex scenes. In addition, the algorithm 
supports real-time rendering of shadows in dynamic 
scenes. For shadows in static scenes, its performance 
does not differ significantly from common depth-map 
algorithms generating only hard shadows. Further-
more, the algorithm is fully accelerated by today�s 
graphics hardware. The latter point is important since 
currently, performance of graphics hardware ad-
vances faster than that of CPUs, and, therefore, we 
expect that our algorithm will scale well with 
upcoming graphics hardware.  

As a direct extension of the depth-map shadow 
algorithm by Williams, applications using that 
algorithm can seamlessly integrate the presented soft 
shadow algorithm.  

Of course, the produced soft shadows are not 
physically correct. But, they can satisfy the need for 
more realism of interactive applications. Artifacts are 
avoided if shadow blockers and self-shadowing 
shapes are treated carefully.  

As future work, we will investigate user parameters 
that control soft shadow effects. It would be favorable 
if those parameters could be determined auto-
matically.  

The algorithm uses few and hardware-accelerated 
resources. We anticipate that it cooperates well with 
other rendering techniques such as bump-mapping, 
planar or environmental reflections, and pro-
grammable shading.  
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