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ABSTRACT

We present an approximation method to compute geodesic distances on triangulated domains in
the three dimensional space. Our particular approach is based on the Fast Marching Method
for solving the Eikonal equation on triangular meshes. As such, the algorithm is a wavefront
propagation method, a reminiscent of the Dijkstra algorithm which runs in O(nlogn) steps.
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1 INTRODUCTION

Computation of shortest paths is a well known
problem in Computational Geometry. In this pa-
per we present a method of approximating the
length of shortest paths between two vertices on
a 2-manifold surface represented by a triangular
mesh. This problem arises in a number of appli-
cations such as robot motion planning, naviga-
tion and geographical information systems. Our
work in this field was motivated by very recent
developments in the area of computer graphics.
Numerous new approaches emerged in this field
where an efficient computation of geodesic dis-
tances on triangular meshes is needed: Zigelman,
Kimmel and Kiryati [Zigel01] presented a method
for distortion minimizing texture mapping; a fun-
damental component of this algorithm is the com-
putation of geodesic distances. Another impor-
tant contribution was also recently presented by
Hilaga et al. [Hilag01] where the accumulated
geodesic distances were used to construct mul-
tiresolution Reeb Graphs serving as search keys
in a database of 3D objects. Last but not least
Praun et al. [Praun01] applied geodesic paths
to construct topologically equivalent base domain
triangle meshes for consistent mesh parameteri-
zation, which in turn may be applied to a spec-
trum of further applications, like finding corre-
spondences between pairs of objects, morphing
of 3D objects, texture transfer, etc.

In most of these applications the efficiency of
computations is preferred over accuracy. In-
stead of optimal solutions efficiently computable
high quality approximations are called for. Our
method is based on the work of Kimmel and
Sethian [Kimme98|, who showed an application
of the Fast Marching Method, in which they ap-
proximate geodesic distances on triangulated do-
mains. The Fast Marching Method is essentially
a wavefront propagation algorithm, the central
idea is to advance a front in an upwind fashion
to produce new distance values at the vertices of
the mesh. As shown later, the update step com-
putation used by Kimmel and Sethian [Kimme98]
produces good results if the front propagates from
a straight line seed but fails when the seed is a
single point. This is already true for the simplest
planar cases. In addition to this observation, the
main contribution of this paper is a new update
step for the case of a single seed point. The rel-
evance of this case is indicated by the fact that
in all applications mentioned above the seed is a
single point and not a straight or polyline.

1.1 PREVIOUS WORK

The general problem of finding the shortest Eu-
clidean path is defined as follows: given a set of
disjoint polyhedra in R3, find the shortest path
between two points s and ¢ avoiding the interior



of these polyhedra. This problem was shown to
be NP-hard by Canny and Reif [Canny87]. In
our case, we look for a shortest path 7(s,t) be-
tween the points s and ¢ on a 2-manifold mesh,
which is a special case of the above problem.
The algorithms elaborated so far are usually for-
mulated for convex polytopes, which is sufficient
for a number of applications. The solution by
Sharir and Schorr [Shari86] yields an algorithm
with O(n3logn) complexity; an important addi-
tional result here is the proof, that every short-
est path on a polyhedron unfolds to a straight
line on a plane. Mitchell et al. [Mitch87] showed
an improved O(n?logn) running time algorithm
working on non-convex polyhedra as well. The
best algorithm known to the authors for the case
of non-convex polyhedra was presented by Chen
and Han [Chen90] with O(n?) time complexity.

An important class of algorithms for geodesic dis-
tance computation comprises of approximating
and so-called e-approximating algorithms. The
latter family computes shortest paths on con-
vex polytopes with controllable accuracy: denote
d(s,t) the length of m(s,t), the e-approximating
algorithms compute paths with maximal length of
(1 +¢)d(s,t). An O(nlogl/e + 1/%) algorithm
solving this problem was presented by Agarwal et
al. [Agarw97]. Approximating algorithms for the
general case of non-convex objects were presented
in [Lanth97]. A nice and comprehensive overview
over the techniques and problems in shortest path
searching can be found in [Mitch98].

1.2 PAPER OVERVIEW

In the next section we review the fast marching
method formulated for the case of arbitrary tri-
angulation and discuss the arising problems. An
improvement of the update step of this scheme
is presented in section 3. The results are pre-
sented in section 4, which is followed by a short
discussion in section 5.

2 FAST MARCHING METHOD

The fast marching method on triangulated do-
mains was introduced by Kimmel and Sethian
[Kimme98]. The main idea of this algorithm is
to simulate a front advancing from a source point
and store the computed distance values at the ver-
tices; the update procedure is monotonic, the ver-
tices are processed in increasing order of the dis-
tance value. Mathematically, the above problem
can be formulated as the solution of the Eikonal

equation:
IVT| = 1.

Intuitively, we want the distance T to grow from
the seed point s where T'(s) = 0 by a gradient
with unit magnitude.

2.1 ALGORITHM OVERVIEW

Fixed vertex  Close vertex Unprocessed
set set vertex set

< N

-

Figure 1: Demonstration of a step of the
algorithm, the wavefront advances from left
to right in this example. The gray areas on
left and right side indicate the Fized and
Unprocessed vertex sets, respectively. The
remaining vertices in between belong to the
Close set. In the depicted step, vertex v
having the smallest distance value in Close
is included into Fized. As a consequence of
this, v’ is included into Close.

The algorithm proceeds by propagating a wave-
front outwards from a set of seed points. The
advancing front can be thought of as a brush-
fire advancing with constant velocity in all direc-
tions in which the mesh has not yet been ”burnt”:
we start the fire in the seed points and store the
time values for each vertex at which the fire front
has reached it. This is accomplished in a fash-
ion very similar to the well known Dijkstra algo-
rithm [Dijks59] for computation of shortest paths



in graphs. We essentially maintain and incre-
mentally compute distance values for candidate
vertices being adjacent to vertices, which already
have according computed distance values. As in
the Dijkstra algorithm, we include the candidate
vertex with the smallest distance value into the
set of vertices having final distance values and
propagate and maintain the front of candidate
vertices in the vicinity of the newly fixed vertex.

The overall algorithm is as follows (cf. figure 1:
the vertices are initialized with the prescribed val-
ues, e.g. a zero distance value is assigned to the
given seed vertices; these vertices are included
to the Fized vertex set which will contain the
vertices with a final valid distance value. Then
the according distance values for all the vertices,
which are incident to triangles containing exactly
two fized vertices are computed, and included into
the Close vertex set indicating that the values of
these vertices may change. If there is only one
fized vertex as in the case of one seed point, Eu-
clidean distances are used during initialization.
As a final initialization step, all the remaining
vertices are included to the Unprocessed set.

1. Begin Loop: Let Trial be the vertex in
Close with the smallest T value. Add this
vertex to Firzed and remove it from Close.

2. Compute the distance values for all vertices
from Close U Unprocessed, which are inci-
dent to triangles containing Trial and an-
other vertex in Fized. If such a vertex was
in Unprocessed, remove it from this set and
add it to Close.

3. Return to Begin Loop.

In the algorithm, the newly computed distance
values cannot be smaller than the values support-
ing this computation. This monotonicity property
ensures that the solution is always propagated
outwards by selecting the vertex with smallest T
value. In other words no values corresponding to
vertices in Fized set will have to be recomputed.
Eventually, every non-fixed vertex will have to
be chosen as the one with smallest T' value in
Close, the complexity of the algorithm is there-
fore mainly influenced by this operation. In our
implementation, we applied a pairing heap for
this purpose, the above vertex location procedure
takes O(logn) time using this technique. Since
all vertices in the domain have to be processed,
the overall time complexity of the algorithm is
O(nlogn).

Note that the above procedure is suitable only
for triangles having an acute angle at the queried

vertex. If this is not the case, the situation may
occur, that the supporting values for the distance
computation are not yet available while process-
ing the vertex, as the propagated front could not
“reach” the second supporting vertex, cf. fig-
ure 2. As a solution to this problem wvirtual ver-
tices are introduced for such obtuse triangles, see
[Kimme98] for details on that.

Figure 2: As the front indicated by the
dashed arc arrives at the obtuse vertex wvs,
only the vertex v; is already processed and
has a valid distance value. Therefore, spe-
cial handling is needed for this triangle, see
[Kimme98] for details.

2.2 UPDATE STEP

The main operation in the above procedure is the
update step, which determines the distance value
for a vertex based on distance values of two other
vertices within the same triangle. The update
step in the original work is computed as follows:
given a triangle comprising of vertices v1, vs, and
v3 assume that the values T'(v1) and T(ve) are
known, we are looking for T'(v3). We may further
assume without loss of generality that the vertices
v1, v2 and wvg lie in the zy-plane, thus we can
depict the according distances by new points v} =
((vi)a, (vi)y, T'(v;)) above each of the vertices, cf.
figure 3.

The value of T'(vs) is computed in such a way
that the angle between the normal n’ of the plane
defined by v}, v4, and v5 and the normal n of the
plane defined by vy, ve, and vs is 7/4. This can
be formulated as follows:

(n,n’) = cos(m/4),

where (.,.) denotes the inner vector product.
In general, there will be two solutions of the
quadratic equation defined in such a way and the
one larger than both T'(v1) and T'(v2) has to be



chosen in order to enforce the monotonicity of the
solution.

Figure 3: The plane defined by v}, v4 and
v has to be tilted so that the angle between
n and n’ is 7/4.

This procedure can be interpreted as follows: the
intersection between the planes described above
defines a straight line. The distance value as-
signed to vs is exactly the distance of vs from this
line. In other words the propagated wavefront is
a straight line and not a circular arc, which is
desired for a single seed point.

Figure 4: The situation if v; is the seed
point and vy is assigned the Euclidean dis-
tance to v;. The plane will be tilted in a
way that the direction of the gradient will
be rectangular to the line e. Therefore, v
will be assigned its distances to e instead of
the correct Euclidean distance indicated by
the dashed arc.

Considering for instance a single seed point vy
with distance value zero and two neighboring
points vo and v3 forming a triangle. Assume that
vy has a distance value equal to Euclidean dis-
tance between vy and vy, see figure 4. In this
case, there is only one solution of the quadratic
equation, the plane can only be tilted in such a
way, that the gradient points from vy, towards v;.

T'(vs) will coincide with the Euclidean distance
to the seed point if and only if all the vertices are
collinear, which is a pathological case.

3 NEW UPDATE STEP

a)

b) A

Figure 5: Computation of T'(vs) in the
plane of the triangle. a) The origin is in
T(v1) and T(ve) distance from vy and wve,
respectively. The possible origins are given
by intersections of circles with loci at the
vertices and radii of according distance val-
ues. b) T'(vs) is computed as the larger
of distances to the computed origins; the
arcs depict the wavefront advancing from
the origin.

The apparent reason for the failure of the algo-
rithm in cases described in the previous section is
that in the case of a single seed point, the propa-
gated wave should not be modelled as a plane but
in a circular or conical manner around the seed
vertex. Therefore, in our new approach we model
the wavefront as a circle around a virtual cen-
ter, defined by the distance values of the already
processed vertices.

The basic idea of our solution is depicted in fig-



ure 5. Using again the previously introduced no-
tation, we assume without loss of generality that
v1 = (0,0,0) and vy = ((v2)s,0,0), which means
that vy is in the origin and vy is on the z-axis of
the coordinate system. This yields the following
system of equations:

z? +y? =T(v1)?,
(x = (v2)2)? + y* = T(v2)*.

The solution of this system is fairly simple, and
gives two solutions in general. In order to enforce
the monotonicity, we choose the solution yield-
ing larger Euclidean distance between v3 and the
solution point. Let

A =2T(v1)*(v2)2 — (v2); + 2T (v2)*(v2)2,
B = (T(11)? — T(vs)?)?.

The solution of the above system of quadratic
equations:

1 (02)24T(v1)?—T(v2)?
(U3)37 -3 12 n B(Uzl)z ? )
(Us)y = ii (0231

The intuition behind the above idea is to
7project” the seed point to the plane of the tri-
angle to be processed. In our approach, this pro-
jected origin is given by the solution of the above
equation system, which is at larger distance from
v3, see figure 5. This is exactly the distance T'(vs)
we are looking for.

Note however, that in the general case this is
only an approximation to the exact shortest
path length. If we wanted to exactly backtrack
the shortest paths for the vertices, we would
have to maintain a more complex data struc-
ture for each edge passed by the wavefront, see
[Mount85a, Mount85b, Mitch87] for more details.
On the other hand, the shortest path unfolds to
a straight line only if it does not pass through a
vertex (cf. [Shari86]), which is always the case
for convex objects. In case of non-convex objects
the unfolded shortest path may pass through ver-
tices and therefore it may be not a straight line
segment, but a polyline. Thus, similarly to the
method of Kimmel and Sethian, our algorithm
gives only an approximation of geodesic distances,
which, however, is considerably more accurate
then the former.

It should be mentioned that in some cases the us-
age of a polyline as wave front yields exactly the
same solution as our new update step. This sit-
uation occurs if the plane can be tilted correctly,
i.e. using the notation of previous section, v] and
vh are in the plane and the gradient points from
the v§ into the triangle. However, as we saw, this
is not always the case.

Figure 6: Result for the new update step
in the case of a single seed point. We pro-
cessed a triangulated planar square domain
lying in the xy plane and raised the vertices
along the z coordinate by the corresponding
distances. All vertices lie on a cone having a
vertical axis and its apex in the seed point.

4 RESULTS

To analyze the difference between the described
update step computations, we applied the meth-
ods to a triangulated planar quadrilateral with
one seed point. In this example, the geodesic dis-
tances between vertices are equal to Euclidean
distances, thus making the verification of results
easy in this simple case. The new update step in-
troduced in this paper yields the result depicted
in figure 6. The vertices lying originally on the zy
plane were risen by the corresponding distances
lie on a cone. The axis of the cone is paral-
lel with the z axis and its apex is in the seed
point. The angle between lines on the cone pass-
ing through the apex and the axis is /4, which
indicates that the distances grow by a gradient
|VT| = 1. Therefore, the computed distances are
exactly the Euclidean distances from the original
vertices to the seed point.

The result for the original update step is depicted
in the upper image of figure 7. It can be seen
that the distances do not advance according to
a circular arc front, which would be the correct
solution. Some directions can be distinguished
where the update clearly fails to compute the cor-
rect values — there are mesh areas, where the dis-
tances grow slower, and there are regions where
they grow faster. After taking a closer look, it can
be seen that this is due to the already indicated
fact that the computations are inaccurate if the
edges are aligned with the direction of the gra-
dient. In fact, the distances along the edges will



grow slower than the correct Euclidean distances.

Figure 7: The result of applying the orig-
inal update step for a triangulated planar
square domain lying in the xy plane can be
seen in the upper image. Similarly to the
figure 6, the vertices have been risen along
the direction parallel with the z axis accord-
ing to their distance from the seed point
to visualize the advancing wavefront. The
lower image depicts the error of values com-
puted by this procedure, the z values of ver-
tices indicate the error. The distance values
are inaccurate especially in cases where the
edges are aligned with the gradient of the
advancing front.

The lower image of figure 7 illustrate the error of
computations using the original update step. The
picture is a difference image between the correct
solution (cf. figure 6) and the result yielded by
the original procedure from upper image of figure
7.

We applied both algorithms to a number of 3D
triangle meshes. The efficiency of the method
comes from the fact that we need to conduct
only a simple computation in the update step.
The Close set always contains the vertices be-
ing adjacent to Fized vertices in the vicinity of
the advancing front which is only a small frac-
tion of all vertices of the mesh. This way locating
the vertex with smallest T value is very fast as
well. Previous methods computing exact geodesic

Figure 8: Results of running both methods
for a hippo model and a foot scan viewed
from below. On the left side we depicted
the distance iso-values from one seed point
computed by the algorithm of Kimmel and
Sethian. As it can be seen, in some areas
the front advances slower, in some others
faster, which is due to the already men-
tioned alignment of triangle edges. Results
using the new update step are shown on
the right side, the wavefronts in this case
are propagated with approximately con-
stant velocity.

distances and paths did not reach the O(nlogn)
time complexity, some of the best methods are
still quadratic. Kimmel and Sethian proposed a
method, which utilized an incremental approach
similar to Dijkstra’s algorithm, however, their
method does not compute accurate distance val-
ues. On the other hand, as indicated in the in-
troduction, they provided an important alterna-
tive for geodesic distance computation, which has
already been successfully used in a number of
computer graphics applications. In this paper we
showed how to improve their approach in terms of
accuracy, which makes the method even more at-
tractive. The data structure and implementation
of the algorithm is very straightforward, the ap-
proach is inherently very fast due to incremental
computations.

As a result of these, even for large meshes con-
taining several tens of thousands of vertices, the
computation of distance values can be performed
in a fraction of a second, cf. table 1. An excerpt
from our results for one seed point are depicted in
figure 8. To visualize the advancing wavefront, we
painted the triangles in these examples according
to distance values of incident vertices in an al-
ternating manner. In all of our experiments we
encountered similar improvements.

Finally, we wish to indicate that the update step
proposed in this paper is particularly well suited
to geodesic distance computations from a single



Models || Vertex Our Kimmel’s
Count Method Method
Square || 604 20.4 20. 06
Foot 21817 755.1 747.1
Hippo 15446 558.3 553.8

Table 1: The timings in milliseconds mea-
sured for the algorithms. The results were
measured on a 1200 MHz AMD Athlon PC
with 256 MB RAM running Windows2000.
We indicate the vertex counts of the mod-
els in the second column, in the third and
fourth column are the corresponding tim-
ings. As it can be seen, there is practically
no difference between timings of our and
Kimmel’s method, since both rely on a very
similar procedure, only the update step has
changed.

seed point. In case of multiple seed points, the
wavefront will be the union of wavefronts starting
from each seed point. The approach of Kimmel
and Sethian may theoretically yield better results
in this case, since they approximate the front by
line segments. However, the issue of inaccuracy
in case of edges being aligned with the wavefront
gradient remains.

5 CONCLUSIONS

In this paper we analysed and improved the
marching front method for geodesic distance com-
putation proposed by Kimmel and Sethian. Es-
pecially, in the case of single seed points the re-
sults are better than the ones produced by the
original algorithm. Although the algorithm pre-
sented here delivers good results if instead of sin-
gle seed points arbitrarily shaped polygons are
used as well, we are still working on further im-
provements for this case.
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