

LAYERED RELIEF TEXTURES

Sergey Parilov, Wolfgang Stuerzlinger

Department of Computer Science
York University, 4700 Keele Street

M3J 1P3, Toronto, Ontario
Canada

{parilov|wolfgang}@cs.yorku.ca www.cs.yorku.ca/~wolfgang

ABSTRACT

In this paper we present an Image-Based Rendering method for post-warping LDI’s in real-time on
existing systems. The algorithm performs accurate splatting at low computational costs, reduces memory-
access bottlenecks, enables us to trade-off the quality for the speed, and is simple to implement.

Keywords: image-based rendering, image warping, real time rendering, relief textures, layered depth images,
splatting.

1. INTRODUCTION

Over the last few years, the growing needs of the
graphics community and the recent advances in
technology have resulted in the considerable increase
in the rendering speed of polygon-based graphics
hardware. Although it is possible to render up to 300
thousand triangles per frame in practice, the
hardware still cannot create photo-realistic images in
real-time. Among the reasons are the complexity of
creating realistic polygonal models in general, and
the inability of rendering the complex ones at high
frame rates. In special cases the quality of the images
can be improved with bump-maps, light maps and
similar advanced rendering techniques. This still
does not solve the problem for acquired imagery and
point sampled models.

Image-Based Rendering by Warping
(IBRW) was proposed as a method to overcome
these difficulties by using images as the model for
representing the source data. Current IBRW
techniques can create photo-realistic renderings at
the cost of the low speed that prohibits the use of
IBRW in real-time interactive applications. Despite
several research projects aimed at creating IBRW-
capable hardware, even the simplest IBRW methods
have not been demonstrated until now.

We present a low computational cost IBRW
method targeted to support insertion of realistic
objects into polygonal scenes. We employ the
texture mapping capabilities of existing graphics

hardware, and perform all the other operations in
software. In this paper, we
• show how the LRT (Layered Relief Textures)

method can achieve a high-quality reconstruction
image with small computational cost; and

• demonstrate IBRW at real-time rates for
medium-complexity models.

The paper is organized as follows. In the

following section we present a brief overview of the
existing methods and describe the basic warping
algorithms on which we build our method. Section 3
describes a way to mitigate the inability of one of the
previous IBRW methods (which this work builds
onto) to render objects from arbitrary views. Section
4 discusses the problem of efficient image
reconstruction from point-samples. We compare the
quality of our method with that of the existing
techniques. In section 5, we propose the method to
use the cache memory in a more efficient way.
Section 6 discusses our implementation and the
results.

2. PREVIOUS WORK

Several different image-based rendering methods
based on different data structures have been
presented over the last few years. In this work, we
limit the discussion only to images augmented with
per-pixel disparity1, as defined in [Mcmil97].

1 the quantity inversely proportional to depth

For Image-Based Rendering in general, the
quality of the final result depends primarily on the
quality of the source images. Using photographs or
images synthesized with global illumination
techniques IBR methods can generate highly realistic
results [Mcmil97, Debev96, Debev98]. Acquiring
models for IBR implies computation of camera
parameters for source images and obtaining depth
values for each source image pixel. For real images,
both these tasks can be addressed with computer
vision methods. For synthesized images this
information is easy to store during image generation.

IBRW algorithms essentially solve two
problems - geometrical warp problem defined as the
map from the source to the destination image
according to the camera configuration, and the signal
reconstruction problem to reconstruct the intensities
defined by the samples of the source images
[Mcmil97, Shade98, Olive00, Popes98]. The
(planar) forward warp derived in [Mcmil97]

11
1

221
1

212)()(xCCxδx PPP −− +−=&

computes the location of the point x2 in the
destination image corresponding to a point x1 in the
source image, where ()δ is the disparity of a point,
and P1, C1, and P2, C2 define camera configuration of
the source and the destination images respectively.
The occlusion compatible order guarantees correct
visibility between samples with a simple painter's
algorithm. In [Mcmil97], it is defined as a source
image plane traversal such that along every line in
the source image passing through the epipole2 the
points farther away from the epipole are visited first.
The cost of the computation is a matrix
multiplication per source image pixel.

As the occlusion compatible warping order
is only valid for a pair of source and destination
image, the regions in the destination image which
should be depicting parts of the scene not visible
from the source image camera appear empty.
Layered Depth Images (LDI), defined as a "view of
the scene from a single input camera view, but with
multiple pixels along each line of sight" [Shade98],
solve the problem. Furthermore, LDI’s support
occlusion compatible traversals. While the LDI’s
rely on the McMillan's warping equation, the
incremental warping scheme is presented in
[Shade98].

Relief textures [Olive00] present an
alternative that requires slightly less arithmetic
operations per source sample and exploits standard
graphics hardware to perform part of the

2 the projection of the center of projection of one
camera on the viewplane of the other

computations. The key innovation of this approach is
to decompose the warping process into two separate
passes - the pre-warp and the texture mapping. The
pre-warping stage handles only the parallax effects
by pre-warping the source image into an intermediate
image. On the second stage, the intermediate image
is used to texture map the polygon in 3D space
corresponding to the source image's viewplane. This
accounts for the perspective distortion, zoom, and
rotation due to the current viewpoint and produces
the same result as a conventional warp. The pre-
warping equations are defined as

dk
dkuu s

3

1

1+
+

= ,
dk
dkvv s

3

2

1+
+

=

and determine the position (u,v) of a source image
point (us,vs,d) in the intermediate image, where d is
the depth (or displacement), and k1,k2,k3 are the
coefficients that depend only on the camera
configuration and are independent of the source
point co-ordinates [Olive00].

The main shortcoming of relief texturing is
that it does not support multiple pixels along one line
of sight, thus being unable to handle objects that
feature occlusions inside the volume represented by
the relief texture. In other words, only a subset of
objects can be handled correctly and artefacts appear
if the fundamental assumptions are violated (e.g. the
areas behind the chimneys in [Olive00]).

On modern graphics hardware, rendering an
rectangular array of pixels after a conventional warp
has run-time cost comparable to that of rendering a
texture mapped triangle. Consequently, an additional
texture mapping operation is practically free.

Because sampling rates of the source
images rarely match the desired output resolution
interpolation between samples is a major issue in
IBRW methods. Many IBRW techniques use
different kinds of splatting of varying quality of
reconstruction and speed. The reconstruction errors
introduced by splatting are analyzed in [Mark97].

In the original warping approach the splat
for each sample was computed on the fly. As the
computation of exact splat footprints is extremely
computationally intensive different approximations
are used in practice, thus degrading the quality.
Fixed sized splats have been used previously to
achieve high warping speed [Aliag99]. In [Shade98],
the authors use a small pre-computed fixed set of
Gaussian splats to achieve somewhat better quality.
In [Pfist00], a splatting method that allows high-
quality reconstructions with high computation costs
is presented. In [Rusin00], the authors present a

hierarchical technique to visualize extremely large
models.

Relief textures [Olive00] present an
alternative that requires slightly less arithmetic
operations per source sample and exploits standard
graphics hardware to perform part of the
computations. The key innovation of this approach is
to decompose the warping process into two separate
passes – pre-warp and texture mapping. The pre-
warping pass warps the source image to take parallax
into account. The second pass maps the output of the
first pass as a texture onto a 3D rectangle in space.
This accounts for perspective distortion, zoom and
rotation due to the current viewpoint and produces
the same result as a standard warp. Note that the
result of a traditional warp still needs to be rendered
to the screen after the warp. Rendering the resulting
rectangular array of pixels has run-time cost that is
comparable to rendering one texture-mapped
triangle. Therefore, Oliveira’s approach is slightly
less costly than the McMillan’s approach or the LDI
splatting approach. The main shortcoming of relief
texturing is that it is unable to handle objects that
feature occlusions inside the volume represented by
the relief texture.

That IBRW can achieve better speeds than
polygonal computer graphics still needs to be
demonstrated in the general case. IBR methods such
as QuickTime VR can achieve the speed at the
expense of limiting the viewer motion to a location
and allowing only rotations. Hierarchical image
caches or impostor hierarchies can be rendered in
real-time, but rely on the existence of a geometric
description [Schaufler96, Shade96]. Therefore, they
cannot be applied to acquired imagery. More general
IBR methods based on McMillan's warping method
usually achieve a maximum speed of up to 10 frames
per second [Shade98, Popes98, Chang99].

Because image warping implies many memory
accesses, both reads and writes, memory bandwidth
becomes a significant issue. In [Mark97], the author
has addressed the issue with algorithms that provide
more efficient use of cache memory. Another
solution is to limit the amount of data being
considered by clipping, although little work has been
done in this area [Shade98, Popescu98].

The approach presented in this paper
addresses the issues mentioned by a combination of
techniques. We combine layered depth images and
relief textures and call the resulting data structure
Layered Relief Texture (LRT). Similar to LDIs, we
use multiple samples along the line of sight, and,
similar to relief textures, we use simplified equations
to pre-warp the samples and render them on the
screen with the help of texture mapping hardware.

This extends the relief textures approach to deal with
arbitrary objects. Furthermore, the nature of pre-
warping equation enables us to use a different
solution to the splat size computation problem to
achieve good image quality.

We use tiling of both the source and the
pre-warped images such that every pre-warped
image tile fits into L2 cache to address memory
bottlenecks. The tiles of the pre-warped image can
be rendered separately and selectively. This allows
us to easily clip the image and to re-use the results of
the warp of the previous frame if the estimated error
is below some threshold or if the time allowed for
the frame generation is over (similar to [Lengy97,
Schau96]).

3. LAYERED RELIEF TEXTURES

Layered Relief Textures (LRTs) combine the
advantage of relief textures with layered depth
images (LDIs). We base our approach on the
optimised warping method as described in [Olive00].
This relief textures approach offloads part of the
computational effort from the CPU to the graphics
hardware. First the image is pre-warped and then
texture mapping is used to complete the operation.
For correct image generation, the object rendered
should be complete, i.e. with no visible gaps and
holes due to absence of some parts in source data set
being used. In [Olive00], the authors propose to
render several relief textures of the object per frame.
Consequently, the same point of the object can be
warped several times from different relief textures.
Obviously, this degrades performance.

3.1 OVERFLOW HANDLING

If a 3D-point is far from the source viewplane of a
relief texture, its projection in the destination image
can fall outside the projection of the polygon being
textured and such point cannot be drawn. In
[Olive00], authors call this effect an overflow. To
deal with this difficulty, the overflows can be
accumulated on two auxiliary polygons,
perpendicular to the source view plane [Olive00].
Everything that projects outside of the polygon
corresponding to the source viewplane is drawn on
these auxiliary polygons. While this solves the
problem, it requires rendering several polygons for
each relief texture and results in complicated
occlusion-compatible orders. We have chosen to
address this problem by dynamically resizing the
texture.

We associate a bounding polyhedron with
the entire relief texture, with its vertices stored as
coordinates on the source image plane with

displacements. A simplified convex hull (with a
limited number of vertices) or a bounding box can be
used. Before pre-warping the texture itself, we pre-
warp the vertices of the bounding polyhedron and
compute its bounding box. We are guaranteed that
all source image pixels will project to within the
projection of this box.

By computing the extent of the projected
bounding box we can infer how much the source
viewplane needs to be rescaled (shrunk or stretched)
and shifted to fit all pre-warped points. We then re-
scale the texture correspondingly and render it.
Figure 1 illustrates the problem, how the relief
textures approach handles the problem and how do
we address it.

Handling of Relief Texture Overflow
Figure 1

Changes in the size of the polygon being

textured are equivalent to inverse changes in the size
of the resolution in comparison with the original
texture. When the angle between the observation
direction and the source viewplane becomes too
sharp the viewplane stretches by a large factor, thus
lowering the effective resolution and decreasing the
quality. We avoid this by storing multiple LRTs with
different viewing directions and switching to another
LRT with a less severe viewing angle. If all the used
LRTs are consistent with each other, this switch is
practically invisible. The only potential source of
inaccuracies is a slight misalignment due to the
discrete nature of textures and the polygon rendering
hardware, but we find in practice that these effects
are usually less than 1 pixel. An additional advantage
is that we can dynamically adjust the resolution of
the desired image if the quality can be sacrificed for
the speed of rendering.

4. SPLATTING

A drawback of the presented combination of LDIs
and relief textures is that we cannot use the
interpolation method presented in [Olive00] due to
intra-object visibility. Instead, we have to resort to
splatting. This however turns out to be an advantage,
as we can create better approximations to the
footprint of the splats in the image plane than
previous approaches. For efficiency however, the

splat shape approximation must be fast to compute.
The method we propose does not make use of
normal vectors and other auxiliary information, but
relies only on the displacement values of the
samples. We approximate splats by perspectively
distorted axis-aligned rectangles.

4.1 SPLAT SHAPE AND SIZE COMPUTATION

Assume that neighbouring source image pixels are at
a distance du from each other horizontally, and dv
vertically. Then, a pixel at (u,v) can be modelled as a
rectangle with its corners having coordinates
(u ± du, v ± dv).

an
no
sa
pr
tr
m
th
su
A
of
in
w
re
w
th
am
re
si
on
si

Original view plane
with overflow (top
part of cube)

[Olive00]: Auxiliary
view planes used to
accumulate overflow

New approach: Scaled
and shifted view plane
accommodates
overflow

LDI warping process
Approximation of Splat Shape
Figure 2

Having only points with depth and without
y further information, such as the presence of
rmals to the surface or connectivity between
mples, a point is simply an evidence of the
esence of a surface. Note that this assumption is
ue for most LDI data sets, due to the existence of
ultiple layers. Consequently, we can only assume
at a sample is a flat, axis-aligned region of some
rface facing directly towards the camera.
ccording to the pre-warping equations a pre-warp
 such an axis-aligned rectangular sample will result
 an axis-aligned rectangular sample in the pre-
arped image. Later, the texture-mapping pass will
nder the splat correctly on the screen. To pre-warp
arp a source image pixel, we warp its center to find
e center of the splat in the pre-warped image. The
ount of the horizontal and vertical extent of the

ctangular splat with respect to the original sample
ze depends only on the depth, and does not depend
 the co-ordinates in the image plane. That is, the

ze of the splat can be found as

dk
dkdvdv

3

1

1
'

+
+= ,

dk
dkdudu

3

2

1
'

+
+= ,

du’

dv ’

du

LRT warping process

Source
Image Pixel

Footprint in the
Pre-Warped Image

Correct Footprint in
Destination Image

dv

du

Source Image
Pixel

Correct Footprint for
Warped Pixel
Approximation to the
Correct Footprint (Square)

dv

where du, dv are horizontal and vertical size of the
source image pixel, and d is the depth. Figure 2
illustrates the approach and compares it with the
splatting directly to the screen.

4.2 COMPARISON WITH OTHER METHODS

We found this splatting method to be simple yet
giving good visual quality. One of the reasons is that
the final result is a perspectively distorted splat,
which is not orthogonal with respect to the axes of
the desired view in general. This will generate a
better image compared to other approaches that splat
directly into screen space. Furthermore, as it has
been shown in [Rusin00], simple rectangular splats
are much faster to render than Gaussians, and given
the time allotted for the frame generation they tend
to produce better results.

In the original LDI paper, the authors use a
fixed set of 1x1, 3x3, 5x5, and 7x7 Gaussian splats,
that are output directly to the destination image
[Shade98]. In this case, the introduced
reconstruction errors depend primarily on two
factors - the error due to the approximation of a
perspectively distorted splat by a square and a
maximum of half a pixel error due to the final image
sampling. In this work, we do not splat directly into
the destination image, but into an intermediate image
that will be used as a texture map. Since the pre-
warp stage does not handle rotations or perspective
distortion and both source and intermediate image
are orthogonal, any axis-aligned rectangle with
constant disparity corresponds to an axis-aligned
rectangle in the intermediate image. Under the
assumption of rectangular source samples, we get a
splat that is optimal with this approach.

During the texture mapping stage the splat
undergoes perspective distortion. When the texture
mapping is done, each splat is rendered as a non-
axis-aligned perspectively distorted quadrilateral,
which matches the ideal splat shape much more
closely than splats produced by many other
approaches. Since we use arbitrary rectangles as
splats, the error in the first pass is mainly due to the
round-off errors in the positions of splats in the
intermediate image, which are no more than half a
pixel. During the second pass this error is reduced or
magnified depending on the perspective distortion of
the view. Furthermore, polygon rasterization and
texture mapping artefacts introduce an additional
error of less than half a pixel.

The error of our method is definitely less
than the error of the LDI approach when the view is
tilted or when the object is viewed at sharp angles as

the perspective distortion gets larger in these cases.
Furthermore, our approach generates better results
when the resulting image is smaller than the original
image, i.e. when minification occurs, as we can
benefit from mip-mapping. The LDI splats will
introduce severe aliasing artifacts in this case. Only
if there is very little perspective distortion and no
viewer tilt may the LDI approach generate better
images than the approach presented here. Also, our
method can utilize bilinear interpolation of texture
maps, which will further increase the quality of the
result, even when the texture is magnified. Figures 3,
4 and 5, compare objects rendered with both LDIs
and LRTs using rectangular splats.

The advantages of the LRT method become
even more apparent, when one compares the results
of Gaussian splatting with the LDI method with the
results of the LRT method. Figure 6 shows all four
possible combinations. Note that the result of the
LRT approach with rectangular splats is almost equal
to that of the LDI approach with Gaussian splats.
Note however, that the LRT approach with
perspectively distorted rectangular splats is much
less costly than any approach using Gaussian splats.

(a) (b)

Zoomed-in edge of a cube rendered
with (a) LDIs (b) LRTs

Figure 5

(a) (b)

Renderings of a fern model, (a) LDI; (b) LRT.
Figure 3

(a) (b)

Parts of the fern renderings zoomed in
Figure 4

5.

Fo
mo
the
eff
reg
bo
a
se
de

wa
pr
po
qu
im
LR
co
mi
thi

co
rec
pr
ma
bo
bo
so
it.
the

se

compatible order between these tiles. With our tiling
of the source LRT, the occlusion compatible
ordering of tiles corresponds to the occlusion
compatible ordering of the points farthest from the
epipole for each tile. We then process source LRT
tiles in this order, pre-warping points of each tile
also in occlusion compatible order. Source LRT tiles
that cross horizontal or vertical epipolar lines have to
be split into sheets. Each of these sheets is processed
in occlusion compatible order.

6. IMPLEMENTATION AND RESULS

We implemented our algorithm on an SGI Onyx2
with a 300 MHz R12000 CPU and 8 MB of level 2
cache. The rendering was done on InfiniteReality2
graphics hardware. The software was written in C.

(a) (b)

(c) (d)
Comparison of Splatting Methods.
(a) LDI rectangular, (b) LDI Gaussian,
(c) LRT rectangular, (d) LRT Gaussian

Figure 6

MEMORY BOTTLENECKS

r image warping, memory accesses are one of the
st important factors limiting speed. To mitigate
 problem, we tile the images to increase cache-
iciency. We use a sort-first method with static
ion assignment [Muell95, Muell97]. We partition

th the source LRT and the pre-warped images into
set of regular, axis-aligned rectangular tiles. The
lection of the optimal tile size is empirical and
pends strongly on the characteristics of the system.

To correctly pre-warp into a given pre-
rped image tile (destination tile), we select and

e-warp all LRT tiles (source tiles) that have a
tential contribution. To determine this set we use a
ad-tree. The root of the tree is the whole source
age itself and the leaves of this tree are the source
T tiles. At each node the information about the

vered area for the node and the maximal and
nimal displacements of the samples that belong to
s area are stored.

We determine the set of the source tiles

ntributing to a given destination tile by descending
ursively into the tree. At each node visited, we

e-warp the corners of the tile with the minimal and
ximal displacement values and compute the
unding box of the resulting points. If the bounding
x intersects the destination tile, we assume that
me point of the source LRT area can contribute to
 To lower the overestimation of the affected area,
 same could be done with bounding polyhedras.

For correct visibility we sort the set of the
lected source tiles according to the occlusion

Run-time Data Layout
Figure 7

We store the quad-tree of source LRT tiles

as a linear array in which the children of a node
stored with the index n are stored with the indices
n*4+1 through n*4+4. The samples of each LRT tile
are stored as a stream of tuples, in the order they are
considered according to occlusion-compatible
ordering. As there are four possible traversal orders
for the source image, we replicate each tile in
memory four times with different sample orderings.
We use unique markers to mark the advance to the
next row or column of samples. The time overhead is
still small since we need slightly more than one
comparison per sample on average to detect the
advance to the next column, row, or the end of the
data stream. Depth information is stored for each
pixel as a 32-bit floating-point value.

We used the model of a cube and a textured

fish to test the quality of splatting in the case of

sharp edges and fine-grained textures, and a model
of a fern to test the intra-object visibility. The source
images are 512x512 orthogonal projections
synthesized with ray tracing. For the tests we
rendered views to a 1024x1024 window. Although in
all cases the texture is magnified at the rendering
stage, we found the results to be remarkably free of
visible artefacts. The results for the cube are shown
in Figure 5, the fish appears in Figure 8 and the fern
appears in Figure 3, 4, and 8.

The LRT models of the fish and cube
contain about 140 000 samples, and 250 000
samples for the model of the fern at the maximum
level of detail. For a view, due to tiling of the source
image, the number of samples actually warped is
20% greater on average than the number of samples
drawn. During the test we rotated the model
arbitrarily with a sequence of 300 steps. To ensure
that we also tested cache miss performance the
sequence included some large rotations. Although
the implementation was not heavily optimized, the
rendering frame rate including the graphics output
with 140 000 samples is approximately 15 Hz, and
with 250 000 is approximately 9 Hz. The warping
itself runs at 20 Hz (= real-time !) in the case of the
two medium-complexity models, and at 10 Hz in
case of the fern. The graphics pipeline introduces
some slowdowns, that is, the texture transfers take
about 15-20% of the time of the rendering. This
effect can be minimized by pipelining the warping
and the rasterization steps (i.e., rendering the
previous frame while warping the current one).

7. CONCLUSIONS

We presented a method for warping the LDIs at
interactive frame rates. The method combines the
layered depth images and the relief textures
approaches and leverages the benefits from both. We
have also discussed a precise and efficient method
for splat size computation. Furthermore, we have
demonstrated that the current hardware memory
bandwidth is an important factor for image warping
speed.

Future work includes parallelization of the
LRT warping process, to increase the frame-rate
even further. Initial results of a parallelized version
on a machine with multiple CPU’s indicate that this
method can warp images of high-complexity models
at real-time.

To increase the apparent frame rate even

further one option is not to pre-warp the source
image for every frame but only when the distortion
perceived by the user exceeds some threshold,
similar to [Lengy97, Schau96]. The incorrect
parallax in such frames will be mitigated by the

correct perspective distortion done on the texture
mapping stage.

Another idea is to trade-off quality for
speed, by changing the resolution of the rendered
image and stretching the result to fit the desired area
on the screen (similar to [Montr97]).

REFERENCES

[Aliag99] Aliaga,D., Cohen,J., Wilson,A., Baker,E.,
Zhang,H., Erikson,C., Hoff,K., Hudson,T.,
Stuerzlinger,W., Bastos,R., Whitton,M., Brooks,F.,
Manocha,D.: MMR: An Interactive Massive Model
Rendering System Using Geometric and Image -
Base Acceleration, 1999 Symposium on Interactive
3D Graphics, pp. 199-206, 1999

[Chang99] Chang,C.-F., Bishop,G., Lastra,A.:LDI
Tree: A Hierarchical Representation for Image-
Based Rendering, SIGGRAPH 1999, pp. 291-298,
1999

[Debev96] Debevec,P.E.: Modeling and Rendering
Architecture from Photographs, Ph.D. thesis,
University of California at Berkeley, 1996

[Debev98] Debevec,P.E.: Rendering synthetic
objects into real scenes: Bridging traditional and
image-based graphics with global illumination and
high dynamic range photography, SIGGRAPH 1998,
pp. 189-198, 1998

[Mark97] Mark,W.R., Bishop,G.: Memory Access
Patterns of Occlusion-Compatible 3D Image
Warping 1997 Siggraph/Eurographics Workshop on
Graphics Hardware, pp. 35-44, 1997

[Muell95] Mueller,C.: The Sort-First Rendering
Architecture for High-Performance Graphics, 1995
Symposium on Interactive 3-D Graphics, 1995

[Muell97] Mueller,C.: Hierarchical Graphics
Databases in Sort-First, IEEE Symposium on
Parallel Rendering, pp. 49-57, 1997

[Mcmil97] McMillan,L.: An Image-Based Approach
to Three-Dimensional Computer Graphics, Ph.D.
Thesis, University of North Carolina at Chapel Hill,
1997

[Lengy97] Lengyel,J., Snyder,J.: Rendering With
Coherent Layers, SIGGRAPH 1997, pp. 233-242,
1997

[Olive00] Oliveira, M.M., Bishop,G., McAllister,D.:
Relief Texture Mapping, SIGGRAPH 2000, pp. 359-
368, 2000

[Pfist00] Pfister,H., Zwicker,M., van Baar,J.,
Gross,M.: Surfels: Surface Elements as Rendering
Primitives, SIGGRAPH 2000, 2000

[Popes98] Popescu,V., Lastra,A., Aliaga,D.,
Oliveira,M.: Efficient Warping for Architectural
Walkthroughs Using Layered Depth Images, IEEE
Visualization 98, pages 211-215, 1998

[Ruzin00] Rusinkiewicz,S., Levoy,M.: QSplat: A
Multiresolution Point Rendering System for Large
Meshes, SIGGRAPH 2000, 2000

[Schauf96] Schaufler,G., Stuerzlinger,W.: Three
Dimensional Image Cache for Virtual Reality,
EUROGRAPHICS 1996, pp 227-236, 1996

[Shade96] Shade,J., Lischinski,D., Salesin,D.,
DeRose,T., Snyder,J.: Hierarchical Image Caching
for Accelerated Walkthroughs of Complex
Environments, SIGGRAPH 1996, pp.75-82, 1996

[Shade98] Shade,J., Gortler,S., He,L., Szeliski,R.:
Layered Depth Images, SIGGRAPH 1998, pp. 231-
242, July 1998

(a) (b)

(c) (d) (e)

LRT rendering of (a) fern, (b) fish, and (c)-(e) close-ups of fish. Note the quality of the edges and reproduction of

detail. The results were obtained with perspectively warped rectangular splats. For timings refer to the text.
Figure 8

	INTRODUCTION
	PREVIOUS WORK
	LAYERED RELIEF TEXTURES
	3.1 OVERFLOW HANDLING

	SPLATTING
	4.1 SPLAT SHAPE AND SIZE COMPUTATION
	4.2 COMPARISON WITH OTHER METHODS

	MEMORY BOTTLENECKS
	IMPLEMENTATION AND RESULS
	CONCLUSIONS

