

A GRAPHICAL USER INTERFACE FRAMEWORK FOR DIGITAL
TELE VISION

César Pablo and Vuor imaa Petr i

Telecommunications Software and Multimedia Laboratory

Helsinki University of Technology
P.O. Box 5400 FI-02015 HUT

FINLAND
Tel: +358 9 4515128
Fax: +358 9 4515351

E-mail: pcesar@tml.hut.fi and Petri.Vuorimaa@hut.fi

ABSTRACT

Currently, the number of non-PC devices used for interactive applications is increasing. Digital television
set-top boxes, PDAs, and mobile phones are typical examples. Interactive applications are controlled via a
Graphical User Interface (GUI). Consequently, a GUI framework is required. The objective is a unified
GUI framework for all these new devices. Since one of the new devices is digital television, an
implementation of a digital television GUI framework is presented. It has been developed following the
HAVi specifications. Its main characteristics are use of Java, separation of look and feel, and lightweight
widgets. The implementation is tested with a digital television application. The main conclusion proposed
is that new devices should use a device-oriented GUI framework implementation. Moreover, specific
implementations can be obtained by modifying the look or feel of the widgets.

Keywords: Digital television, DVB-MHP, GUI, HAVi, Java.

1. INTRODUCTION

The key idea behind this paper is device-oriented
GUI framework implementation. In the future,
multiple devices, besides a PC desktop, are able to
run multimedia rich applications [Vierinen01]. The
final goal is to create a unified GUI framework,
which can be modified depending on the device at
hand.

Digital television set-top box is an example of the
new devices. Digital television refers to the
broadcast of the television signal by digital means
[Fox98]. The signal is transmitted compressed using
digital format. Hence, the bandwidth needed to
broadcast drastically decreases [Milenkovic98]. This
increment of bandwidth available can be used in
different ways (e.g., broadcasting more channels and
including new interactive services) [Vuorimaa00].

In the European countries, a common Application
Program Interface (API) for digital television, called

DVB-MHP, is used. An API provides a platform
independent interface between the applications and
the underlying system. DVB-MHP has selected
Home Audio/Video Interoperabilit y (HAVi) User-
Interface as a standard [DVB00].

Peng et al. [Peng01] and Sivaraman et al.
[Sivaraman01] have proposed a digital television
environment, which is MHP compliant. It includes
hardware, system software, a Java Virtual Machine
(JVM) and set of APIs needed, an application
manager, and three different services covering the
service architecture. The current research is the
implementation of a GUI framework following
HAVi specification.

2. GUI ELEMENTS

GUIs are built around a toolkit of widgets [Olsen98].
These widgets (e.g., Button, Label, or List) are
“ready-made” screen items. So, the developer does
not have to deal with the underlying system. Her

FTVComponent

FTVVisible

awt.Component

work mainly consists in the decision of the widgets
to use and where to place them in the screen.

GUI widget has two main features, which provide
interactivity. The first one is the visual presentation.
The second one is the reaction of the widget to the
user interaction. When developing GUI toolkits,
these are referred as look and feel, respectively.

Widget can be, depending on how it is rendered,
heavyweight or lightweight. Heavyweight is one that
is associated with its own native screen resources,
commonly known as a peer. Lightweight is one that
“borrows” the screen resource of an ancestor. Hence,
it has not native resource of its own (i.e., it is called
peerless).

In digital television environment, HAVi was
included in DVB-MHP [DVB00]. HAVi defined
HAVi Level 2 User Interface specification, which is
a “TV friendly” framework. It uses java.awt package
as its core. Although most of the classes from this
package are not HAVi framework compliant, some
of them have been included in the specification (e.g.,
java.awt.Component and java.awt.Color) [DVB00].

3. GUI FRAWEWORK IMPLEMENTATION

The framework implemented, called ftv, follows
HAVi specification. It is a Java lightweight
framework based on java.awt. In addition, the look
and the feel are separated. Moreover, new specific
events, forming the ftv.event package, are defined.

3.1 Container

Container refers to the place, where components are
added. This way, the added widgets become
“children” of the container. In ftv package, the
container, ftv.FTVScene, extends java.awt.Window.
Its main tasks are handling events and painting its
child components. Since the widgets are lightweight,
rendering is achieved by calli ng the paint(Graphics
g) method of each child.

3.2 Look

Look refers to the visual presentation of the widget.
Each widget must have an associated look class,
which renders it. When the widget is created, a
default look class is used. If needed, the developer
can associate a specific look class.

In ftv, the following default looks are available:
animate, graphic, text animate, text, and time.
Animate look defines the way to show a sequence of
images. Graphic look determines how to show a
single image. Text look is used to display text. Text

animate look displays a sequence of text. Finally,
time look renders a clock.

Developers can also create specific looks depending
on their needs. To test this feature, an additional look
was implemented, ftv.FTVGraphicTextLook. It
extends ftv.FTVGraphicLook. This new look draws
both a background image and a text over it.

3.3 Feel

The feel of a widget denotes its behaviour. Every
widget is originated from ftv.FTVVisible, which
indicates that the component is displayable. Figure 1
is the UML diagram of ftv.FTVVisible.

Figure 1. ftv.FTVVisible UML diagram.

In addition, three kinds of behaviours are available:
navigable, actionable, and switchable. Navigable
widgets are those, which can acquire the focus.
Actionable widgets are those, which have an
associated functionality. This functionality is
launched, when selecting the widget (e.g., button).
Switchable widgets are those, which can be selected
retaining its internal state information (e.g., toggle
button).

3.4 State of the widget

Each widget can reach, depending on its behaviour,
up to four different states. These are normal,
focused, actioned and actioned focused. When the
widget is shown in the screen, it is in a normal state.
If the focus is in the widget (i.e., user has navigated
over it), it is in a focused state. When the widget has
been selected, it is in an actioned state. Finally, when
it has been selected and, in addition, gets the focus, it
is in an actioned focused state.

3.5 Event handling

Since ftv is based on awt, it uses delegation event
model. Each widget maintains a list of listeners in a
class called ftv.FTVEventMulticaster. It provides
methods, which allow the listeners to add or remove
themselves from the list. When an event reaches the
widget, it delivers it to the registered listeners.

FTVStatic
Animation

FTV
Animation

FTVStatic
Time

FTVAnimateComponent

FTVVisible

FTVStatic
TextAnimate

In ftv package, new events were defined, such as
ftv.event.FTVActionEvent. Hence, new listeners were
needed, such as ftv.event.FTVActionListener. In
addtion, ftv.event.FTVFocusEvent includes, besides
awt’s lost and gained focus, transfer focus (i.e., the
focus can be transferred from the current widget to
another specific one).

3.6 Toolkit widgets

The developed components can be divided into
animate, graphic, and text widgets. Animate refers to
those widgets, which make use of a player to
sequence the information. This information can be
time, text or a set of images. Graphic refers those
that only store images. Text defines those that store
text.

Animate widgets
Animate widgets, as mentioned above, need a player.
The player is a thread, which has some features (e.g.
it can be started and stopped as desired, it can be
played for a specific number of times, and the speed
of the animation can be stated). Figure 2 is the UML
diagram of these widgets.

Figure 2. Animate widgets.

Graphic widgets
The graphic widgets are static icon (i.e., static), icon
(i.e., navigable), graphic button (i.e., actionable), and
toggle button (i.e., switchable). Toggle buttons can
be grouped forming a toggle group. This group
behaves as a radio buttons group, If decided, the
group can, also, behave as checklist.

Text widgets
When creating the widget, the font, the text layout
manager and, the background and foreground colour
can be selected. The text widget includes static text
(i.e., static), text (i.e., navigable), and text button
(i.e., actionable).

4. CASE STUDY

As mentioned in section 1, a MHP compliant digital
television environment was available before starting
the implementation. The objective of this research
was to fulfil the lack of a digital television GUI
framework implementation. Before it, there were two
possibiliti es. One was to use a general purpose GUI
framework, as Swing. The other was to create
application specific widgets.

The specific environment covers the following
layers. A board PC, 233 MHz processor, 32 MB
RAM memory, and 64 MB ROM memory was used
as a set-top box. Linux without X-Windows system
was the Operating System. The JVM selected was
Kaffe. Kaffe uses framebuffer for rendering. An
Application Manager controlled all the applications,
while the system was running. In addition, three
different applications were available, covering
different digital television services. These
applications comprise a Navigator, a SupertText TV,
and an interoperable application. Figure 3 depicts the
environment.

Figure 3. Platform used.

For test purposes, both the Application Manager and
the Interoperable Application were used. These two
applications were modified to make use of ftv. The
interactive application was not resident in the set-top
box. It was downloaded from Internet. The
application manager started this application, when
the user pressed a specific key.

The application layout was divided into four
differentiate regions. In the top-left, a toggle group,
which behaves as a checklist of five toggle buttons,
was placed. These toggle buttons did not use the
default look. Instead, ftv.FTVGraphicTextLook was
associated to each. The user could select the service
desired via them. In the top-right region, the video
was placed. In the bottom-left region, there were two
widgets. On the top, a static text indicated the current
channel. At the bottom, there was a static time
widget. Finally, the bottom-left part informed of the
current program by a static text. A screen-shot of the
main screen of this application is shown in picture 1.

Interoperable Application

Core Java API,
XML parser,
JMF API

Navigator,
Digital Teletext,

Application Manager

Kaffe Java Virtual Machine

Linux operating System,
Drivers, Network Interfaces, Hadware

Picture 1. Main screen of the application.

The ftv package has advantages over a general
purpose GUI framework implementation. The
storage memory is minimised. Also, the widgets are
device specific, in this case, television oriented. In
the original environment, the containers used Swing,
which is not needed anymore. Table 1 shows a
comparison of storage memory benefits

Package Storage Memory (KB)
Swing.jar 2420

ftv.jar 96

Table 1. Storage memory of packages.

The ftv has, also, benefits over application specific
widget implementation. The most obvious is that the
widgets can be reused for other applications. In
addition, applications are easier to implement, since
they do not have to create their own widgets. When a
specific look is needed, it can be easily created and
associated to an existing widget. Finally, the storage
memory of the application is minimised, since its set
of widgets it is not included. The interactive
application used its own widgets. Table 2 compares
the storage memory before and after the use of ftv
package.

Interactive Application Storage Memory (KB)

Before using ftv 77
After using ftv 26

Table 2. Storage memory of Application.

5. CONCLUSION

This paper focuses on the device-oriented GUI
framework implementation concept. From now on, a
many new devices (e.g., digital television, mobile
phone, and PDA) can be used for media rich
applications. In this paper, we introduce the idea of
device-oriented GUI framework implementation.
Since some unnecessary classes for the device at

hand can be avoided, the memory consumption is
minimised. In addition specific look classes,
depending on the device, can be offered.

We used digital television environment as an
example of the future devices. A Java lightweight
framework for digital television applications, called
ftv package, was implemented. In addition, an
existing environment was used to test this
framework. The final result is an application, which
uses ftv, running on a digital television environment.
The final results show how the memory storage was
minimised.

6. ACKNOWLEDMENTS

The authors would like to thank the following
people. M.Sc. Chengyuan Peng for developing the
digital television services used in this paper. M.Sc.
Ganesh Sivaraman for creating the system software
environment.

REFERENCES

[DVB00] DVB Project Off ice: DVB: Multimedia

Home Platform, Broadcasting Union,
February 2000.

[Fox98] B. Fox: Digital TV comes down to earth,
IEEE Spectrum, October 1998.

[Milenkovic98] Milenkovic M.: Delivering
interactive services via a digital television
infrastructure, IEEE Multimedia, Vol. 5, no.
4, Oct./Dec, 1998, pp. 34-43.

[Olsen98] Olsen D. R.: Developing User Interfaces,
Morgan Kaufmann Publishers, 1998.

[Peng01] Peng C., Cesar P., and Vuorimaa P.:
Integration of applications into digital
television environment, in Proc. 2001 Int.
Workshop on Multimedia Technology,
Architecture, and Application, Taipei,
Taiwan, Sept. 26-28, 2001, pp. 266-272.

[Sivaraman01] Sivaraman G., Cesar P., and
Vuorimaa P.: System software for digital
television applications, in Proc. 2001 IEEE
Int. Conf. on Multimedia and Expo,
ICME2001, Tokyo, Japan, August 22-25,
2001, pp. 784-787.

[Vierinen01] Vierinen J. and Vuorimaa P.: A
browser user interface for digital television, in
Proc. the 9th Int. Conf. in Central Europe on
Computer Graphics, Visualization and
Computer Vision, WSCG'2001, Czech
Republic, Feb 5 – 9, 2001, pp. 174-181.

[Vuorimaa00] Vuorimaa P.: Digital television
service architecture, in Proc. IEEE
International Conference on Multimedia and
Expo, ICME2000, New York City, NY, USA,
July 30 – Aug. 2, 2000, pp. 1411-1414.

