
REPRESENTATION OF POLYHEDRAL
OBJECTS USING SP-OCTREES

P. Cano, J.C. Torres

Department of Lenguajes y Sistemas Informáticos
University of Granada. E.T.S. Ingeniería Informática

Avda. Andalucía, 38. 18071 Granada
Spain

e-mail: [pcano, jctorres]@ugr.es
URL: http://giig.ugr.es

ABSTRACT

Extensions to classical Octrees that add new types of terminal nodes have been proposed for the exact
representation of polyhedral objects. In this work, we present a new solid representation scheme using
Octrees, which include boundary information of the represented object in the internal nodes of the tree. In
this way, basic operations with the model will be accelerated and we are able to represent polyhedral
objects exactly with smaller storage cost.

Keywords: Solid modelling, Geometric modelling, Hierarchical modelling, Octrees, BSP, Visualization,
Polyhedra.

1. INTRODUCTION

Some of the schemes used to represent solids and
volumes are based on the decomposition of the
space, and use hierarchical structures to store the
model. Two of them are the Octrees and the Binary
Space Partition tree (BSP).

An Octree is the representation of a model
by means of an octal tree structure obtained by
recursive divisions of the bounding box of the
volume to codify [Meagh82][Fujim84a][Fujim84b]
[Garga82]. These divisions are made so that the
octants obtained in each level of the decomposition
are of equal size, repeating the process until the
properties represented in all the nodes of the tree are
homogenous or until arriving to an pre-defined level
of depth.

The representation with Octrees is usually
more concise than the space enumeration and allows
to perform boolean operations and calculation of
properties in a simple way, but it is an approximated
representation of the solid.

To improve the classical Octrees, hierarchic
schemes have been proposed that allow us to obtain

an exact representation of polyhedral objects by
means of the inclusion of new types of terminal
nodes that contain part of the surface of the object,
obtaining thus a more compact representation
[Brune85][Brune90].

The Binary Space Partition trees (BSP)
divide recursively the space using a plane in two
separated semi-spaces. Initially created to improve
the process of the elimination of hidden parts
[Fuchs80] [Fuchs83], it has also been used to
represent polyhedral objects exactly [Thiba87]. This
scheme offers an unambiguous, but not unique
representation, and allows us to perform boolean
operations easily [Thiba87][Naylo90].

In this work an extension of the classical
Octrees is proposed by means of the inclusion of
information of the boundary of the solid represented
not only in the terminal nodes, but also in the
internal nodes of the tree. In this way, we do not
always have to descend to the lowest level to accede
to that information and we will be able to accelerate
basic operations on the model.

In the following section the general
statement of the new scheme and the data structure

used to store the model is presented, according to
our proposal. In section 3 we describe the
construction of a model in the proposed scheme from
a B-Rep description of a solid. In section 4 we
describe some of the basic operations on solids using
the proposed scheme. Finally, the conclusions
reached and work pending are presented.

2. SP-OCTREE

When trying to extend the Octree scheme
representation, the modifications can be made in
three different points of it:

a) By modifying the information included in the
leaf nodes of the octal tree that represent the
object. To do that, we can add information of
the boundary of the object that appears in
each terminal node [Brune85][Brune87]
[Brune90].

b) By modifying the cutting planes used in the
subdivision process [Cano96][Torre96]
[Whang95].

c) By modifying the information stored in the
internal nodes of the tree.

In classical Octrees and the extensions
proposed, the internal nodes are those that are not
homogeneous with respect to the classification
criteria. So, in these nodes the only information
appearing is the references to its children.

Extended Octrees [Brune85][Brune90]
include information of the solid boundary in terminal
nodes. So, the same boundary plane can appear in
several neighbouring terminal nodes that share the
boundary faces.

The idea of the proposed scheme, that we
have called SP-Octrees (Space Partition Octrees), is
based on the inclusion of boundary information in
internal nodes that partially defines the object
represented in each node of that level. Been more
precise, we include the face planes that divide the
voxel into an empty region and a partially occupied
region. Thus, the information of the boundary faces
appears in the upper levels of the tree and it is not
necessary to repeat the information in neighbouring
nodes that share a face.

When a node is completely in or out of the
represented solid we classify it as BLACK or
WHITE in the same way as in classical Octrees.

When the intersection of the solid and the
voxel is concave, we use a CONVEX node.

Formally, a CONVEX node is the intersection of the
semi-spaces defined by the planes included in it with
its bounding box. These nodes allow the exact and
univocal representation of a convex polyhedral
object.

When the intersection of the voxel and the
solid is concave we use a CONCAVE node.
Formally, a CONCAVE node is the difference of the
bounding box of the node with the intersection of the
complement of the semi-spaces included in it.

Finally, when concavities and convexities
exist at the same voxel, we classify the node as
GREY, dividing it in the same way as in classical
Octrees, but maintaining in the node the information
of the planes that are in the convex hull of the part of
the solid in the node. Thus, in the children we only
need to represent the boundary planes that are not in
that convex hull and which form the existing
concavities.

Figure 2. CONCAVE node

Figure 1. WHITE, BLACK and CONVEX nodes

P0

P1

P1

P0

P0 P1

2

1

5

7

4

6

3

Subdivision

P0 P1 P2 P3 P4 P5

P6 P7

* restricted to the intersection of the semi-spaces in father node.

P6 P7
* * * * * * * *

Figure 3. GREY node and its tree.

P2

P4

P0

P5

P6

P7

P1

Thus, the solid represented by a GREY
node will be the union of the solid represented by
each child, but restricted to the intersection of the
semi-spaces defined by the planes that appear in the
father node with the bounding box of this node.

If Pk are the planes that define the existing
semi-spaces in a node and Box is the bounding box
of a node, we can define the representation RS of a
solid S by means of this scheme as:

where is the representation of child i in the
division of a grey node, and are the complement
of the semi-spaces defined by the plane Pk .

2.1. Proposed structure

In order to represent internally the proposed scheme,
we will use the following representation:

- An auxiliary matrix with the equations of the
planes used which define the semi-spaces whose
intersection represents the solid in each node.

- The codification of the octal tree, where:

a) In the terminal nodes, we store the type of
node and a reference to the planes of the
boundary included in it.

b) In the internal nodes, we store the face
planes that are in the convex hull of the
solid represented in that node, plus links to
the eight children that will contain the
information of the planes that form
concavities in the father node.

Any node includes planes that are included
in any of its ascendant nodes. The BLACK nodes
can be treated exactly like the CONVEX nodes
where there are no planes of the boundary of the
solid. The WHITE nodes have an empty set of
planes.

The concave nodes will store the reference
to the planes that form concavities in the solid. We
must invert their normals when we have to process

them, to treat them according to the definition that
we have made in the previous section.

As we can see, the geometry of the
represented object is not stored internally, which
enables the representation obtained to be compact
and reduces storage requirements.

3. BUILDING THE MODEL FROM B-REP

The construction of the proposed structure from a
boundary representation of a polyhedral solid, is
made by the following recursive algorithm:

1. Compute the bounding box of the solid, which
will be the one of the root node of our
representation.

2. Classify the node according to the planes
included in it.

3. If the node is WHITE, CONVEX or
CONCAVE, a terminal node with the
information of those planes is created.

4. If the node is GREY, that is, if concavities and
convexities at the boundary of the solid that it
represents exist simultaneously, an internal node
is created. This node includes the planes that are
in the convex hull of this part of the solid, that
are not included in any ascendants of this node.
Then, we divide the node in eight equal octants,
processing each one of them with the remaining
planes that form the concavities in a recursive
way (step 2).

The algorithm is repeated until all the nodes
are classified, or until reaching a predefined
maximum level of depth. In case of reaching that
maximum level with a GREY node, we should
establish some classification criteria. So, the
representation obtained in those cases is
approximated, and the error will depend on the level
of the tree.

Image 1 shows a SP-Octree of level 0 for a
convex object. Images 2, 3 and 4 show examples of
SP-Octrees of level 1, 2 and 5 respectively, where
the blue planes (darker) are those which pertain to
planes in concave nodes.

Image 5 shows a SP-Octree of level 4 where
the committed error when classifying as BLACK the
GREY nodes of the maximum level (those nodes
where concavities and convexities of the solid exist
simultaneously) can be seen.

−

=

=

=

==

)(

)(

)(

)(

)(

0

0

0

7

0

ConcavePBox

ConvexPBox

BlackBox

White

GreyPR

R

k

P

k

k

P

k

k

P

k

i
S

i

S

i

i

i

φ

i
SR

kP

Image 1 Image 2

Image 3 Image 4

 Image 5

4. BOOLEAN OPERATIONS

One of the main advantages of the Octrees is that
boolean operations are simple and fast. In contrast,
to make boolean operations between two B-Rep
solids we must operate all the planes of a solid with
those of the other to obtain the resultant boundary,
with the computational cost that this entails. In our
scheme, maintaining the hierarchical codification of
the Octree, we reduce that cost since we are going to
traverse the trees of both models at the same time,
making the operation only between the planes that
appear in each one of the corresponding nodes.

The representation of the complementary
object can be obtained traversing the tree and
changing the orientation of the planes that appear in
each node. A WHITE node will be converted into a
BLACK node and vice versa, while a CONCAVE
node will be converted into a CONVEX node and
vice-versa. When we process a GREY node, the

convex planes that appear in it will pass to be
concave and they should be propagated to the
children, while the planes that represented the
children nodes (and who belonged to concavities)
will pass to the upper node as convex.

The process to make the intersection of two
objects represented with the proposed scheme is
based on the following rules:

- If one of the nodes is WHITE, the intersection
will be a WHITE node.

- If one of them is BLACK, the intersection will
be the copy of the other node.

- If one of them is CONVEX, we calculate if their
planes are part of the convex hull of the result,
computing their intersections with the planes in
the other node, classifying the resultant node
according to the existence or not of intersections
between these planes.

- If one of them is CONCAVE, the process is
similar to the previous one.

- If one of the nodes is GREY, we should operate
the other node with the existing planes in the
treated node and propagate the result upon its
children (to trim them according to the new
convex hull obtained in the father).

- If both nodes are GREY, we should calculate
the intersection of the existing planes in each
one and process the children propagating the
information of the resulting planes in the father
node obtained.

Images 6 and 7 show two examples of the
intersection described. In each case we can see the
models used and the result obtained.

Image 6

Image 7

The union and difference operations can be
obtained by the same mechanism modifying the rules
that define each one of the possible cases. Of course,
we can also obtain them from the previously defined
operations of complementation and intersection and
the properties of the boolean operations.

As we are traversing the trees, the
complexity of these operations depends on the
number of levels and nodes in the operands trees.

5. RECONSTRUCTION OF THE BOUNDARY
MODEL AND VISUALIZATION

Another of the advantages of the classical Octrees is
the inherent arrangement in the scheme, which
facilitates the visualization process defining the
order of visualization of the nodes. In our case we
continue maintaining that arrangement.

In order to visualise an object represented
by means of the proposed scheme, we traverse the
tree level by level, representing for each node the
intersection of the planes that appear in it with its
surrounding box and with the planes that appear in
their ancestors. In this way, as we have information
of the boundary of the object in the upper nodes, the
higher levels of the tree allow us to obtain quickly
the convex part of the boundary of the object. This
mechanism allows us to make an adaptive
visualization according to the level of the tree that
we represent.

In order to draw the object faces it is
necessary to trim the planes in one node against
those in its descendants. We can do this while

drawing or we can modify the data structure to store
in each node of the tree, not only the definition of the
planes, but also the geometry of the faces of the
solid. We can obtain this easily using a secondary B-
Rep scheme to accelerate the process.

Image 8 shows one object represented with
classical Octrees (top), Extended Octrees (middle)
and the proposed scheme SP-Octrees (bottom). In
these images we can observe the approximation that
the classical octrees generates, while the other two
schemes represent the objects exactly.

Image 8

Using the process described to visualise the
objects represented with the proposed scheme we
can reconstruct the boundary of the solid.

We must notice in this process the
possibility that some of the faces of the solid appears
divided in various polygons when being shared by
various nodes. In this case, we must do a post-
process of the obtained faces in order to merge those
faces that are in the same plane. This will reduce the
number of polygons used to represent the obtained
boundary.

Finally, we must consider that, as the
representation can be approximated in the cases in

which the maximum level of depth defined is
reached in a node with concavities and convexities
(section 3), the obtained boundary in that case will
be an approximation of the real boundary of the
solid.

6. CONCLUSIONS AND FUTURE WORKS

In this work a new solid representation scheme has
been presented based on an extension of the concept
of classical Octree, introducing part of the boundary
information of the represented object, both in the
terminal and in the internal nodes.

The proposed method allows an exact
representation of polyhedral objects except when
vertex shared by concave and convex edges exist
(see image 5). In that case, we will always reach the
maximum defined level for the tree and will have to
establish a criterion of classification for that node,
what make the representation to be approximate.

The number of nodes that appear in the
presented scheme depends only on the concave
edges that appear in the solid, whereas in the
Extended Octrees the number of nodes depends on
the number of vertex and edges of it.

Because we can store the information of the
planes that define the boundary of the solid in an
auxiliary structure, and we reduce the repetition of
planes in neighbouring nodes that shares them
inserting them in inner nodes of the structure, the
need of space is smaller than with Extended Octrees.

In addition, we continue maintaining the
properties of arrangement of the classical Octrees,
and, due to the own orientation of the planes inserted
in each node, it is easy to make the interrogation and
visualization of the model.

Now, we are studying the cases that cause
this scheme to be approximated to try to define some
method that allows us the exact representation of any
polyhedral object. This solution will probably use
the insertion of auxiliary planes that divide the node
in a set of disjoint areas in which we can use the
proposed scheme.

We are making a detailed comparative
study with other representation schemes, both in
space and computation time and operations
complexity. Also, we are studying the possibility of
using the scheme for objects whose boundary is not
plane.

Finally, we are studying the utility of the
scheme as an indexing method to accelerate the

calculations and the operations in B-Rep
representation scheme, as well as its use in the
transmission, visualization and progressive edition of
the represented models.

7. ACKNOWLEDGEMENTS

This work has been supported by the "Comisión
Interministerial de Ciencia y Tecnología" (CICYT,
Spain) under contract TIC2001-2099-C03-02.

REFERENCES

[Brune85] Brunet, P.; Navazo, I.: Geometric
modelling using exact octree representation
of polyhedral objects. Eurographics’85, 1985.

[Brune87] Brunet, P.; Ayala, D.; Extended octree
representation of free form surfaces.
Computer Aided Geometric Design, 4, pp:
141-154, (1987).

[Brune90] Brunet, P.; Navazo, I.: Solid
Representation and Operation Using
Extended Octrees. ACM Transactions on
Graphics, Vol. 9, nº 2, pp: 170-197, (1990).

[Cano96] Cano, P; Velasco, F.; Torres, J.C.:
Modelado 2D mediante jerarquía de
Quadtrees en distintos sistemas de
coordenadas. II Jornadas de Informática, pp:
153-162, (1996).

[Fuchs80] Fuchs, H.; Kedem, Z.; Naylor, B.: On
Visible Surface Generation by a Priori Tree
Structures. ACM Computer Graphics, 14(3),
pp: 124-133, (1980).

[Fuchs83] Fuchs, H.; Abram, G.D.; Grant, E.D.:
Near Real-Time Shaded Display of Rigid
Objects. ACM Computer Graphics, 17(3), pp:
65-72, (1983).

[Fujim84a] Fujimura, K.; Yamaguchi, K.; Kunii, T.:
Octree-related data structures ans
algorithms. IEEE Computer Graphics and
Applications, pp:53-59, (1984).

[Fujim84b] Fujimura, K.; Toriya, M.; Yamaguchi,
K.; Kunii, T.: Octree Algorithms for Solid
Modelling. IEEE Computer Graphics and
Applications, 1984.

[Garga82] Gargantini, I.: Linear octrees for fast
processing of three-dimensional objects.
Computer Graphics and Image Processing,
20, (1982).

[Meagh82] Meagher, D.: Geometric modelling using
octree encoding. Computer Graphics and
Image Processing, 19(2):129-147, (1982).

[Naylo90] Naylor, N.; Amanatides, J.; Thibault, W.:
Merging BSP Trees Yields Polyhedral Set
Operations. ACM Computer Graphics, 24(4),
pp: 115-124, (1990).

[Thiba87] Thibault, W.C.; Naylor, B.: Set
Operations on Polyhedra Using Binary
Space Partitioning Trees. ACM Computer
Graphics, 21(4), pp: 153-162, (1987).

[Torre96] Torres, J.C.; Cano, P.; Velasco, F.; Conde,
F. Using octrees in non cartesian coordinate
systems. Internal Report LSI-96-1, (1996).

[Whang95] Whang, K.Y.; et al.: Octree-R: An
Adaptative Octree for Efficient Ray Tracing.
IEEE Transactions on Visualization and
Computer Graphics, Vol. 1, nº 4, pp:343-349,
(1995).

