
MLSLib: A LIP SYNC LIBRARY FOR

MULTI AGENTS AND LANGUAGES

H. Murakami�

H. Babay

T. Noma�

�Department of Arti�cial Intelligence

Kyushu Institute of Technology

680{4 Kawazu, Iizuka, Fukuoka 820{8502, Japan

fh mura, nomag@pluto.ai.kyutech.ac.jp
http://www.pluto.ai.kyutech.ac.jp/~noma/research/mlslib/

yKyushu School of Engineering

Kinki University

11{6 Kayanomori, Iizuka, Fukuoka 820{8555, Japan

baba@fuk.kindai.ac.jp

ABSTRACT

This article presents MLSLib, a software library for human �gure animation with

lip syncing. The library enables us to easily use multiple TTS systems and multiple

lip motion generators, and switch them arbitrarily. It also helps use of multiple

speaking agents, possibly with di�erent TTS systems and lip motion generators.

The MLSLib is composed of three modules: LSSAgent, TTSManager, and FCP-

Manager; The LSSAgent module provides uni�ed simple APIs per single agent,

independent of TTS systems and lip motion generators. The TTSManager and

FCPManager manage TTS systems and lip motion generators, respectively. Both

modules support standard sets of phonetic alphabets per language, and thus users

are freed from TTS-dependent implementation of lip motion generators. Applica-

tions to multi-lingual agents and LOD in lip syncing are also presented.

Keywords: Lip Sync, human �gure animation, TTS, LOD, MLSLib

1 INTRODUCTION

Lip motion greatly helps us to catch

speech sounds, particularly in noisy envi-

ronments. Similarly, in computer anima-

tion, virtual human's lip motion is helpful

to viewers, and his/her lips should thus

move synchronized with speech sounds.

This we call Lip Sync.

To make agents speak arbitrary texts

without prerecording, we usually use TTS

(Text-To-Speech) systems[Dutoit97]. In

TTS systems, a sequence of phonemes

is �rst generated from an input text,

and then sounds are synthesized from



the sequence. Lip syncing is thus re-

alized by moving agents' lips according

to the changes of phonemes. For ex-

ample, in [Waters93], [Beskow95], and

[LeGo�96], the phonemes are mapped

to facial control parameters, possibly via

visemes. A parametric facial model is then

animated by the parameters with the ef-

fects of coarticulation[Cohen93]. Such sys-

tems are also commercially available now.

Their extensions include image-based lip

syncing[Ezzat98] and an approach to in-

tegrating facial images and synthesized

speech organs[Ogata01].

These existing researches and systems,

however, make an implicit assumption

that the TTS, the facial model, and

the facial control parameter generation

algorithm[Cohen93] are all �xed, and do

not refer to the use of multiple TTS sys-

tems, models, and algorithms. This pre-

vents multi-lingual lip syncing, use of var-

ious facial models, and adaptive genera-

tion of control parameters, and simultane-

ously enforces detailed knowledges of in-

dividual TTS systems and facial control

parameter generators (FCPGs) upon ap-

plication programmers. In addition, since

use of multiple speaking agents is not di-

rectly supported, programmers have often

to elaborate appropriate program codes to

let multiple characters speak.

To solve these problems, programmers

should have a software environment that

satis�es the following requirements:

(1) Management and easy switch-

ing of multiple TTS systems and

FCPGs:

Directly managing di�erent types of

TTS systems and FCPGs and switch-

ing them can be a burden upon appli-

cation programmers. If this require-

ment is satis�ed, they can easily use

multiple TTS systems and FCPGs in

their applications.

(2) Resolving di�erences in the ca-

pability of TTS systems and

FCPGs:

In general, di�erent TTS systems

have di�erent capabilities, which

have a great inuence on software de-

velopment. For example, some TTS

systems can have multiple instances

in a program, and others can only

have a single instance. In the for-

mer, an individual instance can be

assigned to each agent; while in the

latter, the single instance should be

shared by all agents. Resolving such

di�erences will increase productivity

in developing Lip Sync applications.

(3) Independence of TTS systems

and FCPGs:

To use an arbitrary combination of

TTS and FCPG, TTS systems and

FCPGs should be mutually indepen-

dent as much as possible. This prop-

erty also helps programmers and, in

addition, enables application systems

to show wider variations with fewer

TTS systems and/or FCPGs.

(4) Support of Multiple Agents:

For use of multiple agents, attributes

of individual agents should be han-

dled independently, and such data

management should be supported by

the software environment.

(5) Uni�ed and Simple APIs:

Uni�ed and simple APIs hiding de-

tailed data management help pro-

grammers to develop Lip Sync appli-

cations easily.

This paper presents MLSLib (Multi-

lingual Lip Sync Library), a TTS-based

Lip Sync library satisfying the above re-

quirements. The MLSLib enables ap-

plication programmers to use multiple

agents, TTS systems, FCPGs, and lan-

guages freely, and then greatly helps them

to develop Lip Sync applications.



In the next section, the architecture of our

MLSLib is discussed in detail. Its imple-

mentation issues and experimental results

are discussed in Section 3. Finally Section

4 concludes this paper with some com-

ments on future work.

2 SYSTEM ARCHITECTURE

2.1 System Overview

The MLSLib consists of three types of

modules: TTSManager, FCPManager,

and LSSAgent (Figure 1); The TTSMan-

ager manages all TTS systems used in a

Lip Sync application and also resolves dif-

ferences in their capability. The FCPMan-

ager (Facial Control Parameter Manager)

manages all FCPGs used in the applica-

tion. The LSSAgent (Lip Sync System

Agent) manages the attributes for a single

agent1 and it also acts as an intermediary

among user programs, the TTSManager,

and the FCPManager. In the following

subsections, these modules and their in-

teractions are discussed in detail.

Figure 1: MLSLib Architecture

2.2 TTSManager

In general, TTS systems are di�erent in

many aspects. From application program-

1LSSAgent modules are thus used per agent.

mers' point of view, the following di�er-

ences should be paid attention to:

(1) An application can have:

(a) multiple TTS instances, or

(b) only a single instance.

(2) A voice output function returns:

(a) immediately, or

(b) after the voice has been output.

(3) A TTS instance:

(a) occupies an audio device exclu-

sively, or

(b) can share the audio device.

(4) Di�erent TTS systems have di�erent

phoneme sets.

For example, Festival Speech Synthesis

System[Black99] developed at the Uni-

versity of Edinburgh can create only

a single instance and occupy an au-

dio device exclusively, while L&H True

Voice handled by MSWindows Speech

API 4.0 [Microsoft98] can simultaneously

have multiple TTS instances and then

share the audio device.

To resolve these di�erences from program-

mers' viewpoint, the TTSManager is de-

signed as follows: To settle the di�erence

(1), the TTSManager has a three-layer

structure as shown in Figure 2; Each node

in the DLL layer manages a handler of

an individual TTS, which is provided as

Dynamic Link Library (DLL). Each node

in the TTSE (TTS Entity) layer assigned

to a TTS instance. Due to the di�er-

ence (1), however, some TTS systems can

only have a single instance even if mul-

tiple agents have to speak. To let mul-

tiple agents speak with such a TTS sys-

tem, the TTSManager in our MLSLib has

VTTS (Virtual TTS) layer, whose node

is a virtual TTS instance corresponds to

each agent. To set agent-dependent at-

tributes such as pitch and speed, all pro-

grammers have to do is only to set the at-

tributes through VTTS at the �rst time.



In case of a single-instance TTS, when-

ever the speaker changes, the TTSMan-

ager sets the attributes through TTSE on

the background.

Because of the di�erences (2) and (3), our

MLSLib does not use audio synthesizers

provided by TTS systems. Instead, we

developed a sharable synthesizer with Di-

rectSound library on MS Windows. The

synthesizer receives and plays multiple

wave-form audio data generated by TTS

systems.

To settle the di�erence (4), we �rst stud-

ied phoneme sets in various TTS systems.

This revealed that common phoneme sets

can be de�ned per language with simple

mappings from TTS-dependent phonemes

to common ones. We thus de�ned shared

phoneme sets for Japanese and English,

respectively. This enables programmers

to use arbitrary combinations of TTS sys-

tems and FCPGs.

Figure 2: Three-Layer Structure of

TTSManager

2.3 FCPManager

The FCPManager manages all FCPGs in

a Lip Sync application. We make an

assumption that FCPGs generate facial

control parameters from a sequence of

phonemes. For example, in an FCPG

based on [Cohen93], control parame-

ters are generated with coarticulation ef-

fects by considering dominance of the

present and neighboring phonemes. An-

other FCPG simply generates parameters

randomly without considering individual

phonemes.

To make FCPGs independent of fa-

cial models, we recommend that FCPGs

should represent (a vector of) facial con-

trol parameters as a weighted average of

facial states, each of which corresponds

to visemes. If appropriate sets of such

faces are given in advance, such FCPGs

can generate facial control parameters in-

dependent of facial models.

FCPGs in our MLSLib are in the form

of DLL so that FCPGs can be added or

deleted easily.

2.4 LSSAgent

In general, to develop Lip Sync appli-

cations, application programmers have

to consider APIs of TTS systems and

FCPGs, agent-dependent attributes such

as pitch and speed, texts to be spo-

ken and their corresponding phoneme se-

quences/audio data, and utterance tim-

ings including timer handling. The

LSSAgent manages all of the above per

agent, and then liberates programmers

from their management.

2.5 Interactions among Modules

This subsection illustrates how the three

modules and the user program make in-

teractions with each other (Figure 3).

(I) Generate a phoneme sequence

and its audio data from a text:

(1) Send a text to be spoken from a user
program to the LSSAgent.

(2) Allocate memories to keep the
phoneme sequence and its audio data.



(3) Send a text and the allocated mem-
ory pointers from the LSSAgent to
the TTSManager.

(4) Generate and return a phoneme se-
quence and audio data and keep them
in allocated memories.

(5) Return an ID of the text to be spo-
ken.

(II) Play the audio data:

(1) Send the text ID from the user pro-
gram to the LSSAgent.

(2) Transfer the audio data speci�ed by
the ID from the LSSAgent to the
TTSManager.

(3) Play the audio data with a shared au-
dio synthesizer, and send a start sig-
nal.

(4) Start a timer for measuring elapsed
time of the agent's utterance, and
keep the ID of the current text to be
spoken.

(III) Generate facial control parame-

ters:

(1) Send a memory pointer for returning
the parameters.

(2) Measure the elapsed time of the
agent's utterance.

(3) Send the measured elapsed time and
the current phoneme sequence from
the LSSAgent to the FCPManager.

(4) Calculate and store the parameter
values in the memory sent from the
user program, which then receives the
result.

3 RESULTS

3.1 Implementation

We developed the MLSLib with Visual

C++ on MS Windows98. To use the

MLSLib, user programs call public mem-

ber functions in the LSSAgent class. The

member functions are listed in Figure 4.

(I) Generate a phoneme sequence

and its audio data from a text

(II) Play the audio data

(III) Generate facial control parameters

Figure 3: Interactions among Modules

3.2 Sample Program

A sample program in Figure 5 illustrates

how to use the MLSLib.

(1) Initializing agent/TTS/FCPG

An agent (an instance of the

LSSAgent) is created �rst ((a)).

Next, TTS is created2 and assigned

to the agent with speci�ed attributes

((b)). Furthermore, FCPG of spec-

i�ed attributes is assigned to the

agent ((c)).

2The term \create" here includes initialization

of TTSE and VTTS in the TTSManager.



CreateTTS Create a TTS and assign

it to an agent

GetState Get a state whether an

agent is speaking or not

SetPitch Set an agent's voice pitch

SetSpeed Set an agent's speech

speed

GetTTSInfo Get TTS capability

information

TextToData Change a text to a

phoneme sequence and its

audio data

DataToAudio Play audio from audio

data

CreateFCP Create a FCPG and assign

it to an agent

SetFCP Set current FCPG to an

agent

CalcParameter Get current facial control

parameters

Figure 4: Member Functions of

LSSAgent Class (Extracts)

(2) Requesting agent to speak

A user program obtains a text ID by

sending a text to be spoken, and then

requests the agent to speak it ((d)).

(3) Drawing agent

During speech, the user program

obtains the current facial control

parameters and draw the agent('s

face) with the parameters, repeatedly

((e)). Note that the user program

does not measure the elapsed time

nor �nd the current phoneme.

3.3 Experiments

We made some experiments with our ML-

SLib as shown below. In these experi-

ments, for English TTS systems, we used

L&H TruVoice handled by MS Windows

Speech API 4.0[Microsoft98] and Festival

Speech Synthesis System[Black99] devel-

oped at the University of Edinburgh. For

Japanese TTS, we also used L&H Tru-

Voice. Sample movies of the experiments

Figure 5: MLSLib Sample Program

below can be found at our Web site shown

on the cover.

3.3.1 Multiple Agents

We simulated a conversation between a fa-

ther and his daughter. Voice attributes of

both agents are independently managed

by VTTSs in the TTSManager through

the LSSAgent. In addition, our synthe-

sizer enables their voices naturally overlap

with each other.

3.3.2 Multi-lingual Agent

We sometimes want to animate a multi-

lingual agent like an interpreter in com-

puter animation. We simulated an agent

speaking English and Japanese one after

the other with our MLSLib, which enables

us to use any TTS systems in a uni�ed

fashion and to switch one TTS to another

very easily.



3.3.3 LOD for Lip Sync

Recently, in computer graphics, LOD

(Levels Of Detail) is considered important

to balance the reality and rendering speed

(e.g. [Funkhouser93] and [Hoppe96]). In

typical LOD, more detailed models are

used for neighboring objects to show their

details; while simpler models are used for

distant objects to reduce the rendering

costs.

Similarly, in lip syncing, elaborate lip mo-

tions are required for neighboring agents

to help viewers to understand what they

are speaking. On the other hand, for

distant agents, such costly lip motions

are of little use since viewers cannot

catch sounds from tiny lip motions on the

screen. In such a case, all lip motions

can convey is only whether the agents are

speaking or not, and thus random lip mo-

tions are su�cient. We can also adopt

an intermediate level where phonemes are

roughly classi�ed into, e.g., open lips or

close ones.

Our MLSLib provides functions for

switching FCPGs, and thus enables us to

develop the above-mentioned LOD mech-

anism in Lip Sync applications. Figure 6

shows two images from a Lip Sync LOD

sample program, where an agent's face

on the left moves forward and backward

from a viewpoint. (For comparison, the

same face is drawn in the �xed size on the

right.) In Figure 6(a), Cohen and Mas-

saro algorithm[Cohen93] moves the lips of

a near face; while in Figure 6(b), the lips

move randomly for a far face. The FCPG

is switched smoothly without interruption

and delay.

4 CONCLUSIONS

This paper presented MLSLib, a software

library for developing Lip Sync applica-

tions. It enables us to animate mul-

(a) Face is near the viewpoint

(b) Face is far from the viewpoint

Figure 6: LOD in Lip Sync

tiple agents speaking multiple languages

and also use arbitrary combinations of

TTS systems and FCPGs without detailed

knowledges of individual TTS systems and

FCPGs.

To show the e�ectiveness of our MLSLib,

we developed some sample programs in-

cluding animating multiple agents talking

with each other, simulating multi-lingual

agents, and realizing LOD in lip syncing.

These programs are developed easily with

simple APIs of the MLSLib.

For lip syncing, audio-visual systems,

where natural facial animations are gen-

erated from audio track, have been devel-

oped by some authors including Bregler et

al[Bregler97], Kuratate et al[Kuratate98],

and Brand[Brand99]. In case of us-

ing TTS systems, however, their audio-

based methods require wasteful transla-

tions via voice synthesis. Furthermore,

their learning-based methods can only

generate natural lip motions. Phoneme-

based lip syncing can use any mapping

from a phoneme sequence to lip motions,



and then easily animate faces, for exam-

ple, in a caricatured fashion.

Our MLSLib freed application program-

mers from programming with system-

dependent APIs of existing TTS systems.

We, however, still have problems in se-

mantics of attributes. For example, let

us suppose that both TTS A and TTS B

can have a pitch value from 0.0 through

1.0. But, in fact, pitch 0.5 in TTS A and

in TTS B may have a di�erent degree of

highness/lowness of speaking voice. To

solve such problems, we should extend

the TTSManager to standardize these at-

tributes as a future work.

ACKNOWLEDGEMENTS

This research is supported by Kayamori
Foundation of Informational Science Ad-
vancement (K11 Res. IV No. 75), and Japan
Society for the Promotion of Science (Grant-
in-Aid for Scienti�c Research (C) 13680484).

REFERENCES

[Beskow95] Beskow, J., \Rule-Based Vi-
sual Speech Synthesis", Proc. of EU-
ROSPEECH '95, Madrid, September
1995.

[Black99] Black, A. W., Taylor, P., and Ca-
ley, R.: The Festival Speech Synthesis

System System Documentation Edition

1.4, for Festival Version 1.4.0, Cen-
tre for Speech Technology, University
of Edinburgh, 1999.

[Brand99] Brand, M.: \Voice Puppetry",
Proc. of SIGGRAPH 99, pp. 21{28,
August 1999.

[Bregler97] Bregler, C., Covell, M. and
Slaney, M.: \Video Rewrite: Visual
Speech Synthesis from Video", Proc. of
AVSP '97, Greece, September 1997.

[Cohen93] Cohen, M. M. and Massaro, D.
W.: \Modeling Coarticulation in Syn-
thetic Visual Speech," In: Thalmann,

N. M. and Thalmann, D. (eds.), Mod-

els and Techniques in Computer Ani-

mation, Springer, pp. 139{156, 1993.

[Dutoit97] Dutoit, T.: An Introduction to

Text-to-Speech Synthesis, Kluwer Aca-
demic Publishers, 1997.

[Ezzat98] Ezzat, T. and Poggio, T:
\MikeTalk: A Talking Facial Display
Based on Morphing Visemes", Proc. of
Computer Animation 98, Philadelphia,
PA, June 1998.

[Funkhouser93] Funkhouser, T.
A. and S�equin, C. H.: \Adaptive Dis-
play Algorithm for Interactive Frame
Rates During Visualization of Complex
Virtual Environments," Proc. of SIG-

GRAPH 93, pp. 247{254, August 1993.

[Hoppe96] Hoppe, H.: \Progres-
sive Meshes," Proc. of SIGGRAPH 96,
pp. 99{108, August 1996.

[Kuratate98] Kuratate, T., Yehia, H. and
Vatikiotis-Bateson E.: \Kinematics-
based Synthesis of Realistic Talking
Faces", Proc. of AVSP '98, pp. 185{
190, Terrigal-Sydney, Australia, De-
cember 1998.

[LeGo�96] LeGo�, B. and Benoit, C.:
\A Text-to-Audiovisual-Speech Syn-
thesizer for French," Proc. of Int'l

Conf. on Spoken Language Processing,
Philadelphia, PA, October 1996.

[Microsoft98] Microsoft Speech API 4.0 Doc-

umentation, Microsoft, 1998.

[Ogata01] Ogata, S., Nakamura, S., and
Morishima, S.: \Multi-modal Trans-
lation System |Modal Based Lip
Synchronization with Automatically
Translated Synthetic Voice|", Proc.

of Interaction 2001, pp. 203{210,
March 2001 (in Japanese).

[Waters93] Waters, K. and Levergood, T.
M.: DECface: An Automatic Lip-

Synchronization Algorithm for Syn-

thetic Faces, Technical Report, DEC
Cambridge Research Lab, September
1993.


