
REAL-TIME CLOTHING: GEOMETRY AND PHYSICS
Isaac Rudomín José Luis Castillo

Department of Computer Science, ITESM-CEM
3.5 Carretera Lago de Guadalupe, Atizapán, Estado de México , México

rudomin@campus.cem.itesm.mx

ABSTRACT
This paper describes a technique for animating in real time garments placed over an articulated character. In order to
do this, the character to be dressed must be approximated using a hierarchy of ellipsoids. The pieces of clothing are
represented using mass-spring particle systems. First the particles move following the ellipsoids; this is followed by
the application of dynamic forces. Finally, penetration of the character’s ellipsoids by any particle is corrected. This
method has been optimised and is fast enough to deliver real-time performance on mid-range PCs and workstations,
using only portable and standard C++ and OpenGL code.
Keywords: cloth simulation, real-time clothing.

1. INTRODUCTION
Cloth modelling and simulation has always been

a great challenge inside the computer graphics field.
Existing approaches can usually be classified as
geometric, physically based, or a combination of
both (hybrid). The simplest physically-based method
uses mass-spring particle systems to simulate the
topology and behaviour of cloth. The main
advantage of using such a system is that it can
effectively simulate the movement of cloth and it is
relatively easy to implement.

Physical simulation of cloth in real time has to
meet several requirements that greatly limit the
development or even the existence of such systems.
Among these we could mention stability, robustness
and, of course, speed (see [Baraff98, Desbrun99,
Volino00]):
1. Stability is needed to deal with the fact that

whatever the conditions presented during the
simulation the system must behave in a correct
and predictable manner. Unnatural or erratic
cloth appearance and movement must be
avoided at all costs.

2. Robustness is an even more difficult
requirement, especially when the cloth is placed
in an interactive environment, i.e. a virtual
reality application or a video game, where
interaction or the fast-changing conditions must
be handled properly.

3. Speed is obviously the most important aspect of
any real time system. There are two major
obstacles that make these requirements difficult
to fulfil: the cloth model itself and the detection
of collisions. Most highly accurate physically-
based cloth simulation systems are just too slow
to be used in an interactive or real time
applications. They are computationally heavy
and difficult to optimise to a level that would
permit them to be significantly accelerated.

On the other hand, over-simplified
physically-based cloth models have problems of their
own. They usually present strange or unnatural
behaviour, like super-elasticity or high-compression.
Baraff et al. [Baraff98], define an implicit

integration scheme that allows the system to take
larger step in the simulation and to include hard
constraints and a broad model. However, it is more
suitable for animation or off-line simulation than for
interactive applications.

Collision detection calculations can prevent the
application from reaching real time performance.
Natural-looking clothing can only be achieved if the
way garments are placed over other surfaces is
consistent with the shape of those surfaces and with
the way gravity and other forces act on the clothes,
and this effect strongly depends on how the
collisions are handled. Thus, detecting and
responding properly to collisions can be a time-
consuming task, especially when the cloth covers a
constantly moving object, as is the case with clothing
dressing an articulated character.

Several research projects have tried to animate
cloth in real time. Desbrun et al. [Desbrun99] use a
simplified version of Baraff’s implicit integration
method and effectively achieves interactive rates on
a high-end graphics computer. Other approaches
take advantage of available graphics hardware to
accelerate certain operations. Vassilev et al.
[Vassilev01] propose a fast method for dressing
human characters that bases its performance on the
use of image-space operations (as opposed to object-
space) for collision detection and normal calculation.
Oshita [Oshita01] represents cloth as a sparse
triangle mesh. Particle positions are calculated with
this sparse mesh, and interpolation is performed to
generate a dense mesh. A technique called PN-
triangles is used (see [Vlachos01]). Animating only a
few particles is much faster and PN-triangles can be
created automatically by certain graphics hardware.

Other approaches have been suggested; the most
relevant to this paper is the one described in
[Perez99] and [Rudomin00]. In their approach, a
hybrid geometry-physics method, a group of implicit
ellipsoids are defined that approximate the shape of a
human character. A scalar field is generated from
those ellipsoids, and it is evaluated for every point of
the cloth, after which they are moved accordingly.
Since a different scalar field may be used for every

piece of garment, no collision detection calculations
are needed between them, allowing the use of several
layers of clothing. In this paper, we have modified
this method with the intention of making it perform
at interactive rates (our goal was at least 10 fps).

2. OUR SYSTEM
As just mentioned, our purpose is to extend the

work done by Rudomín and Pérez-Urbiola in order
to achieve real time performance. One of the main
optimisations done is the shift from calculating
implicit isosurfaces to ellipsoid distance calculations.
This is much faster. In general, our system works as
follows:

1. the character to be dressed is
approximated using groups of
ellipsoids;

2. after that, a triangle mesh representing
clothing is placed over the character
(where every vertex is taken as a
particle and every edge as a spring),

3. then the particles of the mesh are
moved with the ellipsoids.

4. subsequently, they are allowed to move
freely using physics,

5. but kept always from penetrating any
ellipsoid.

The ellipsoid approximation is used since it
greatly simplifies the collision detection problem and
makes it very fast to compute.

One of the main advantages of this system is that
it works extremely fast even on mid-range
computers. What we did was to optimise crucial and
usually intensive operations in the simulation. These
operations can be classified in four important
groups:

1. the simplification of the character by using
ellipsoids for the purpose of collision
detection,

2. the use of a simple mass-spring system with
first-order integration within a hybrid
scheme,

3. the optimisation of the collision detection
mechanism

4. the grouping of ellipsoids connected by an
adjacency graph;

All of these are explained in detail in the following
sections.

We intend to apply our system on virtual reality
applications and video games, where interaction and
stability is more important than accuracy.

2.1 Character Description and Cloth Models
Since our method is based on computing point-

to-ellipsoid distances, the character to be dressed
must first be approximated using a hierarchy of
ellipsoids. These ellipsoids must closely match the
character’s shape and its hierarchy must be arranged
in the exact same way as the character’s hierarchy.

This allows animating the ellipsoids in the same
manner as the character.
Ellipsoids are formed using scaled spheres, with a
certain rotation and potentially different values for
every dimension. This representation greatly
enhances the speed at which penetration tests are
performed in our system.

Figure 1 An ellipsoid arrangement and adjacency graph

Given that it is not efficient to verify every single
ellipsoid for penetration, ellipsoids are organised in
groups, with every group containing only a few
ellipsoids, and then specifying which groups are
connected. This is done through the use of a simple
adjacency graph, represented by a matrix that
indicates the connections between groups. For an
example of the ellipsoid arrangement of a character,
see Figure 1. The benefits derived from using such
group organization of ellipsoids are discussed in
section 2.4.

The garments are based on a mass-spring particle
system. For the actual geometric model we can use
any file describing a triangle mesh, and in fact, it can
be any model generated by a modelling package,
even with materials and textures applied. Every
vertex in the geometric model is used as a particle
and every edge in the mesh is considered a spring.
The rest lengths of the springs are taken from the
initial position of the cloth described in the file.

The shape and position of the cloth pieces must
match the shape and position of the character to be
dressed, or to be precise, the ellipsoids
approximating it. For our tests, we used models
generated with MayaCloth, a cloth-modelling
program inside the Alias/Wavefront Maya animation
package.

2.2 System Integration Schemes for Real Time
Cloth Simulation

A mass-spring particle system consists of a set of
particles with a certain mass and springs connecting
them. These springs have associated rest lengths and
depending on their lengths adopted during the
simulation, they apply forces to the particles in order
to restore their original state.

If the springs are stiff enough, they effectively
help to maintain the original shape of the system.
Other types of forces like gravity or wind may also
be used to affect the particles. For the simulation of
cloth, the particles are used to determine the

positions of vertices in a polygon mesh, usually a
triangle or quad mesh. The springs may correspond
to the edges of the polygons forming the mesh, but
this is not necessary, and there can even be more
springs than edges in the mesh, depending on the
type of behaviour wanted.

Since a mass-spring system used for cloth
simulation is a dynamic model, the type of system
integration used is very important. This is especially
true when interactive rates are needed.

There are basically two kinds of integration
methods that are relevant: explicit and implicit.
Explicit integration schemes, like the Euler or
Runge-Kutta methods, are fast and easy to
implement, but a small time step is needed in order
to maintain system stability and congruence. On the
other hand, an implicit integration method allows the
use of much larger time steps but requires a lot more
computations to resolve the system in every step.
More over, as mentioned in [Volino00], a high-order
explicit method like fourth-order Runge-Kutta is not
suitable either for such an application if the system is
too irregular.

Trying to approximate a rapidly changing system
this way may lead to unpredictable results and
instability. Consequently, for interactive or real time
applications, where the time step is small and the
regularity of the system cannot be determined, an
explicit first or second order integration method
would be a good choice. Depending on the actual
time step, one could choose from explicit Euler or
second-order Runge-Kutta. For our system, after
extensive testing, we found that we really could not
find a difference, and that since explicit first-order
Euler was a little bit faster, we could get away with
using it. Therefore, we chose the explicit Euler
scheme; the cloth remains stable if (it is not too
rigid) and using it saves some computation.

We think that this stability is due to the hybrid
nature of our animation scheme, since we are
moving the particles mostly by using geometric
criteria, and only partially with the physical
simulation.

2.3 Efficient Distance Computations for
Collision Avoidance

One of the main optimisations done in our system
is the use of an efficient point-to-ellipsoid distance
calculation. Actually, it is used for obtaining three
different results:
1 The distance from the point to the ellipsoid;
2 Whether the point is inside the ellipsoid or not;

and
3 The point on the surface of the ellipsoid where

the intersection was found.
The intersection point mentioned above is not the

closest point on the ellipsoid (see figure 2) and,
consequently, the distance obtained is not the
shortest either, but it is a close and fast

approximation and has served its purpose well. To
obtain this information easily and quickly, certain
assumptions are made.

1. The ellipsoids are scaled spheres, with
potentially different radiuses for every axis.

2. The matrices that transform every axis-
aligned ellipsoid from the origin to their
global positions and rotations are stored, as
well as their corresponding inverse matrices.

3. Since the ellipsoids originally have only their
positions relative to its parent, the direct and
inverse transformation matrices are obtained
by applying the complete ellipsoid hierarchy,
saving the corresponding OpenGL
ModelView matrices and calculating its
inverses, see [Woo99, Angel00].

4. This is recalculated every time a certain
ellipsoid is rotated or moved, but only the
altered ellipsoid and its children are redone.

(a) two example
points near an
ellipsoid;

(b) their new
positions after
origin-centring
and axis-
aligning;

(c) their new
positions after
scaling, where
penetration and
points of contact
are determined;
and

(d) the intersection
points found,
after all the
direct
transformations.

Figure 2 Procedure for testing for penetration of an
ellipsoid and distance calculation

2.4 Ellipsoid Group and Adjacency Graph
At the start of the simulation, every cloth particle

is assigned to an ellipsoid, choosing the one that is
closest to it based on the distances to all the
ellipsoids.

This ellipsoid becomes its “parent ellipsoid”.
However, it is a dynamic assignation, since the
parent ellipsoid may change during the simulation.

Based on this information, when an ellipsoid
moves, its children particles (those that lie within a
certain distance) move along with it. This facilitates
the overall animation and avoids artifacts related to
cloth penetration of fast-moving parts of the
character. For every frame in the simulation, forces
like gravity, wind and internal damping are applied
to the particles.

Spring forces are also calculated and applied.
After all the dynamic forces are accumulated, an

explicit integration is performed and the velocity and
position of every particle is obtained. Once the new
position for a particle is acquired, it is verified that
the particle does not penetrate any ellipsoid. If this
happens, the point closest to the penetrated ellipsoid
is calculated as described above, and the particle is
moved to that position.

The new information on this section is that when
testing for penetration, distances are checked only
against ellipsoids in the same group of the parent and
in groups adjacent to it. The parent ellipsoid is re-
assigned to the closest one calculated (note that this
may in fact cause the particle to change from one
group to another). This technique significantly
reduces the number of checks made per
particle/vertex, and allows the dynamic assignation
of groups, with almost no computational penalty.

3. RESULTS
We analysed the performance of the system on

several computers:
PC1 (Nbook) PIII/750 S3 savage/8MB
PC2 (Desktop) PIII/800 GloriaDCC/64MB
SGI Octane2 R1200/360 Oddysey/32MB
 Table 1 shows the simulation (clothing
adjustment) time in seconds, obtained by running the
simulation with different options (blouse, pants or
both blouse and pants). From this table we can
conclude that simulation time allows us real time
calculation.

Objects and
number of vertices

PC 1 PC 2 SGI

Blouse (911) 0.008 0.003 0.010

Pants (944) 0.009 0.004 0.011

Both (1855) 0.017 0.007 0.021

Table 1 Clothing adjustment time (in seconds)

In all cases, we obtain frame-rates that are better
than 30 fps, and sometimes up to 60 fps. This is
consistent with and in fact exceeds our goal of
obtaining simulation and rendering within interactive
rates. In figure 3 we show the pants and blouse
draped over a model in a sequence of different
positions.

Figure 3 Behaviour of clothing in real time

4. CONCLUSIONS
The results show that this method is fast, stable

and portable. As opposed to other approaches, this
one performs well even on mid-range PCs, and does
not rely on vendor-specific or expensive hardware.
Partial OpenGL hardware acceleration is sufficient.
The method is suitable for real time applications,
where interaction is constant and accuracy is not the
main aspect of the simulation.

Future work:
1. Extend the method to support several layers of

garments while retaining real-time performance;
2. Use fewer particles, and interpolating a dense

mesh by hardware or software;
3. Improve the quality of the physics simulation;

Avoid self collision of the garments;
4. Use hardware vertex-shading techniques to

automatically move the cloth vertices;
5. Add wrinkles and other details and accessories

for a more realistic appearance;
6. Automate the generation of the ellipsoids for a

given model.

5. REFERENCES

 [Angel00] Angel, E.: Interactive Computer
Graphics: A Top-Down Approach with OpenGL,
2nd Edition, Addison-Wesley, 1997.

[Baraff98] Baraff, D., Witkin, A.: Large Steps in
Cloth Simulation, SIGGRAPH 98 Proceedings,
pp.43-54, 1998.

[Breen00] Breen, D.E.: A Survey of Cloth Modeling
Methods, Cloth Modeling and Animation, A. K.
Peteres Ltd., Ch. 2, pp.19-53, 2000.

[Oshita01] Oshita, M., Makinouchi, A.: Real-Time
Cloth Simulation with Sparse Particles,
SIGGRAPH 2001 Sketches and Applications,
pp.250, 2001.

[Perez99] Pérez-Urbiola, R., Rudomín, I.: Multi-
Layer Implicit Garment Models, Shape Modeling
International Proceedings, pp.66-71, 1999.

[Rudomin00] Rudomín, I., Melón, M.A.: Multi-
Layer Garment Using Hybrid Models, Visual
2000 Proceedings, pp.118-128, 2000.

[Vassilev01] Vassilev, T., et al.: Efficient Cloth
Model and Collisions Detection for Dressing
Virtual People, ACM/EG Games technology
Conference, 2001.

[Vlachos01] Vlachos, A., et al.: Curved PN
triangles, 2001 ACM Symposium on Interactive
3D Graphics, 2001.

[Volino00] Volino, P., Magnenat-Thalmann, N.:
Virtual Clothing, Springer Verlag, 2000.

[Woo99] Woo, M., et al.: OpenGL Programming
Guide, The Official Guide to Learning OpenGL,
version 1.2, 3rd Edition, Addison-Wesley, 1999.

