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ABSTRACT

A new data structure compressed adaptive multiresolution encoding (CAME) for efficient storage
of adaptive multiresolution non-manifold triangle meshes is presented. Unlike previous methods,
CAME offers both data compression and view-dependent simplification. Triangle vertices are
referenced by their relative path through the vertex hierarchy, therefore no neighborhood relations
need to be stored to perform local mesh transformations (vertex split and edge collapse). Mesh
dependencies are shown to be highly redundant and can be encoded with little overhead. CAME is
built upon the meta-node tree recently introduced by El-Sana and Chiang (External Memory View-
Dependent Simplification, in Proceedings Eurographics 2000), but compresses this data structure

by a factor of 17.

The new method also offers external memory scene navigation, progressive transmission, and

asynchronous access to the scene database.
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1 Introduction

Distribution of large three-dimensional datasets
over the internet is becoming increasingly im-
portant. Applications include virtual habitat
(large urban environments), virtual archaeology
(ancient sites reconstructed at high detail), and
virtual engineering (distributed CAD). The main
tasks to be performed by such systems are data
storage (which usually involves some kind of com-
pression), data transmission (which usually in-
volves decompression), and visualization.

3D data acquisition systems always seemed to
be at least one step ahead of graphics hardware.
This is also true today, current high-resolution
models containing hundreds of millions polygons
(e.g., the Digital Michelangelo Project [Levoy99])
by far exceed rendering capabilities even of high-
end graphics workstations.

It is common to all of these and other similar ap-
plications that (due to the amount of data) the
user can investigate only a small fraction of the

scene at any time. Therefore it is possible (and
required for performance reasons) to reduce the
amount of data to be transmitted and displayed
without degrading image quality perceived by the
user. This is referred to as view-dependent sim-
plification.

Furthermore it is useful to transmit a coarse ap-
proximation first to give the user an early im-
pression of the requested model, which is then
refined incrementally (progressive transmission).
One major concern of mesh simplification al-
gorithms is the ability to deal with arbitrary
non-manifold triangle meshes as input (such as
[Garla97, Luebk97, EIIS00]).

Compression techniques help reducing storage re-
quirements and transmission times, but do not
offer adaptive level of detail required for efficient
visualization. On the other hand, multiresolu-
tion techniques don’t care too much about mem-
ory consumption (see Figure 1 and Table 1). In
this paper, a data structure is proposed that is
equally well suited for storage, transmission and
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Figure 1: The scope of traditional compres-
sion and multiresolution techniques com-
pared with our approach

visualization of large models. In particular, it
offers both compression at a factor of 1:7 over
conventional VRML files and a hierarchical scene
description including all information required for
view-dependent simplification. Since neighbor-
hood relations between triangles are not explic-
itly represented in CAME, correct processing of
non-manifold meshes comes at no extra cost.

2 Related work
2.1 View-dependent simplification

In the 90’s, continuous level-of-detail algorithms
were developed to better account for chang-
ing viewing parameters (e.g., viewer’s position
and orientation, illumination). Most notably,
the progressive meshes representation introduced
by Hoppe [Hoppe96] allows to store any two-
manifold triangle mesh as a coarse base mesh to-
gether with a sequence of detail records.

By allowing to perform simplification and refine-
ment operations in arbitrary order, the mesh can
be adjusted selectively according to the current
viewing parameters. Hoppe gives several refine-
ment criteria (view-frustum, surface orientation,
and screen-space geometric error), which are eval-
uated to decide if a vertex needs to be split.
Xia and Varshney build a merge tree [Xia96)] in
a bottom-up fashion. They include illumination
into their set of refinement criteria.

Only recently, edge-collapse based multiresolu-
tion algorithms were extended to handle non-
manifold meshes. Garland and Heckbert define
pair contractions [Garla97] allowing to join un-
connected portions of the mesh. Popovié¢ and
Hoppe introduce progressive simplicial complezes
[Popov97], which always end up with a single
vertex as the coarsest representation of the in-
put mesh. El-Sana and Varshney introduce the
view-dependence tree [El1S99] which enables both
topology modification and view-dependent sim-
plification.

2.2 Fold-over prevention

To avoid the mesh folding over itself, mesh de-
pendencies must be investigated (see [Xia96] for
details). Different strategies have been proposed
to ensure consistent meshes. Hoppe requires some
vertices [Hoppe96] or faces [Hoppe97] adjacent to
the affected region to be present in the mesh be-
fore proceeding with simplification or refinement.

The face dependency conditions in [Hoppe97] can
be expressed as a directed acyclic graph (DAG)
of vertex-to-vertex dependencies as shown in
[Grabn00]. A proof is given that triangle adjacen-
cies are maintained correctly within this frame-
work without being considered explicitly.

El-Sana and Varshney introduce implicit depen-
dencies [ElS99] allowing more compact storage
of dependency information. Moreover, their de-
pendency tests are localized and require only a
small part of the mesh to be examined. This al-
gorithm is also used in [EIIIS00] to provide naviga-
tion through virtual worlds exceeding main mem-
ory size.

2.3 Mesh compression

Several techniques exist to reduce redundancy of
triangle mesh data for compact storage. Hoppe
encodes the sequence of vertex splits in an effi-
cient way [Hoppe98]. Pajarola and Rossignac im-
prove these results by grouping vertex splits into
batches [Pajar00].

Efficient compression algorithms include the edge-
breaker algorithm by Rossignac [Rossi99]. Start-
ing at an arbitrary edge, the mesh is traversed in
a spiral-like way. The topological relation of each
triangle to previously processed parts of the mesh
is encoding by less than two bits on average.

For geometry compression, Taubin and Rossignac
use a vertex predictor that takes into account the
K most recently encoded vertices [Taubi98]. In-
stead of storing absolute vertex coordinates, only
the correction vector between the predicted and
the actual position of a vertex is encoded. Pre-
dictor parameters are estimated to minimize the
least square error of all correction vectors.

A valence-drive approach to mesh compression
has been presented in [AllieQ1b]. It has been
extended to support progressive transmission in
[Allie01a].
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Figure 2: Triangle f and the hierarchy paths to its vertices vy, v2, and vs

3 The approach

The novelty of our approach is the way mesh ver-
tices are referenced by triangles such that trian-
gle adjacency relations are maintained implicitly.
In fact, neither at the decompression stage nor
at the rendering stage it is required to store in-
formation about a triangle’s neighbors, allowing
efficient storage and rendering. In this section,
the data structure is explained, and it is shown
how hierarchical and spatial coherence is used for
mesh compression.

3.1 Data structure

In contrast to assigning more or less arbitrary in-
dices to mesh vertices [Hoppe96] or having ver-
tex indices reflect simplification order [EIIS99],
in CAME each vertex is identified by the path to
be taken in the simplification hierarchy from the
root to the corresponding node. These node iden-
tificators are simply bit strings with “0” for the
left branch (v;) and “1” for the right branch (v,)
as indicated in Figure 2. We find the following
bit strings in the example of Figure 2(a):

vy = “111010001001”
vy = “11101000111”
vy = “111010011111”

However, the bit strings identifying the paths to
the vertices v1, v, and vz are highly redundant
since they all have a common prefix (“1110100”

and two more common bits between v; and vz).
It is therefore sufficient to store only those por-
tions of the strings relative to the node containing
vertex vs in Figure 2(b). This gives the relative
node identificators

ng = “001”
nz — “117’
ny = “111117,

where n3 also has to include the number ngz.up
of levels to go up in the hierarchy (dashed line
in Figure 2(b)) to reach the common junction v}
of all vertex paths of triangle f. See Section 3.4
for implementation details of the bit string data
structure.

3.1.1 Hierarchy traversal

Following the refinement criteria and mesh de-
pendency enforcements, the active vertex front is
moved up or down (see also [Hoppe97, Luebk97,
Puppo98]), which corresponds to collapsing or
expanding nodes of the hierarchy, respectively.
Each triangle involved in an edge collapse or ver-
tex split has to update its vertices to reflect the
new level of detail. This requires to know all tri-
angles adjacent to each vertex in [ElS99] or to
know each triangle’s neighbors in [Hoppe98].

In our method, updating triangle vertices is com-
pletely separated from hierarchy traversal and
doesn’t require any additional information. We



store ni, ng, and n3 together with the vertex split
record [Hoppe96] of vs. Therefore any informa-
tion required to reconstruct triangle f is known
as soon as vs is split (see Figure 2). By eval-
uating the relative paths n;, each triangle can
autonomously update its vertices. Moving up
and down one level in the hierarchy simply corre-
sponds to truncating and appending one bit, re-
spectively, at the end of the bit string identifying
a triangle’s vertex in the current level of detail.

3.1.2 Dependency representation

Defining mesh dependencies as relations between
adjacent triangles has been shown by Hoppe to
allow highly adaptive level of detail generation
[Hoppe97]. These face-to-face relations are trans-
formed to node-to-node relations as demonstrated
in [Grabn00]. We can therefore use the same data
structures (namely, the simplification hierarchy
and relative paths between nodes) for identifying
both vertices and mesh dependencies.

3.1.3 External memory management

To be able to visualize data sets much larger than
main memory, we utilize the meta-node concept
introduced by El-Sana and Chiang [ElIS00]. A
constant number L of levels of the vertex hierar-
chy is grouped in a meta-node and kept on disk as
a separate unit. In our implementation we chose
L=8.

This concept is also well suited for asynchronous
access to the scene database. Each time the view-
dependent refinement algorithm tries to access a
meta-node not yet in main memory, the refine-
ment procedure skips this branch. At the same
time, a separate database thread is woken up to
fetch and decode the requested data.

3.2 Topology compression
3.2.1 Node identificators

Common substrings of each triangle’s vertex
paths can be omitted as explained in Section 3.1.
Moreover, since vy is referenced by the left path
(via vy), the first bit of n, is always “0”, and the
first bit of ns is “1”. We also know the first bit of
ng because the paths to vy /v and vz enter differ-
ent subtrees below v,. Omitting each path’s first
bit saves additional three bits per triangle. The
Huffman-encoded path lengths are inserted into
the bit stream before each path.

3.2.2 Mesh dependencies

Fold-over prevention is performed based on
Hoppe’s method [Hoppe97], with dependencies
defined between nodes of the simplification hier-
archy [Grabn00] as relative node identificators. In
a two-manifold mesh!, each node n depends on a
maximum of four other nodes n;, i =0...3 (cor-
responding to the faces fro ... fn3 adjacent to the
affected region, see [Hoppe97] for details). How-
ever, there are two cases when a reference to one
(or more) of these four nodes can be omitted:

e A node occurs more than once in the set
of node dependencies (i.e., n; = nj, i #
j). This is true if some of the triangles
fno - -- fn3 share an edge which is collapsed
during the simplification process after node
n has been created.

e A node n; in the set of node dependencies
lies on the path between the hierarchy root
and n (i.e., n; is a prefix of n). Since the
vertex hierarchy implicitly defines depen-
dencies between any (inner) node and its
two children, storing n; doesn’t provide ad-
ditional information in this case.

The number of non-redundant dependencies (i.e.,
not falling into one of the two categories above)
of each node was found to be between 1.5 and
2 on average. By omitting redundancies, mesh
dependencies can be encoded even more compact
than El-Sana and Varshney’s implicit dependen-
cies (which requires two integer vertex-ids per
node [EllIS99)).

3.3 Geometry compression
3.3.1 Vertex locations

Since each meta-node represents a localized part
of the mesh, it is possible to exploit spatial coher-
ence for data compression. Similar to other com-
pression schemes [Taubi98, Touma98], we encode
vertex coordinates relative to previously encoded
locations. For each vertex split operation creating
vertices vy and v,, from vy, the difference vectors
d; = v; — vy, and d, = v, — v, are stored. Note
the difference between v (identifying one vertex in
the mesh) and v (coordinate vector of v in R?).
Instead of using a global coordinate system, prin-
cipal component analysis is performed for all d;

IThe following holds for meshes of arbitrary topology,
we use the two-manifold case for demonstration purposes
only.



within one meta node. A difference vector d can
then be expressed as

d:clel +0282+0383, ||e,|| 2172213

where e; are the eigenvectors (sorted by decreas-
ing corresponding eigenvalue \;) of the matrix

1 N
M=~ Zldidf.
=

Two difference vectors per node contribute to M,
hence N = 2(2L —1). In a sufficiently smooth re-
gion of the mesh, c3 is significantly smaller than
c1 and ¢ and therefore requires less bits of stor-
age. The user can select the maximum number of
bits per component (see also Figure 4).

The difference vectors are largest near each meta-
node’s root because the approximation error
grows as the hierarchy is built bottom-up. We
therefore use normalized difference vectors

d = 2'/2d

instead. A constant c¢ is assigned to each meta
node to bound the lengths of the normalized dif-
ference vectors (||d|| < 1). [ is the length of the
path from the meta-node’s root to the node d be-
longs to. The factor 2//2 is due to the following
consideration. The number of nodes (and there-
fore the number of triangles) differs by a factor of
two between two successive levels in the hierar-
chy. However, in a smooth region of the mesh, the
surface area is only slightly modified by collapsing
edges in that region. Therefore twice the number
of triangles share the same area when going down
one level, giving a factor of roughly 1/+/2 for edge
lengths.

3.3.2 Error estimation

It is vital to any view-dependent visualization
system to be able to compute (or at least es-
timate) the screen-space geometric approxima-
tion error. This is often done by defining an
error volume associated with the approxima-
tion error introduced by each simplification step
[Xia96, Luebk97, Hoppe97]. Since we are looking
for a compact representation, we decided to use
a simple error volume, which is a sphere centered
at the simplified vertex v, bounding all vertices
in the subtree below v,.

Hierarchical coherence can again be exploited by
relative encoding of the spheres’ radii. Let r; and
r; be the error volume radii associated with nodes
n; and n;, respectively, and n; be an child node of

n;. Then ¢;; = r; /r; is stored instead of 7;, where
the g;; can be encoded with as few as two bits per
node. To avoid underestimating the error, g;; is
rounded up to the next larger value that can be
represented by the selected number of bits.

3.4 Memory management

Each meta-node is not only stored and transmit-
ted separately, but is also assigned a single chunk
of memory for visualization. This is possible be-
cause the number of nodes and triangles within a
meta-node is known as soon as the data has been
transmitted. Therefore dynamic memory man-
agement overheads can be reduced significantly.

Similar considerations apply to the relative paths
ny, na, and ng stored for each triangle. Although
a variable length data structure in principle, it
is far more efficient to allocate a fixed number of
bits in main memory large enough to represent
any mesh of practical interest?. The current im-
plementation packs n into a 64 bit integer, using
six bits for n.up (see Figure 2(b)), six bits for the
length of the bit string, and the remaining 52 bits
for the bit string itself. Assuming a well-balanced
hierarchy, this is sufficient to encode meshes with
up to 2%! & 2-1015 vertices. To enforce generation
of a well-balanced hierarchy, we define a balanc-
ing factor b to obtain a modified error function

E(i) = 2" B, (i),

where E, (i) is the quadric error metric [Garla97]
associated with vertex i, and d(i) is the depth
of the subtree below ¢ created so far. For any
b > 0, the modified error functions penalizes the
creation of an unbalanced hierarchy.

Note that only the error metric guiding the sim-
plification process is modified. The screen-space
geometric error for view-dependent simplification
is evaluated based on explicitly calculated error
volumes (see Section 3.3.2).

4 Results

Since adaptive level of detail and mesh compres-
sion have not been addressed together before, we
first compare the feature set of our approach with
some recent related techniques in Table 1. While
the most efficient compression methods don’t sup-
port adaptive LOD, the view-dependent algo-
rithm by El-Sana and Chiang doesn’t deal with
compression.

2Dynamic memory allocation causes an overhead of 24
bytes on the GNU /Linux system, while 16 bytes are suffi-
cient to identify each molecule on the earth’s surface.



Rossignac | El-Sana & Chiang | Alliez & Desbrun | CAME
[Rossi99) [E1IIS00] [Allie01a]
compression ++ - = ++ +
progressive encoding - + + +
adaptive level of detail - + - +
non-manifold meshes - + - +
Table 1: Feature comparison chart
model | number of | processing storage size (in bytes) compr.
name triangles time VRML | gzip | E&C | CAME | ratio
bones 4204 0:01 157k 49.1k - 25.7k 0.164
dino 10777 0:03 370k 94.7k - 56.5k 0.153
terrain 39300 0:14 1.81M | 311k - 231k 0.127
bunny 69451 0:29 2.81M | 836k | 9.7TM 557k 0.198
dragon 202520 1:12 9.55M | 2.34M | 29.6M | 1.74M | 0.182
city 601666 7:55 36.5M | 5.43M - 4.46M | 0.122
buddha | 1080946 8:34 54.6M | 10.8M - 6.26M | 0.115

Table 2: Compression achieved with CAME

Table 2 demonstrates the results achieved by our
approach for seven different models. The sizes of
the models as plain and gzip-compressed VRML
files are given since these are common techniques
to transmit 3D data over the internet. CAME
stores twice the number of vertices (i.e., the sim-
plified geometry) and additional information for
adaptive LOD (e.g., mesh dependencies, error es-
timation). However, it still outperforms the stan-
dard gzip method and achieves an improvement of
factor 17 over the uncompressed method by El-
Sana and Chiang [EIS00] for the “bunny” and
“dragon” model (column “E&C”).

The processing times refer to an Intel Pentium
IIT/1000MHz. Since the city model consists of
many small objects, it requires an additional De-
launay tetrahedralization step (as proposed in
[EIIS00]) to be able to connect disjoint parts of
the scene, thus the relatively large execution time.
See also Figure 3 for the effectiveness of topology
simplification.

More detailed information is given in Table 3.
The vertex hierarchy depths were found with the
balancing factor b = 1 (see Section 3.4). The
number of bits to represent topology (connectiv-
ity, mesh dependencies) and geometry (vertex co-
ordinates, multiresolution data including error es-
timation) are given.

Figure 3 shows screenshots of an interactive walk-
through of the “city” data set. The figure also
contains triangle counts and frame rates of the
models simplified by the adaptive LOD algo-
rithm.

Geometry compression is demonstrated in Figure
4. Three bits per_component of the normalized
difference vectors d (see Section 3.3.1) are already
sufficient to resemble the original shape (five bits
per component were used in Tables 2 and 3).

5 Conclusions and future work

The CAME framework offers a solution of two
problems of interactive visualization. First, it is a
compact representation reducing storage require-
ments and transmission times of large 3D models.
Second, it is organized hierarchically, allowing ef-
ficient view-dependent simplification and progres-
sive transmission.

While the experiments with the city data set
showed the effectiveness of topology simplifica-
tion, they also made the need for a more sophis-
ticated error measure obvious. We expect im-
proved image quality when taking into account
object semantics in the error measure.
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model | depth of detailed size (in bits) bits | bits per
name | hierarchy || connect. | depend. | coord. | MR data || total | triangle
bones 13 68.8k 31.2k 97.0k 8.61k 206k 48.9
dino 15 163k 90.4k 177k 21.9k 452k 42.0
terrain 16 587k 298k 879k 80.1k 1.84M 46.9
bunny 17 1.11M 596k 2.62M 139k 4.48M 64.2
dragon 19 3.3T™ 1.59M | 8.56M 402k 13.9M 68.7
city 21 10.7M 5.35M | 18.2M 1.36M 35.7TM 59.3
buddha 22 17.3M 8.45M | 22.2M 2.17™ 50.1M 46.3
Table 3: Detailed split up of memory consumption
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Figure 3: Topology simplification of the “city” data set (screen space geometric error threshold
is given in % of screen size), error screens are computed by subtracting the foreground masks of
original and simplified models to remove the influence of shading, frame were times measured on
an Intel Pentium ITI/600MHz with GeForce256 DDR graphics hardware
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Figure 4: Geometry compression artefacts of the “dino” data set at different numbers of bits per
component, error screens are pixel-wise subtractions and include the influence of shading



