
Direct Pattern Tracking On Flexible Geometry

Igor Guskov
University of Michigan, Ann Arbor

guskov@eecs.umich.edu

Leonid Zhukov
Caltech

zhukov@gg.caltech.edu

Abstract

We introduce a robust tracking procedure for a regu-

lar pattern marked on a flexible moving surface such

as cloth. A video of an actor performing a range of

motions is processed with our algorithm to yield a

dynamic geometric representation. The system is ca-

pable of maintaining the tracked grid structure for

long periods of time without quality deterioration,

and requires minimal user interaction. It has been

tested on videos of an actor dressed in a specially

marked T-shirt and behaves favorably with the pres-

ence of self-occlusions, self-shadowing and folding of

the cloth. The focus of this paper is on single camera

video sequence processing, even though 3D shape re-

construction with multiple cameras is the motivating

goal.

Keywords: Pattern analysis, template match-
ing, dynamic geometry

1 Introduction

Authoring complex secondary motion for ani-
mated characters is an important task facing 3D
content creators. While physically based simu-
lations are often used to produce such motion
[8][17][1][12], they are computationally intensive.
The use of acquired data to speed up, replace,
or validate such computations is a viable option.
A number of methods are available for accurate
scanning of static geometry and for motion cap-
ture of the character’s skeleton structure, while
the robust and accurate acquisition of dynamic
geometric data for self-occluding flexible moving
surfaces remains an interesting open problem.

Our goal is to develop an accurate acquisition
system that produces dynamic geometric data
suitable for dressing and skinning virtual actors.
In this paper our focus is on the processing of a
video sequence acquired with a single camera. We
use simple computer vision techniques to track a
large number of points on a flexible moving sur-
face such as cloth with the assumption that the
tracked points form a surface grid whose struc-
ture is known and indicated as a painted pattern
(see Figure 1). Thus we have much more infor-
mation about the structure of the object being
tracked than is assumed in most of the recent
computer vision work [14]. As the result we are

able to deduct the structure of the grid marked
on the surface and successfully track it through
long periods of time, as well as fully recover the
correct deformation of that structure even after
self-occlusions occur. The initial user interaction
needed to setup the tracking system is minimal.

Many current shape acquisition techniques pro-
duce several registered point-clouds as their ini-
tial result. Such a representation cannot be
directly used with animation applications and
is therefore transformed into an irregular mesh
which is often simplified or further transformed
into a parametric surface description through fit-
ting or re-meshing. Such processing can become
only more complicated for acquired dynamic ge-
ometry. We therefore see an opportunity in
the direct acquisition of structured parameterized
surface representations.

Figure 1: A frame from the tracking sequence.
Tracked grid of squares is overlayed over the im-
age from the video.

2 Related work

Motion capture data is widely used in computer
graphics for animating articulated figures [15].
Motion capture techniques have also been ex-
tended to drive facial animation by many com-
puter graphics practitioners in the past ten years
[18][7][5][4]. The setups used vary from video
tracking useful for the casual user to special
marker-based facial motion capture products di-
rected towards professional usage. The latter
techniques require an actor to put special mark-
ers on her/his face, and track their positions with
great precision, producing data suitable for direct
integration into facial animation [18][7][9]. The
former approaches belong to the class of passive
user tracking algorithms employing computer vi-
sion techniques such as deformable models [5],

feature tracking [4], and 3D models [11][13]. A
good review of computer vision techniques for
capturing human motion is presented in [14];
many of these approaches have different objec-
tives, using passively acquired video streams for
surveillance and analysis. Being less invasive
these techniques do not usually provide the de-
gree of precision needed for production of high
quality facial and cloth animation. The capture
of quality data for a wide range of flexible motions
requires reliable handling of the effects of folding,
self-occlusion and self-shadowing. We therefore
choose to follow in the steps of [7] and introduce
specially marked pattern on the tracked surface.

We pursue the goal of modeling and synthesiz-
ing dressed humans which is similar to the moti-
vation behind the work of Jojic et al. [10]. They
present an integrated system for reconstructing
body geometry as well as parameters for cloth-
ing; the system extensively uses physical model-
ing of cloth. In our work we have not yet used
such models (with exception of some simple spa-
tial and temporal heuristics applicable to many
types of non-rigid motion). In fact, we believe in
postponing such simulation-based efforts to later
stages in the processing pipeline, and treat our
system as a data acquisition unit whose purpose
is to measure motion as precisely as possible for
as wide range of materials as possible.

Our shape acquisition is based on tracking a
pattern in a video sequence. In the current im-
plementation we track area primitives[2] rather
than curve features [3], because area-primitive
template-match computations usually give more
consistent and predictable results than the cor-
responding operations for curve primitives. Such
consistency is very important when maintaining
the correct grid structure during self-shadowing
and self-occlusion of the cloth. The area prim-
itives have the ability to appear and disappear
during tracking due to occlusion – such function-
ality was inspired by the work of Tao et al. [16].

3 Tracking grid pattern

In this section we describe our approach to track-
ing a grid pattern on a flexible moving surface
from a video sequence.

3.1 Overview

Our tracking system is designed to acquire the
motion of points on a flexible moving surface such
as cloth. The result of such acquisition is a polyg-
onal mesh representing the moving surface. It is
beneficial to mark this polygonal mesh structure
directly on the tracked surface as a pattern. Such
a correspondence between the real world and the

acquired model helps resolve uncertainties during
tracking. In this paper we have chosen a checker-
board pattern to indicate the connectivity of the
surface mesh, so the black squares can be matched
against a template and thus establish the adja-
cency relations among the mesh vertices.

While the ultimate goal of the tracking system
is a consistent surface representation, we do not
track the entire mesh as a whole. Rather the set
of polygonal faces (quads) of black color is con-
sidered to be a loose collection of individual ob-
jects that are tracked individually while trying to
enforce overall spatial consistency. Such an ap-
proach has several advantages: first of all, indi-
vidual quads can become active or inactive inde-
pendent of each other (each quad carries its own
confidence value and becomes inactive when this
value drops below a certain level). Such flexibility
is very important while tracking cloth dynamics
where self-occlusions are very common. Secondly,
such individual quad treatment simplifies the pro-
cess of template matching – the number of pa-
rameters during any local matching optimization
remains six (corresponding to affine transforma-
tions of the planar square), rather than grow with
the mesh size. Finally, the output of our track-
ing algorithm is a time-dependent set of active
quads with their position and confidence infor-
mation. Such information can be easily combined
with other similar sets of data coming from other
cameras, possibly using a physical model of cloth
or other underlying material.

3.2 Notation

In this paper we restrict ourselves to working in
image coordinates, thus all the positions are rep-
resented as pairs of real numbers. The current
image in a frame will be denoted as I(x, y), or
I(p) where p = (x, y) is the position in the image
plane. We also indicate the time dependence of
data variables with the integer parameter t (index
of the frame).

We assume that our squares are small and will
not account for perspective distortion or non-rigid
flexing of the cloth. Thus a distorted square
will be represented by an affine transformation
of a planar unit square that is a parallelogram
ω = (p0, p1, p2, p3), with corners pk ∈ R2 and
a constraint: p0 + p2 = p1 + p3. We will use a
term quad instead of lengthy parallelogram to de-
scribe an affinely distorted square. The system
will track a structured grid of quads, however
some quads may become inactive (not tracked)
for periods of time due to occlusion. We call
the quads that are being currently tracked active
quads.

3.3 Overall structure

The following pseudo-code represents the overall
structure of the tracking algorithm:

init:
user inputs some active quads
track:
attempt to extend active region
for every frame {
for each active quad w {
predict w’s corners in time
improve w’s match with local search

}
check grid’s spatial consistency
attempt to extend active region

}

3.4 Corner/saddle detector

The corners of the tracked
squares are saddle points of im-
age intensity. This can be used
in a pointwise corner detector
that computes the determinant
of the Hessian at every pixel of

Gaussian filtered image to determine hyperbolic
points. [6] The criteria for a saddle point is:
Det(I?Gσ) < −ε, where Det(F) := FxxFyy−F 2

xy.
All the pixels detected as saddle points (shown

is red in the image on the left) are used as candi-
dates for placing corners of tracked quads. There-
fore, it is important to have a few good candidates
for every tracked corner (at least one saddle point
should be detected at each corner so that the ad-
jacent quads can be reconstructed).

3.5 Black quad detector

We use template matching to obtain the measure
of how well a quad approximates a distorted black
square surrounded by white lapels.

p
0

p
1

p
2

p
3

The distorted black
quad detector is a func-
tion that for a given
quad ω calculates its
confidence level c(ω).
We extend a given
quad into a cross-
like figure as follows:

κ(ω) := ∪3
k=0Ek(ω) ∪ ω, where Ek(ω) is a

parallelogram defined by the corner points
pk, pk+1, (1 + α)pk+1 − αpk+2, (1 + α)pk − αpk−1

with width parameter α. We use α = 0.25.
The template function µ : κ(ω) → {−1, 1} is

defined as

µω(p) :=
{
−1, if p ∈ ω

1, otherwise.

Finally, we define the confidence level as an L0

norm correlation between the template function
and the difference between the image and average
image intensity within the template region:

c(ω) :=
1

|κ(ω)|
∑

p∈κ(ω)

sign(I(p)− Īω)µω(p).

Here |κ(ω)| is the number of pixels within the
template region and

Īω :=
1

|κ(ω)|
∑

p∈κ(ω)

I(p)

is the average image intensity within the tem-
plate region. The defined confidence measure will
increase when the relative distribution of image
pixel values within the cross region κ(ω) is close
to the template - most image pixels within the
quad ω fall below the average intensity and the
pixels in the “lapels” are above the average inten-
sity.

Note that the confidence level c(ω) is guaran-
teed to be between -1 and 1 and that the values
close to 1 indicate a good match. We have ex-
perimented with other correlation functions and
found that the L0 correlation defined above gives
the most consistent results.

3.6 Temporal prediction

The active quad point positions in the current
frame are predicted from the previous two frames
using central difference pk(t+1) = 2pk(t)−pk(t−
1), k = 0, . . . , 3 if it was active during both frames
t − 1 and t, otherwise the previous frame quad
positions are copied pk(t + 1) = pk(t).

3.7 Optimizing local match via local
search.

The optimization takes a given quad
and improves its match with the
template by searching for better po-
sitions for three of its corners among
close pixels identified as candidate
saddle points. The fourth corner is

then determined by forming a parallelogram. For
each of three corners the candidate saddle-point
pixels are enumerated in the order of increasing
distance from the initial position, and then the
triples of possible corner positions are considered
in the order determined by the sum of their in-
dices from the previous stage. The search stops
either after a given threshold value chigh for the
match measure c(ω) is achieved or after a given
maximum number of variants is considered. If
after the search the best match is below a pre-
set threshold value clow the parallelogram is dis-
missed as not matched and becomes inactive.

Nc Nmax
i (Nc)

0 0
1 1
2 1
3 2
4 2

Table 1: Spatial grid consistency threshold.

In our experiments, we used the values clow =
0.62 and chigh = 0.75.

3.8 Checking spatial grid consistency

The grid consistency check is needed to ensure
that the tracked configuration corresponds to a
valid grid structure. Every active quad is checked
against its active neighbors whose current confi-
dence level is above chigh: denote the number of
such confident quad-neighbors as Nc. A neigh-
boring quad is consistent with the given quad if
their common vertex position lies within a pre-
set threshold. We are using a distance threshold
equal to 40% of the maximal quad size in the cur-
rent implementation. We then count the number
Ni of inconsistent pairs for a given quad: note
that Ni is always less or equal than Nc. If Ni is
greater or equal than an empirically found value
Nmax

i (Nc) that is given in Table 1 then the cur-
rent quad is deactivated.

3.9 Extending active region via spatial
prediction

Figure 2: Extending the active region during ini-
tialization. Left: original quad. Center: after one
extension step. Right: one optimization step for
all the active quads was followed by another ex-
tension step. The colors of active quads indicate
their confidence levels with yellow corresponding
to high confidence close to 1 and purple corre-
sponding to low confidence close to clow.

The currently inactive parallelogram’s vertex
positions are predicted by linearly extrapolating
the vertex positions of a neighboring active par-
allelogram whose confidence level is above cpred.
After initial extension, the parallelogram param-
eters are optimized for better matching. If the
match or spatial consistency criteria are not sat-
isfied the parallelogram is not activated. We set
cpred between the values chigh of high and clow

of low confidence. In our experiments, we use
cpred = 0.7.

3.10 Activating and deactivating
quads

To summarize the previous discussion in 3.8 and
3.9 there are two places during a tracking cycle
where a quad can become inactive: first, if af-
ter a temporal prediction the local search fails to
improve the confidence level above clow then the
quad becomes inactive; another routine that de-
activates quads is the spatial consistency check.
The spatial prediction, is on the other hand, the
only procedure that can activate quads. In order
to assure that the active region does not grow too
quickly we damp the confidence level of quads just
introduced by spatial extension by a factor of 0.9.
Since only the quads with sufficiently high confi-
dence can predict their neighbors that restricts
the growth of active region only to places were
the match confidence is high.

4 Results

We have tested our algorithm on two video se-
quences acquired with B/W CCD camera at 30
frames/sec. The image resolution was 376 by 240
and the length of both video sequences was 20 sec-
onds. An 8 x 8 checkerboard grid pattern with 32
black squares was painted with black markers on
a white t-shirt. A person wearing the marked t-
shirt performed various motions before the cam-
era. The acquired video was then processed by
our tracking system.

User interaction consisted of roughly delineat-
ing one square in the middle of the pattern (four
mouse clicks). After this initialization, the grid
structure was automatically extended to the en-
tire connected visible region of the pattern (this
can be done either before starting the tracking
procedure in the first frame, or this extension
happens automatically over the first few frames
during tracking). Consequently the grid pat-
tern structure was tracked through the video.
The tracker has successfully restored the grid
structure after self-occlusions occurred. Figure 3
shows several tracked frames from the video se-
quence around occlusion time. There was no de-
terioration of the tracking quality through time.

The current procedure takes about five seconds
per frame for simple frames with no occlusions,
and about ten seconds for complicated frames
with significant occlusions and self-shadowing due
to increased amount of active region maintenance
operations. The system was tested on a PC work-
station with 1.7GHz Xeon processor.

Figure 3: Nine frames from the tracking sequence together with extracted grid of quads. Note that there
are only nine quads properly tracked in second frame of the second row. The structure of the grid is being
correctly recovered in the following frames. See note on colors in the caption to Figure 2

5 Conclusions

We have introduced the concept of direct track-
ing of marked grid patterns on flexible moving
surfaces, and shown that we can track such grids
reliably using simple vision techniques. More fu-
ture work is required with multiple cameras and
full 3D surface descriptions.

In this work we have not addresed the problem
of acquiring fast abrupt surface motion that may
result in tracker’s confusion due to the invariance
of the pattern to some local translations. This is
a fundamental problem and it can be alleviated
by careful design of color-coded patterns.

Acknowledgments We would like to thank Pietro

Perona and Xiaolin Feng for their help with acquiring

the data, and Peter Schröder and David Breen for en-

couragement and support. This work was supported

in part by NSF (DMS-9874082, DMS-9872890, ACI-

9982273), Alias|Wavefront, and Microsoft.

References

[1] D. Baraff and A. Witkin. Large steps in cloth an-
imation. In Proceedings of SIGGRAPH’98, pages
43–54, 1998.

[2] P.-L. Bazin and J.-M Vezien. Tracking geometric
primitives in video streams. In Proceedings 4th
IMVIP, 2000.

[3] Andrew Blake and Michael Isard. Active Con-
tours. Springer, 1998.

[4] I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D.H.
Salesin, J. Seims, R. Szeliski, and K. Toyama.
Performance-driven hand-drawn animation. In
NPAR 2000, Annecy, France, June 2000.

[5] D. DeCarlo and D Metaxas. Deformable model-
based shape and motion analysis for images
using motion residual error. In Proceedings
ICCV’98, pages 113–119, 1998.

[6] R. Deriche and G. Giraudon. A computational
approach for corner and vertex detection. IJCV,
10(2):101–124, 1993.

[7] B. Guenter, C. Grimm, D. Wood, H. Malvar,
and F. Pighin. Making faces. In Proceedings
SIGGRAPH’98, pages 55–66, 1998.

[8] Donald H. House and David E. Breen, editors.
Cloth Modeling and Animation. A K Peters Ltd,
2000.

[9] http://www.metamotion.com/. MetaMotion
face tracker.

[10] N. Jojic, J. Gu, H. Shen, and Huang T.
Computer modeling, analysis, and synthesis of
dressed human. IEEE Trans. on Circuits and
Systems for Video Technology, 2:378–388, 1999.

[11] I. Kakadiaris and D. Metaxas. Vision-based an-
imation of digital humans. In Proceedings of
Computer Animation 98, pages 144 – 152, 1998.

[12] Yuencheng Lee, Demetri Terzopoulos, and Keith
Walters. Realistic modeling for facial animation.
In Proceedings of SIGGRAPH 95, pages 55–62,
1995.

[13] N. Magnenat-Thalmann and D. Thalmann, edi-
tors. Modelling and Motion Capture Techniques
for Virtual Environments, Lecture Notes in Arti-
ficial Intelligence, 1998. International Workshop,
CAPTECH’98.

[14] Thomas B. Moeslund and Erik Granum. A sur-
vey of computer vision-based human motion cap-
ture. Computer Vision and Image Understand-
ing, 81:231–268, 2001.

[15] Gordon Cameron (organizer). Motion capture
and CG character animation (panel). In Pro-
ceedings of SIGGRAPH 1997, 1997.

[16] Hai Tao, Harpeet Sawhney, and Rakesh Ku-
mar. A sampling algorithm for tracking mul-
tiple objects. In Bill Triggs, Andrew Zisser-
man, and Richard Szelinski, editors, Interna-
tional Workshop on Vision Algorithms, pages
53–69. Springer, September 1999.

[17] Pascal Volino and Nadia Magnenat-Thalmann.
Virtual Clothing. Springer Verlag, 2000.

[18] L. Williams. Performance-driven facial anima-
tion. In Proceedings of SIGGRAPH’90, vol-
ume 24, pages 235–242, 1990.

