

DYNAMIC LANDSCAPE GENERATION USING PAGE
MANAGEMENT

Maurice Danaher

School of Computer and Information Science,

Edith Cowan University, Mt Lawley, Western Australia 6050
Email: m.danaher@cowan.edu.au

ABSTRACT

Landscape visualisation is the process of recreating a natural environment and displaying it in an
interactive graphical simulation. Current systems that use large datasets to represent the terrain have a
number of drawbacks including large storage requirements, low level of detail and overcrowding in
multiuser games. In most systems when the landscape is stored to disk the terrain area is quite small or
conversely if the area is large the detail is quite low. Here an approach is described in which the terrain
is procedurally generated as required. The terrain is produced in the form of blocks and displayed using
an innovative page management technique. This approach allows for the generation of a detailed
environment, participation by a very large number of players in multiplayer games and easy download
of the environment generator via the WWW.

Keywords: Web-based systems, games programming

1. INTRODUCTION

Many games and real-time graphics simulations
are set in outdoor landscapes. The process of
continuously rendering the landscape to the screen
in a real-time manner is known as terrain
visualisation. The complexity and detail of the
images that are displayed determine the realism of
the scene.

The work presented in this paper addresses a
number of drawbacks in Internet-based games and
graphics simulation systems. The limitations listed
below are due to the need to store large datasets
representing the terrain to be visualised. These
limitations are: (1) in multiplayer games the
environment quickly becomes overcrowded when
more than a dozen or so players join; (2) these
environments demand a lot of storage space and
they are usually distributed by CD ROM rather
than via the WWW; (3) in order to display
relatively large terrain areas the detail must be
drastically reduced; (4) to maintain a reasonable
frame rate the terrain area and the detail must be
kept within certain limits; (5) user/player
participation is reduced because the environment
cannot be downloaded via the WWW.

Here we are proposing an approach in which the
terrain is procedurally generated as required. This
approach allows for the generation of a detailed
environment, participation by a very large number
of players in multiplayer Internet based games and
easy download of the environment generator via
the WWW.

2. TERRAIN VISUALISATION

Terrain visualisation typically renders a dataset
that represents a terrain. These datasets consist of
height values sampled at regular grid intervals. By
constructing a lattice in three-dimensional space,
and using the values in the datasets to displace the
intersections of the lattice, we create a renderable
mesh of triangles.

The main problem with the use of these simple
meshes is the large number of triangles involved.
Modern hardware is not capable of rendering in
real time the amount of triangles necessary in a
mesh to accurately depict a landscape over a
reasonably large area.

mailto:m.danaher@cowan.edu.au

Many present solutions to this problem involve
rendering only objects that are close to the user’s
position and using a fog effect to hide the missing
detail. Another common solution is to decrease the
resolution at which the terrain is sampled and
hence the resolution of the lattice used for the
rendered triangle mesh. This results in fewer but
larger triangles. The terrain in this case is visible
for a great distance but severely lacking in detail.

Viewed at or near ground level most of the
triangles in these meshes are distant from the user.
After perspective viewing is applied to the image
these distant triangles will only occupy a few
pixels on the screen. Lindstrom et al [Linds96a,
Linds98b] developed techniques for creating
meshes that involved different triangle sizes. These
meshes use smaller triangles near the user’s
viewpoint where detail is important, and larger
triangles at areas distant from the user. By using
different meshes at different viewpoints a user
could explore a terrain richer in detail and larger in
size. These meshes are referred to as continuous
level of detail meshes, abbreviated to CLOD, or
more commonly, LOD meshes.

This method was not without some problems
though. The major problem occurs as the user
approaches large triangles in the distance. These
triangles are spilt into multiple triangles and the
user can see the sudden increase in detail. That is,
details in the terrain would suddenly appear when
a user got close enough. This is known as popping.
Rottger et al [Rottg98] devised a geomorphing
algorithm that alleviated the effects of popping.
This algorithm worked by detecting sharp changes
in the terrain and using more detail to define these
areas when viewed from a distance.

These techniques discussed so far bring us to the
forefront of work in the field to date. The bulk of
the research being currently conducted is focused
on providing higher levels of detail. Though this
has resulted in better quality images, there still
remains the problem of using larger terrains.
During the last five years there has been little
progress in relation to increasing the size of
terrains used in simulations. The increase in terrain
sizes is due mainly to the increase in storage space
provided by storage devices.

Currently terrain size is dependent on the storage
limitations of the computer on which the
simulation runs. Often the dataset for a detailed
landscape of fair size may run into hundreds of
megabytes. For extremely large datasets used in
detailed simulations of entire planets the storage
space is measured in gigabytes. Typically solutions
to storage problems involve extrapolation or
prediction of extra detail not stored in the dataset.

Some novel approaches attempt compression of
the dataset [Savch00]. These approaches have not
proved to be very effective however.

3. PAGE MANAGEMENT APPROACH

Our solution is based on the assumption that the
terrain to be visualised is a terrain of fantasy, one
that does not exist in real life. The solution
involves the creation of a viewing system that
procedurally generates all the graphics that are to
be displayed in real time. The terrain is created
only around the user’s position.

To maintain a terrain around a user’s position we
create the terrain in small blocks. These blocks
join together to form the terrain the user sees. We
will refer to these blocks as terrain pages. We then
use a page management approach to display these
blocks as required. The advantage of this paging
approach is that as the user travels across the
landscape new pages can be created and added.
This is considerably faster than reproducing the
entire scene around the users point of view.

Our work involves developing and implementing
methods for (1) creating the terrain blocks and (2)
performing the page management. The terrain
blocks are created from height field data and level
of detail (LOD) algorithms. The page management
system is based on a spherical page wrapping
approach.

Height field data is used to specify the height of
the landscape at regular intervals. This height field
data is commonly derived from satellite
photographs. The photograph is grey scaled
according to height, and the grey scale picture is
stored as an array. The distance value is
determined by dividing the distance covered by the
photograph by the number of pixels used in the
image. The landscape is generated as a mesh of
triangular polygons based on this height field data.

The goal of a LOD algorithm is to simplify the
landscape mesh in appropriate places so as to
reduce the number of triangles used while
maintaining the quality of the scene as much as
possible. The major task is to select which areas of
a terrain are going to be optimised and how much
optimisation is going to be applied to those parts of
the terrain.

Our LOD algorithm is based on an adaptive quad-
tree refinement algorithm [Wrigh00]. This
recursive algorithm utilises a data structure that
stores a square that is optionally made up of four
other squares which in turn are optionally made up
of four other squares.

Figure 1 shows two images that were generated
with this algorithm. The left image demonstrates
detail reduction and the right image is a level-of-
detail terrain visible in real-time.

We have named our approach to page management
the spherical offset method. This novel approach is
very efficient and produces very good results. We
use the term map when referring to the entire
landscape and submap when referring to that part
of the map that represents the user’s visual
vicinity. The LOD algorithm operates directly on
the submap and the terrain is produced as a
collection of tessellating pages. As the user moves
a distance equivalent to one page the submap is
adjusted around the user’s position. New pages are
created as the user comes within viewing distance
of them, and, pages are removed as the user moves
away from them.

This method is fundamentally different to existing
page management techniques. In existing methods
a user would remain centred in the submap with
the pages changing. Here the user moves across
the submap. For example, a user travelling in a
straight line will move through different pages in
the submap. When a user encounters the edge of
the submap they will reappear on the other side of
the submap. An example of a user moving to the
right is shown in Figure 2. As the user moves from
square 5 to square 6 new pages are loaded into 1, 4
and 7. The user can always see one page ahead. As
the user moves off square 6 he/she moves onto
square 4 which is displayed in front, i.e. the view
has wrapped around to the other side of the
submap. It should be noted that the user does not
experience any discontinuity in viewing as he/she
can at all times see one page ahead.

This method is far more efficient than existing
techniques as far fewer pages are processed when
the submap is updated. In figure 2 when a user
moves one page to the right three new pages
overwrite three old pages. In traditional page
management techniques the same process involves
creating three new pages and moving six existing
pages.

The terrain pages for any particular part of the
landscape are created in an identical manner every
time that area is revisited. This is achieved by
using the same seed values when generating the
mesh for a particular page. It is the efficient page

management and the easy integration with the
other components of a terrain simulation that make
this approach to terrain visualisation highly
desirable.

4. CONCLUSION

Here we have presented a method for producing a
graphical simulation in which the virtual
environment is continuously produced without the
need for a large terrain dataset. At all times the
environment is procedurally generated in
correlation with other users.

This technology allows for graphically intensive
Internet-based games and virtual environments to
be downloaded easily. The approximate download
size is 1-2 Mbytes as opposed to current systems
which can be in the order of many hundreds of
Mbytes. This easy distribution of the virtual
environment encourages user participation.

The constrained size of current environments
limits the number of participants in multiuser
games. Simulations using our methodology can be
very large in size and allow thousands of players to
participate without overcrowding.

5. REFERENCES

[Linds96a] Lindstrom et al., Real Time

Continuous Level of Detail Rendering of
Height Fields, Proceedings of SIGGRAPH,
pp109-118, 1996.

[Linde98b] Lindstrom, P and Turk, G., Fast and

Memory Efficient Polygonal Simplification,
IEEE Visualization, pp 279-286, 1998.

[Rottg98] Rottger et al., Real-Time Generation of

Continuous Levels of Detail for Height
Fields, Proceedings of SIGGRAPH, 1998.

[Savch00] Savchenko, S. 3D Graphics

Programming Games and Beyond.
Indianapolis: Sams Publishing, 2000.

[Wrigh00] Wright T., Continuous LOD Terrain

Meshing Using Quadtrees. Proceedings of
SIGGRAPH, 2000.

Figure 1: Meshes generated by our CLOD algorithm

User at initial position

After movement 1 page right

After moving another page right

Figure 2: Spherical offset page management

	Maurice Danaher
	Email: m.danaher@cowan.edu.au
	1.INTRODUCTION
	2.TERRAIN VISUALISATION
	
	3.PAGE MANAGEMENT APPROACH

	4.CONCLUSION

