

SYMBOLIC CONVERSATION MODELING USED AS ABSTRACT
PART OF THE USER INTERFACE

Norbert Braun

Department of Digital Storytelling

Computer Graphics Center, Rundeturmstraße 6
64283 Darmstadt

Germany
Norbert.Braun@zgdv.de http://www.zgdv.de/distel

ABSTRACT

The art of conversation is a well-known interaction type between humans. Human-computer interfaces that
follow this metaphor struggle with complex problems of speech understanding, speech generation and
intelligent conversational behavior in general. This paper presents an approach that gives a simple,
explicit symbolic model of conversation between human and computer to be used by interface designers
as an abstract platform of conversational interaction – without being forced to regard the basic
implementations of speech systems or graphical anthropomorphic avatars or virtual humans and therefore
free from the problems of basic media manipulation.

Keywords: conversation, human-computer interaction, symbolic modeling, artificial intelligence,
computer games.

1. INTRODUCTION

Conversations are a well-known instrument of
interaction between humans. Not surprisingly,
conversational interaction between human and
computer is a well-known metaphor of interaction in
the computer science area – not only within research,
but also within the imagination of ordinary people
where movies have placed some sort of common
agreement concerning how the conversation between
human and computer should happen. Movies such as
‘2001: A Space Odyssey’ (done in 1968 by Stanley
Kubricks) with the (intelligent and dangerous) HAL
computer or ‘Star Trek’ (produced by Gene
Rodenberry, 1966-69) with similar advanced
computers that talk to the crew - or that can be
addressed by speech - affect the view of an advanced
communication with the computer shared by
generations. Unfortunately, these movies raise
expectations of conversational interaction with a
computer: computers have to understand natural
language, they should be able to generate natural
language, they should be friendly and educated with
good manners, and they should be omniscient or at
least very well oriented within their particular
domain.

With these demands in the back of the
people’s minds, it is not surprising that researchers
of the artificial intelligence (AI) domain who work
with speech generation, speech understanding and
domain knowledge modeling were the first people to
generate conversational interaction approaches.
Since computer graphics (CG) are becoming more
advanced with virtual reality (VR) and 3D –
modeling, resulting in human models that are nearly
impossible to distinguish from real human (consider,
for example, movies like ‘Final Fantasy’), a primary
demand on so-called virtual humans (or synthetic
actors) is not only to look like real humans but to be
able to communicate like real humans. Therefore,
conversational interaction is also a research area
within computer graphics. At least, many in the filed
of psychology are becoming aware of the new
possibilities created by AI and CG and are trying to
transmit their knowledge about human-to-human
interaction to the models of computer science. The
psychological insights into human-to-human
communication, however, have a symbolic
characteristic. Researchers try to enhance their
specific models of the AI or CG area with this data,
but they fail in most cases. The reason for this failure
is easy to understand: when applying symbolic data

to low-level models of CG or AI, the data gets
somewhat implicit – changes of the psychological
models are very difficult to handle. To be both handy
and applicable, the symbolic representations of
conversational behavior should be explicit, not
hidden within some AI or CG model.

Another problem of conversational user

interfaces - and a fundamental problem of new
interaction metaphors in general - is not the idea of
the metaphor itself or the programming of its basic
approach, but the ease of use of the metaphor when it
swashes from the research area into industrial
applications. Most research products are designed to
be used by computer science experts who are, in
addition, experts in the specific field of the
metaphor. This is particularly true for the
conversational user interface (CUI) metaphor.
Interface designers have nice tools to style an
effective WIMP user interface (WIMP – Windows,
Icons, Menus, Pointing), but they have to do basic
programming to make use of speech generation &
understanding, control of virtual humans on the

abstraction level of polygons or, if highly
advantaged, on a task level (like wave hands or
shake head). The level they should work on is
something like: “Tell XYZ to the user.” The virtual
human should know his general conversational
behavior and how to tell XYZ in the given context of
the conversation.

The approach shown in this paper is an
explicit symbolic model of conversation as a part of
the user interface (UI). The approach can be used in
advance as a conversation engine (CE): the
application programmer or user interface designer
can simply tell the CE which contents to present –
the CE will manage the conversational
characteristics of the human-computer interaction in
real time. Of course, this demands some higher
intelligence of the input and output modules of the
user interface. In this paper, the CE is placed as a
separate module in the context of a CUI that consists
of virtual human engines, combined with speech
generation applications, as well as user interpreters
combined with speech understanding modules.

Figure 1: This shows a prototype implementation of the MAP user interface agent. Speech understanding and
speech generation - the language is German, but can be effortlessly replaced with English - are used in
combination with a synthetic actor. The components are driven by the conversation engine.

The following paragraphs show applications that use
the conversational metaphor, discuss the approach
shown within this paper, describe its implementation,
show how the CE is working together with input and
output modules of the UI (giving an architectural
overview) and give a conclusion with some words on
future work in this area.

2. APPLICATIONS AND RELATED WORK

Computer graphics research results in systems like
Crawford’s Erasmatazz [Craw00] that implement
conversation on the basis of actor behavior.
Unfortunately, the system is not handy for authoring
conversations. Cassell’s REA [Casse99] is an

approach on the basis of discourse modeling. Cassell
is using rule-based generation within REA for
numerous conversational aspects of agent
communication with a strong relationship to the
possibilities and goals of the agents. Therefore the
conversations are story-related, but the behavior is
preprocessed - there is no real time generation.

A specialized conversational approach is
shown by the DIVA II project [Braun00]. There, the
conversation takes place within a video presentation
as the conversational limitation factor of the system.
The approach is based on audio and video
annotations via hyperlinks – so-called video
hyperlinks and audio hyperlinks [Braun99]. The
application shows that the conversational approach
can be handled completely without speech input.
Within the DIVA II project, the conversation is
modeled implicitly within the video and audio data
annotations.

Conversations between several synthetic
actors (some virtual, some physical) and a user is
shown with ZGDV [Spierl99] inquiry kiosk / trade
show kiosk. The conversation is not limited to
speech only; several modalities with unorthodox
input devices (i.e., a physical book, among others)
are used. The conversation is modeled implicitly in
3D VRML (Virtual Reality Modeling Language)
data; therefore, any changes can be very expensive.

In industry/commerce, there are

applications like EMBASSI (Multimodal Assistance
for Infotainment and Service Infrastructures) which
use an extended speech-recognition/generation
controller (so-called dialogue engine or ‘DE’ based
on AI research) [Ludwig01] as the basis of
conversational interaction [Alexa00]. Within
EMBASSI, the conversational behavior of
actors/virtual humans is implicitly modeled as a part
of the DE.

The project MAP [Gerf00] (a basic
platform for agent technology as the approach to the
multi-media workplace of the future) is a
combination of research and industrial development.
It implements the conversation engine described in
this paper as a part of its user interface agent (UIA),
like all other components shown in this paper - see
figure 1. The conversation module within the UIA
models conversation primarily on an abstract
symbolic level, completely independent of the virtual
actors’ possibilities and goals. This allows the
separation of the authoring of stories, the separation
of the goals and possibilities of agents, and the
adjustment of the system’s complexity to a handy
grade.

3. ABSTRACT CONVERSATION MODEL

Conversations depend on diverse factors. These
factors are directly deduced from the behavior within
human-to-human communication. To deduce these
factors, we have analyzed numerous videos, pictures,
and books about the psychological and social aspects
of conversation. For example lists of intuitions of
conversation participants are derivate from video,
analyzed for their visual effects, transferred by
designers to a first set of behaviors; these to be the
basics of the animation of conversation behaviour.
We even analyzed books like [Molcho01] to get a
description of the non-speech behaviors of humans.
The factors are listed (but not restricted) in the
following points:

- social and emotional aspects: like ranking,

relationship.
- story and immersion: sequences to be told or

question-answering, disturbance possibility of
interactive movies related to the case of a virtual
assistant.

- the actual focus of the conversation participants
(CP): does the CP look at the virtual actor or is
he looking towards the front windshield while
driving the car?

- content-related aspects: is the actual content
within a conversation discourse a question, an
answer or some simple statement; does it have
some relation to other content in the past or the
future of the conversation?

- navigational aspects: opening or closing of a
conversational discourse, turn taking, getting
attention.

It is obvious that the factors are very abstract and
symbolic; it seems that the content knowledge is
minimized while the knowledge of conversational
discourses and user behavior is maximized.

A notable aspect is that the conversational

aspects are described without regard to the modality
or the medial expression of the content to be
presented. The media problematic appears on a
lower application level – at the various presentation
modules for media like video and audio-visual
presentation of synthetic actors. Of course, the
problematic has to be solved within these levels –
and it is solved within the MAP project; see figure 2.
By hiding the media problematic, the CE is very easy
to use, even for non-experts in the conversation
domain.

Conversation modeling is somewhat

orthogonal to content generation – within the CE,
how to present the content is defined; the content
generators and managers define what kind of content
is to be presented. Therefore, there is a strong

separation between content generation and
communication process. Especially the CE is not
modeling the KQML [Labr94] extensible set of
performatives. (These peerformatives define the
permissible operations that agents may attempt on
each other’s knowledge and goal stores. The
performatives comprise a substrate on which to
develop higher-level models of inter-agent
interaction, such as contract nets and negotiation.)

The CE is modeling a special part of the behavioral
‘ thinking’ of the computer.

Conversation modeling is divided in the

description of a specific conversational situation and
the transfer of one conversational situation to another
desirable conversational situation. Both parts
together describe a conversational discourse.

Figure 2: The picture shows how amodal input of the conversation engine (upper right) is used to produce
conversational behavior on a speech-based (upper left, scenario within a car), a synthetic actor-based (lower left,
scenario at home) and a GUI-based (lower right, scenario within a train) output engine. The scenarios are part of
the MAP project.

The conversational situations are described with the
following aspects (these aspects could be named
‘conversational acts’ , but there is no close relation to
so-called speech acts) – every aspect is shown with
its name, attributes, and a short description.

- Conversation participant

name
type ∈ { active, passive}
turn ∈ { true, false}

This fact is describing a participant of the
conversation. This could be the user or an
automated actor independent of its medial
characteristics.

- Conversation element:
behavior ∈ { Open, Talk, Listen, PutTurn,
GetTurn, StartSequence, EndSequence,
GetAttention, ChangeDiscourse, Close} ,
sender,
recipient list,
content,
discourse,
timeslot,
intensity ∈ { force, neutral, smooth}

This simply means: Someone (the sender) is
doing something (the behavior and the content)
to someone else (the recipient-list) at a specific
point of time within a specific conversational
discourse.

- Content:
name,
type ∈ { Question, Answer, Term} ,
reference,
status ∈ { todo, do, stopped, done} ,
discourse,
priority ∈ { low, medium, high} ,
importance∈ { low, medium, high}

The content is of the form answer (related to
some former conversation element), question
(related to some future conversation element) or
term (related to the moment).

- Answer extends Content:
repeat allowed ∈ { true, false}

- Question extends Content:
repeats

Repeats show the number of times the question
was given to a user.

- Story
name
type ∈ { sequence, asynchronous}
content-list,
status

This is a set of content elements related to each
other in some way. For the conversation the type
of relation or what the content describes is not
important – for the conversation, only the
linearity or non-linearity of the presentation is
relevant as non-linear content presentation is
done by request (user asks for the information)
and linear presentation is done automatically
(content is shown to the user as long as the user
does not interrupt).

- ThinkAbout:
reference

This means that a specific content (the
reference) causes a problem that can not be
solved by the conversation engine, e.g. there is a

user question without an actual answer. Then
some story module is informed via that fact.

- Time:
timeslot list,
actual time,
new time

As the conversation engine is driven by beats,
every beat has its own symbolic point in time
(actual time). Behavior created within a run is
timed to a new time point (new time)

- Discourse

name,
timeslot

Of course several discourses can be held by one
conversation engine. Every discourse is
described by its name and start time.

Complex conversational scenarios can be
constructed with those relatively simple facts –
scenarios for every kind of synthetic actor, even user
behavior can be described with those facts (and
simulated with the conversation engine). To
transform one scenario into another – e.g. to
transform a scenario where the user is asking a
question, to a scenario where the system demands the
turn, to a scenario where the user is giving the turn,
to a scenario where the system is answering the
question – a large set of rules is developed. There
are rules for many conversational situations like the
linear/nonlinear telling of content, question/answer
situations, opening/closing a conversational
discourse, jumping from one discourse to another,
turn-taking-behavior.

Rules can be applied to the conversation

engine very easily as rules are defined for special
situations – so far, the conversation system is easy to
expand by simply adding specified rules. One of the
rules is shown (simplified) in the following:

(Rule Statement_with_reference

(ConversationParticipant: It is my turn and I have the
focus)

?fact_content_statement<-
(content: There is a content with a reference to a
content given by the user)

(ConversationElement: The user sent the content to
me)

(ConversationElement: I’d opened the discourse)

=>

(assert (ConversationElement: Present the content))

(modify ?fact_content_statement: Status of content is
do)

)

This way, the system is simple to understand for a
conversation designer: The left side of a rule
matches a conversational situation (a conversational
aspect is named; its properties to be matched against
the conversational situation are listed); the right side
of a rule gives the modifications of the
conversational situation; that means the rule is a
function with the conversational situation as
argument, with its result as another conversational
situation. In order to keep this easy way of
understanding, the system is designed in the style of
a traditional knowledge base system: the
conversational situation is stored as a set of facts; the
conversation processing is stored in associated rules.

4. ARCHITECTURE & IMPLEMENTATION

The system discussed in this paper is embedded
within a storytelling system (with the MAP UIA as a
special instance of the system) that balances content-
related (also called story-related) and conversational
aspects:

- authoring control of the story and conversational

situation
- automated storytelling
- automated conversation modeling
- processing of user input
- actor control
- media management

The AI of the system is modularly distributed onto
three layers – the story (or content-giving
application) as a strategic level, the conversation as
the operational level, and the user input interpreters
and actor engines at the executing level.

Within this environment (as shown in figure 3), the
conversation is a function of application-specific
content and user input. Content and user input are
processed by separate units and are given
continuously as abstract input to the conversation
engine. The conversation itself controls the actor
response, as well as the media presentation of the
system. The conversational output is mapped on the
actors’ possibilities as a final step: thus far, the
conversation modeling is nearly independent of the
actors’ possibilities. The actors process their
conversational input within an actor engine. This
simplifies every conversation layer and makes it
handy for a conversation designer - a concept
suggested by the game industry, see [Wood01].

As previously indicated, we specialize our

point of view of conversations to the content-
independent behavior of the conversation
participants. As the independent behavior can be
seen as special knowledge about conversational
situations, we organize a conversation as a

knowledge transformation problem.

Conversation
Engine

Input

Actor

Output

User
Input(Interpreter)

User

Application

Figure 3: Architecture of the User Interface Agent
(based on the project MAP)

This fits well into the actual trend of rule-

based finite state machines within game design, see
[Wood01]. With a couple of predefined rules,
relatively complex behavior can be generated –
without path planning problems and with simple
debugging.

The conversational knowledge is

represented by rules; the conversational situation
between user and system is represented by so-called
facts. (A fact is a symbolic description of a part of
the knowledge base; the fact properties are stored in
so-called slots. A rule is a kind of if-then construct,
the if-part matches to the knowledge base, the then-
part represents a knowledge base modification). As
knowledge base, we use the Jess (Java Expert
System Shell) Engine [Fried01].

Of course, the application programmer is

not interested in details of the conversation
generation. Therefore, the general task of the
application programmer, using the CE, is to give the
content to be presented by the CE. The CE has an
API (application program interface) with a (simple-
to-use) functionality to generate a discourse with its
conversation participants, as well as to annotate the
content with (simple) meta-data, such as affiliation to
a story or characteristic of question or answer. The
following XML syntax-styled documentation shows
how the API is working (strings are marked with a $-
sign):

<Discourse name="$DiscoursName$">

<conversationparticipant>$Name$
</Diskurs>

<Story name="$NameStory$" typ="$TypStory$">

<content> $content$ </content>

</Story>

<Content name="$content$" typ="$TypContent$"
ref="$refContent$" discourse="$DiscoursName$"
priority="$ThePriority$"
importance="$TheImportance$">

<what> $here the content...$ </what>
</Content>

Of course there is an extension of the Content-Tags
to define specialized content like question (identical
to content) and answer:

<Question name="$content$" typ="$TypContent$"
ref="$refContent$" discourse="$DiscoursName$"
priority="$ThePriority$"
importance="$TheImportance$">

<what> $here the content...$ </what>
</Question>

<Answer name="$content$" typ="$TypContent$"
ref="$refContent$" discourse="$DiscoursName$"
priority="$ThePriority$"
importance="$TheImportance$" repeat-
allowed=”$True/False$”>

<what> $here the content...$ </what>
</Answer>

With that API, the application programmer can shift
his content to the CE without regard for how to
present the content in a conversational way, see
figure 4.

Conversation
Engine

Input

Actor

Output

User Input
Interpreter

User

Dialogue

Context Travel-agent User Mrs. K. MAP

UI Agent

Agents

Outside

I am searching for a flight Frankfurt
to Berlin, arrival tomorrow 14.00

o’clock. Okay?

Opening

Discourse

Opening

Information

Question

Talk Request

Answer

Question

Figure 4: (simplified) Example of conversational aspects handled by the conversation engine within the MAP
project. The agents of the MAP system are using the UI Agent as their general conversational UI

The MAP User Interface Agent was tested in regard
to its effectiveness, efficiency and acceptance to the
user by Siemens Usability Lab [Sand01] with very
optimistic results. The analysis showed that the users
accepted the MAP UIA as a personal assistant. Users
find it helpful to get access to the MAP System via
multi modal conversation and used multi modal
inputs to communicate their objectives in a
subjective and objective efficient way. In general

that test shows that the conversation metaphor can be
profitable used for delegation and assistance.

5. CONCLUSION

Within the paper, a basic approach for the general
use of the conversational metaphor is shown. The
approach is based on the processing of symbolic
conversational data to allow easy access and

modification of conversation rules within the
conversation model by the conversation designer.
This is a very important fact: as user-machine
conversations are in an early stage of research by
computer science, but in a very late stage in the so-
called humanities, the likelihood of changes in
several conversational aspects is very high. The
conversation model stands and falls with its ease of
maintenance.

The approach is implemented within a
storytelling architecture. This shows that the
conversation engine offers an API to the application
programmer for easy integration into applications as
well as an interface to user input interpreters and
general output presenters like virtual human engines.
In advance, it shows that it generally works as the
amodal part of the multimodal system.

This approach is used in commercial

projects like the MAP project (industrial/commercial
application). Future work will be done by modeling
specialized conversational situations, therefore by
increasing the number of the conversational
situations that can be handled by the conversation
engine.

Figure 5: Vision of Conversational Human-
Computer Interaction

Finally, one thing is obvious – the

development of conversation engines that can be
easily accessed by content providers is especially
useful for those parts of the UI that can not be
handled by ‘ traditional’ window-styled UIs – these
are the delegation and assistance tasks that are
difficult to define via a window, but easy to define in
a more general way via conversation. This leads to
the claim of highly user adaptable, highly flexible
content-providing applications that work in close
relation to the conversation modeling; this is to give
the user the intelligent, eloquent conversation
participant that he knows from TV and the movies,
see figure 5.

REFERENCES

[Alexa00] Alexa, M., Müller, W., Spierling, U., and T.

Rieger: Face-to-Face With your Assistant.
Realization Issues of Animated User Interface
Agents for Home Appliances, Conference on
Intelligent Interactive Assistance & Mobile
Multimedia Computing, Germany, 2000

[Braun00] Braun, N.: Interaction Approach for Digital
Video Based Storytelling, International
Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision,
Czech Republic, 2001

[Braun99] Braun, N., and R. Dörner: Temporal
Hypermedia for Multimedia Applications in the
World Wide Web, 3rd International Conference
on Computational Intelligence and Multimedia
Applications, ICCIMA ´99, New Delhi, India,
1999

[Cassel99] Cassell, J., Bickmore, T., Billinghurst, M.,
Campbell, L., Chang, K., Vilhjalmsson, H., and H.
Yan: Embodiment in Conversational Interfaces;
REA. In Proceedings of the CHI ’99, pages 520-
527, ACM Press, Adison – Wesley, USA, 1999.

[Craw00] C. Crawford: Understanding Interactivity,
http://www.erasmatazz.com/, 2000.

[Fried01] Friedman-Hill, E. J.: Jess, The Java Expert
System Shell, SAND98-8206 (revised), Sandia
National Laboratories, Livermore, CA, USA,
2001.

[Gerf00] Gerfelder, N.: MAP: Multimedia Workspace of
the Future, Computer Graphic topics, 3/2000, pp
10-11, Germany, 2000.

[Labr94] Labrou, Y., and T. Finin: A semantics
approach for KQML -- a general purpose
communication language for software agents,
Proceedings of theThird International
Conference on Information and Knowledge
Management (CIKM’94), November 1994

[Ludwig01] Bücher, K., Forkl, Y., Görz, G., Klarner, M.
and B. Ludwig: Discourse and Application
Modeling for Dialogue Systems, in: G. Görz, V.
Haarslev, C. Lutz, R. Möller (eds.): ADL-2001.
Proceedings of the KI-2001 Workshop on
Applications of Description Logics, Vienna,
Aachen 2001.

[Mateas97] Mateas, M.: An Oz-centric review of
interactive drama and believable agents, Technical
Report, School of Computer Science, Carnegie
Melon University, 1997.

[Molcho01] Molcho, Samy: Körpersprache im Beruf,
ISBN 3442163269, Goldmann, München 2001.

[Sand01] Sandweg, N. and D. Hermann: Analyse der
technischen Konzeption: Usability
Anforderungen, ZE 5.3.1, MAP Konsortium,
2001.

[Spierl99] Behr, J. and U. Spierling: Conversational
Integration of Multimedia and Multimodal
Interaction, Essay Computer Graphik Topics,
Darmstadt, Nr. 4/1999.

[Wood01] Woodcock, S.: Game AI: The State of the
Industry, Game Developer Magazine, USA,
August 2001.

