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ABSTRACT

Multipass algorithms implement different rendering methods and combine their results. If
carefully implemented, these algorithms can keep the advantages of individual methods.
Algorithms for multipass global illumination may handle disjoint parts of light transport
paths in different passes, and include all light transport only once in the final solution. On
the other hand, they may also generate the same paths, thus their contribution should be
weighted in order to get an unbiased estimation. In this paper a weighted combination of
global ray bundle iteration and path tracing is presented. Heuristics for the weights are
derived to get the benefits from both approaches. Results show significant improvements
compared to both ray bundle iteration and path tracing.
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1 INTRODUCTION

Global illumination algorithms determine the ra-
diance distribution arriving at the eye. They
build up light paths connecting light sources to
the eye through one or more reflections and add
their contribution. The radiance arriving at the
camera through a pixel is determined by:

L(z1,wp) = L (21, wp)+ 1)

/l(xl,wl,...,wn,...)dwl cdwy ...

where l(z1,w1...,wn,...) is the contribution
of a single light path defined by directions
(wi,--.,wn,-..). Considering the exploration of

the space of paths, global illumination algorithms
can follow two strategies. One approach is the
depth-first strategy, which usually results in some
kind of random walk algorithms. This can also
be classified further into gathering or shooting,
depending on if the walk is originated from the
eye (path tracing) or from the light sources (light
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Figure 1: Light path arriving at the camera

tracing). Another approach is the breadth-first
strategy, where in a single step all paths are
advanced simultaneously. These techniques are
based on the iteration solutions of the rendering
equation.

Within this context, different path building



strategies have been published, and each of them
is good for certain path types. It can hardly be
expected that a completely different path con-
struction algorithm will appear, and overcome all
other methods. Thus, instead of developing a new
algorithm, it is worth mixing existing algorithms
of different strengths and weaknesses together in
order to combine their merits. One must be care-
ful when performing this combination. As Co-
hen and Wallace stated: “When combining algo-
rithms in two-pass or multipass approaches, care
must be taken to avoid counting the same paths
more than once” [Cohen93]. There are three pos-
sible approaches to handle this problem.

The first family of multipass methods works by
completing incomplete light paths. Usually a par-
tial light path exploration is performed in a global
preprocessing step, which is completed by a fi-
nal gather. Such algorithm was presented by
Wallace and Cohen [Cohen87], and was gener-
alized in [Sillion89], where a radiosity method
was extended to handle perfect mirrors. This
idea was also applied later in [Shirley90] [Chen91]
[Bouatouch92] [Jensen96]. A common feature of
these approaches is that they use an object space
rendering algorithm, like e.g. radiosity (or pho-
ton map) to calculate the diffuse reflections very
efficiently. They may take a light tracing pass,
which can handle caustics quite well, and then
they usually use a path tracing step to read out
the predetermined partial radiance solutions com-
puted in the previous passes.

Members of the second category of multipass
approaches combine different algorithms that
construct different, but complete light paths
[Granier00]. The strategies handle perfectly dis-
junct parts of the path domain. Therefore, their
combination (which is just an arithmetic addition
in this situation) does not count the same path
more than once.

Approaches of the third type work by combining
strategies, which cover the same complete light
paths. To avoid counting the same path more
than once, the contribution of different strate-
gies should be weighted. This approach was
first suggested by Lafortune [Lafortune93] for bi-
directional path tracing. Later a strict math-
ematical groundwork was presented by Veach
[Veach95], who showed how the weighted combi-
nation of different sampling techniques can pro-
duce a better, but still unbiased result. Based on
these results a weighted multipass framework was
proposed by Suykens and Willems [Suykens99]
and was successfully applied for the combination
of radiosity and bi-directional path tracing. Com-

pared to bi-directional path tracing, this combi-
nation is more difficult since it mixes completely
different strategies.

In this paper we present a new weighted multi-
pass method belonging to the third category. The
combined algorithms are the global ray bundle
tracing and the path tracing. The combination is
performed in a way that the benefits of the passes
are preserved.

2 WEIGHTED MULTIPASS

The radiance, obtained as the solution of the
global illumination problem, can be written as
an integral over all covered paths [Spanier69)],
[Pauly00]:

L= /l(z)dz. (2)
P

where z = (w1, ws .. .) is a light path and P is the
space of path of all length.

Monte-Carlo global illumination algorithms gen-
erate paths with certain probability density p;(z).
For a given path z, denote the primary estima-
tor of the method ¢ by I(z)/p;(2). Then the sec-
ondary estimator is:

where path z;; is sampled using p; and N; is
the number of samples. These estimators com-
pute the same integral. The variance decreases as
p; mimics ! more accurately[Spanier69], [Owen99]
(importance sampling). For some subdomain of
P, p; could be more efficient than pg, or vice
versa. For example when calculating caustics,
light source sampling strategy is more practical.
However, when seeing through a mirror, pixel
sampling followed by BRDF sampling is more
suitable.

Therefore we would like to combine the estima-
tors using weighting functions w;(z) which keeps
the strengths of each estimator:

B n i N; ‘ l(z;,J)
(L)C Z Ni Z wZ(zz’])pi (Z, J) (3)

The combined estimator should be unbiased in
order to get correct results. This requirement is
satisfied if its expected value is equal to the esti-
mated integral.

Denote the total number of samples by N =
Z?:l N;, where the N; values are fixed before



any samples are taken. The “average probability
density” of selecting sample z is then

P =Y 3 pilo)

Thus the integral quadrature using these samples
is

[1= [ 52 s n 1303 M)

p(2) — —~ plzij)
P

n N;
1 - l(zz )
=3 S i) - i)
2N 2 )
where z; ; is the jth sample taken from the ith
distribution, and the weights' are

_ N; - pi(2)
Ykt Vi (2)

In order to have an wunbiased estimation
>, wi(z) = 1 should hold for all z. It means
that when combining different algorithms we have
to calculate the probabilities that a given path is
obtained by each of the methods.

(4)

3 Path Tracing

The path tracing is based on the Neumann series
solution of the rendering equation:

L=>) T'L" (5)
=0

The mathematical basis of this algorithm was
presented by Kayija [Kajiya86] as a generaliza-
tion of distributed ray tracing. It is an image
based algorithm, which recursively samples ran-
dom directions wj,w),...,w), to follow the light
paths backward and the emission of all visited
points are gathered and transferred to the eye.
These walks provide the value of the integrand
at “point” z = (w],w},...,w),,...). Note that a
single walk can be used to estimate the 1-bounce,
the 2-bounce, etc. n-bounce transfer simultane-
ously. The expansion results in an infinite Neu-
mann series, which creates the problem of cal-
culating an infinite dimensional integral. Practi-
cal implementations usually truncate the infinite
Neumann series, which introduces some bias, or

!One can recognize that Veach called these weights
w;(z) balanced heuristics in [Veach95]. Nevertheless,
balanced heuristics were introduced during the min-
imization of the variance of estimator (3), while we
used another approach.

Figure 2: Path tracing

stop the walks randomly, which reduces the sam-
ples of higher order inter-reflections. This method
called Russian roulette [Arvo90] gives a still un-
biased estimation. It is straightforward that this
random decision increases the variance of the es-
timator.

The strength of path tracing is that, since it gen-
erates directions according to a surface BRDF, it
treats some specular or glossy (L[D|G|S]*[G|S|E
paths) effects quite easily. The weakness of the
algorithm is that, in spite of many advancements,
building a single path is computationally expen-
sive.

4 Global Ray Bundle Iteration

As proposed in [Szirmay99], [Neumann95]
stochastic iteration using ray bundles can handle
non-diffuse global illumination as well. Iteration
algorithms are based on the fact that the solution
of the rendering equation is the fixed point of the
following iteration scheme:

Liyy = L° +TL;. (6)

The stochastic iteration is originated from equa-
tion (6), where the determininistic operator T is
replaced by a random operator 7 *, which behaves
as the original one in the average case.
Liyy =L+ T*L;, E[T*L)=TL.

In this stochastic iteration scheme, the radiance
function and its functionals such as the image do
not converge, but fluctuate around the real solu-
tion. However, the average of the values in sub-
sequent steps will really converge to the required
solution.

In ray bundle iteration the randomization hap-
pens by choosing a random direction using a uni-
form distribution, and the radiance of all patches



is transferred into this direction, then the trans-
ferred radiance is reflected towards the eye and
to the next random direction. Note that the al-
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Figure 3: A path of ray bundles

gorithm requires just one variable for each patch
i, which stores the incoming irradiance L[i]. The
radiance transfer is performed by a transillumina-
tion buffer or by a hardware supported Z-buffer
algorithm [Szirmay98].

The strength of ray bundle iteration is that the
algorithm exploits coherence, therefore it is very
fast. Combined with Gouraud or Phong shading
the resulting pictures are not noisy. The weak-
ness of the algorithm is that by sampling global
directions uniformly over the bounding sphere, it
cannot take into account locally important direc-
tions. For example, it is very unlikely to sample
near ideal mirror reflection directions.

5 Calculating probabilities

According to equation (4), when determining the
weight of a contribution of strategy %, we should
be able to determine all p;(2) probabilities with
which the sample z would be generated if strat-
egy j was applied. It is relatively easy if the path
building strategies are similar (e.g. bi-directional
path tracing), but it is difficult when the strate-
gies are very different [Suykens99] as happens in
our case.

Focusing on the context of this paper, note that
in equation (4) Nj is the number of pixel sam-
ples in path tracing, and IV, is the iteration num-
ber of the ray bundle iteration. Consider path
z = (w1,wa,...). Note that it is a path of infinite
length. The first question that has to be answered
is what the probability of sampling this path by
the two algorithm.

Two problems emerge when calculating inte-
gral (2) by Monte-Carlo methods, which result

in estimations of the following form

The first problem is that the integrand [ is an
infinite dimensional function. To evaluate this
infinite dimensional function we sometimes trun-
cate the variables of the function at a given depth
n and ignore the steps after n. Thus instead of
lwi,way...wp...) we use l(wy,ws,...wy). An-
other strategy is that we terminate the walk at
a random depth and compensate for the missing
steps. This is achieved in the context of Russian
roulette, which at step i decides either to finish
the walk with probability 1 — s; and the contri-
bution of the tail is considered to be zero, or to
continue the walk and the contribution of the tail
is multiplied by 1/s;.

Note that this means that when the Neumann se-
ries is truncated, then the probability of sampling
all variables of the integrand is zero. Since multi-
ple importance sampling uses this probability to
weight the samples of a particular method, the
truncation results in zero weight, which is obvi-
ously not acceptable. To overcome this problem,
we shall assume that when Russian roulette ter-
minates the walk, it actually generates samples
for all integrand variable vectors where the first
variables correspond to the really computed part
of the walk. The question is then what kind of
probability density can be assumed for the not
sampled variables. Since we do not have any in-
formation, we shall assume that this probability
density is uniform. Note that this approach em-
phasizes samples obtained with Russian roulette
more than they deserve. However, this is still
better than not taking them into account at all.

The second problem with equation (2) is that the
integration domain is of infinite volume. Thus
any pdf function that is defined over this domain
(because it should be non-negative and integrated
to 1) goes to zero. E.g. the pdf of a uniformly
sampled direction is 5=. Over an infinite dimen-
sional domain the pdf (3)" becomes zero. Thus
using p(z) in the Monte-Carlo estimation raises
computational problems. This problem is solved
by transforming the domain of the paths onto the
unit cube. Since a path z = (w1, wa,...wp...) is
defined by a sequence of directions, we discuss
this transformation for a single direction in this
sequence. Of course, the same procedure should
be repeated at all reflection points. Let us thus
consider a single directional integral of the multi-
directional integral on the path space and express
the direction by angles of a spherical coordinate



system:
2 /2
/l(w) du = / / 1(6,) - sin 8 dedo.
Q $=0 6=0

Let us now transform the domain of the angles
onto the unit interval using the following trans-
formation:

¢=2m-u, 6O =arccosv.
The inverse transformation is
u=—_—, v = cosb,
27

thus the directional integral can be written in the
following form as an integral over the unit square:

2w /2 1 1 ]
/ /l(¢,0)-sin0 déds = / /(;—’ﬂv)dudv.
¢=06=0 u=0v=0

Note that we could use other transformations as
well, which would map the space of directions
onto the unit integral. However, this particu-
lar formulation will be very convenient when the
probabilities of paths in ray bundle iteration and
path tracing are computed.

Different algorithms use particular densities p(w)
to obtain random directions according to, for ex-
ample, importance sampling. This means that
our new u, v variables are also sampled from den-
Sity puo(u,v) that should correspond to the prob-
ability density of the directions. Using the pro-
posed transformations also for the densities, we
obtain:

dw
wo (U, 0) = p(w) - =

Puo(u,0) = ple) - -
8¢ 8¢
Ou v

p(w) - sin @ - det =p(w)-2m. (7)

o6 86
du v

5.1 The pdf for ray bundle iteration

In ray-bundle iteration we transfer the energy of
the patches parallel to a uniformly sampled direc-
tion in both ways. [Szirmay99]. Using this strat-
egy, we always continue the walk. According to
equation (7), the direction is sampled uniformly
when u,v parameters have uniform distribution
in the unit square, thus the probability density
used in a single step of ray-bundle iteration is

Puv(u,v) = 1.

Since the directions of the different iteration steps
are independent, the density of a path will be the
product of these 1 values, which means that the
probability density of an arbitrary path is 1.

5.2 The pdf of path tracing pass

When we perform path tracing, importance sam-
ple is performed, thus p(w) is not uniform, but
rather mimics the local BRDF and the cosine of
the angle between the generated direction and the
surface normal. Density py,(u,v) is calculated
from p(w) according to equation (7).

For example, if the surface is diffuse, BRDF sam-
pling using the p(w) = cos@/m density, thus the
transformed probability is:

0
DPuw (U, v) = D57 o =2. cos(arccosv) = 2uv.
T

Since path tracing uses Russian roulette, it does
not compute all reflections with the same proba-
bility as happens theoretically in iteration. Sup-
pose that in the first step we decide whether
or not to continue the path with probability s;.
When the integral is estimated with no sample,
we assume that this corresponds to sampling uni-
formly as it was discussed before in this section.
Thus when terminating after the first step, the
approximated pdf becomes:

p1(u1,v1) = 81 - Puw(u1,v1) + (1 — s1).

Similarly the approximated pdf after the second
step is:

D5 (U1, v1,U2,V2) = S1-DPuy (U1, V1) 52 Pun (U2, v2)+

81 puv(ur,v1) - (1 —s2) + (1 —s1).  (8)
According to equation (4) we must compute p*
both in path tracing and ray bundle iteration.
The difference between them is that ray bundle
iteration follows the light paths from the light
sources, while the path tracing traces light back-
wards from the eye. Both algorithms are parti-
tioned into steps, thus deriving a recursive for-
mula for calculating p* is straightforward.

Since in path tracing the paths are built up from
the eye, the formula of p* is divided into two parts
(p* = ¢ +r), and the recursive form becomes:

g = 1; To = 07
g = Si DPuo(Us, Vi) i1,
ri = (1—8)-qi—1 +7i-1. 9)

where ¢ is the probability of unterminated path,
while 7 is the probability of those paths that were
terminated.

Since ray bundle iteration builds up path from the
light source, the calculation of p* is more straight-
forward:

pi = 81-pu(ur,v) +1—s1,

p; = 8i pu(ui,vi) - pi_y + (1 —si). (10)



Figure 4: Cornell chickens scene images: a. non-weighted path tracing, b. weighted path
tracing, c. combined image, d. non-weighted ray bundle, e. weighted ray bundle, f.
reference image.

6 Implementation and Results

The presented algorithms have been implemented
in C++ in OpenGL environment. The ray bun-
dle iteration used Gouraud shading for the final
image estimation. The transillumination buffer
contained 1000x 1000 pixels. The main task was
the calculation of p* according to equation (9) in
path tracing and using equation (10) when per-
forming bi-directional ray bundle iteration. The
storage requirements for ray bundle iteration are
increased since there is a need for another variable
p* for each patch.

The first test scene is the Cornell Chickens scene
(25K patches), where the floor and the back
wall has dominant specular characteristics. Their
specular albedo is 0.85 and their shininess param-
eter is 50. The diffuse albedo, specular albedo
and the shininess parameter of the chickens are
0.5, 0.5 and 10, respectively. The specular albedo
of the egg is 0.8, its diffuse albedo is 0.1 and its
shininess parameter is 10.

In theory the ray bundle iteration is able to sam-
ple all possible paths, but the probability of sam-

pling a direction near the ideal reflection is quite
low. However, path tracing handles this specu-
lar part of the integration well, but it is poor in
areas of diffuse reflection. In areas like this the
ray bundle iteration is more pleasing to the hu-
man eye, since it lacks the high variance of pixel
intensities.

The non-weighted and weighted images can be
seen in figure 4a, 4b, 4d, 4e. The combination
of them is a simply arithmetic image addition
of the weighted images shown in figure 4c. The
reference image was rendered with bi-directional
path tracing (figure 4f). Note that the specular
regions (floor, back wall) are reproduced much
better, because important path tracing paths get
larger weights for this feature. On the other hand,
the noise of path tracing (diffuse, indirect lit ar-
eas) is also reduced due to weighting. Each wall
is tesselated into 1800 patches, that is in spite of
Gouraud shading, visible in ray bundle images.
However this discretisation error is also improved.

The second example is an architectural scene
modelled in ArchiCAD. The images in figure 5
are snapshots of an architectural walk-through.



Figure 5: Images of an architectural scene.

The scene contains 80K of patches. The render-
ing times were 2 minutes for ray bundle iteration
and 10 minutes for path tracing on a PentiumIII
800Mhz computer.

7 Conclusion and Future Work

This paper proposed a combination of path trac-
ing and global ray bundle iteration in a way that
the result is unbiased. It uses a provably efficient
strategy determining the weights of the different
passes.

The resulted algorithm exploits the advantages of
both underlying algorithms, namely the fast im-
age generation of ray bundle iteration, and the
precise specular artifact calculation of path trac-
ing.

While this combination can add the specular ef-
fects to the ray bundle iteration, the path tracer is
poor to render caustics. Another algorithm such
as light tracing or bi-directional path tracing may
need to add caustics as well.

8 Acknowledgement

This work has been supported by National Scien-
tific Research Fund (OTKA ref. No.: T029135),
the E6tvos Foundation and the IKTA-00101/2000
project. The architectural scenes have been
modelled by ArchiCAD that was donated by
Graphisoft.

REFERENCES

[Arvo90] Arvo, J. and Kirk, D.: Particle Trans-
port and Image Synthesis  Computer
Graphics, (SIGGRAPH ’90 Proceedings),
pp. 63-66, 1990.

[Bouatouch92] Bouatouch, K. and Tellier, P.:
A two-pass physics-based global lighting
model. In Proceedings of Graphics In-
terface’92, pp. 319-328, Toronto, Ontario
1992.

[Chen91] S. E. Chen, H. E. Rushmeier, G.
Miller, D. Turner: A Progressive Multi-
pass method for Global Illumination. Com-
puter Graphics (SIGGRAPH 91 Proceed-
ings), 25(4), pp. 165-174, 1991.

[Cohen87] J. R. Wallace M. F. Cohen, D. P.
Greenberg: A two-pass solution to the ren-
dering equation: A synthesis of ray tracing



and radiosity methods. Computer Graph-
ics, 21(4), pp. 311-320, 1987.

[Cohen93] M. F. Cohen and J. R. Wallace: Ra-
diosity and Realistic Image Synthesis. San
Diego, CA. Academic Press Professional,
1993.

[Granier00] Xavier Granier, George Drettakis
and Bruce Walter: Fast Global Illumi-
nation Including Specular Effects. Euro-
graphics Rendering Workshop’00, 2000.

[Jensen96] H. W. Jensen: Global Illumination
Using Photon Maps. in Eurographics Ren-
dering Workshop 1996 (X. Pueyo and P.
Schroder, eds), (New Your City, NY), pp.
21-30, Eurographics, Springer Wien, ISBN
3-211-82883-4. 1996.

[Kajiya86] J. T. Kajiya: The Rendering Equa-
tion. Computer Graphics (SIGGRAPH’ 86
Proceedings), pages 143-150, 1986.

[Lafortune93] Eric P. Lafortune, Yves D.
Willems: Bi-directional Path-Tracing. Pro-
ceedings of Compugraphics 93, pp. 145-
153, Alvor, Portugal 1993.

[Neumann95] L. Neumann: Monte Carlo Radios-
ity. Computing, 55:23-42, 1995.

[Owen99] A. Owen and Y. Zhou: Safe and ef-
fective importance sampling. Stanford Uni-
versity, Goldman-Sachs, 1999.

[Pauly00] Pauly, M. and Kollig, T. And Keller,
A.: Metropolis Light Transport for Partic-
ipating Media. Rendering Techniques 2000
(Proc. 11th Eurographics Workshop on
Rendering), 2000.

[Shirley90] P. Shirley: A Ray Tracing Method
for NMlumination Calculation in Diffuse-
Specular scenes. Graphics Interface’90, pp.
205-212, 1990.

[Sillion89] F. Sillion and C. Puech: A gen-
eral two-pass method integrating specular
and diffuse reflection. Computer Graphics,
23(3), pp. 335-344, 1989.

[Spanier69] J. Spanier and E. Gelbard: Monte
Carlo Principles and Neutron Transport
Problems. Addison-Wesley, 1969.

[Suykens99] Frank Suykens, Yves D. Willems:
Weighted Multipass Methods for Global
Tllumination. Computer Graphics Forum
(Eurographics’99), 1999.

[Szirmay98] Lészlé Szirmay-Kalos, Werner Pur-
gathofer: Global Ray-bundle Tracing with
Hardware Acceleration. Rendering Work-
shop 98, Vienna, 1998.

[Szirmay99] Lészl6 Szirmay-Kalos: Stochastic It-
eration for non-diffuse Global Ilumination.
Computer Graphics Forum (Eurograph-
ics’99) 18(3):233-244, 1999.

[Veach95] Eric Veach, L. J. Guibas: Optimally
Combining Sampling Techniques for Mon-
ter Carlo Rendering, Computer Graphics
(SIGGRAPH ’95 Proceedings), pp. 419-
428, 1995.

[Veach97] Eric Veach: Robust Monte Carlo
Methods for Light Transport Simulation.
PhD thesis, Stanford University, 1997.



