
REDUNDANCY IN 3D POLYGON MODELS AND ITS
APPLICATION TO DIGITAL SIGNATURE

S. Ichikawa, H. Chiyama, and K. Akabane1

Department of Knowledge-based Information Engineering
Toyohashi University of Technology

Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580,
JAPAN

Email: ichikawa@tutkie.tut.ac.jp
URL: http://meta.tutkie.tut.ac.jp/~ichikawa/index-e.html

ABSTRACT

This paper introduces new watermarking schemes for 3D polygon models. The schemes presented
here use just the redundancy in model description, hence essential model data such as vertex
coordinates and topology are left intact. Proposed Full Permutation Scheme (FPS) and Partial
Permutation Scheme (PPS) embed information by permuting the order of vertices or faces, and
Polygon Vertex Rotation scheme (PVR) embeds information by rotating the vertices of faces. The
digital signature procedure for verification purposes is also presented, which works in cooperation
with popular public-key cryptography. A modified PVR scheme (Packet PVR) is then proposed
for more robust signature. Evaluation results show that our schemes can embed 0.2% (by Packet
PVR) – 2.8% (by FPS) of information compared to the original model file size. Our methods are
orthogonal and complementary to the preceding methods that use geometrical and topological
domain.

Keywords: Watermarking, Polygon Models, Data Embedding, Model Verification, Public-key
Cryptography

1 INTRODUCTION

With the explosive spread of computers and net-
works, digital multimedia materials have become
commonplace and widespread. There is an urgent
demand to protect these digital assets from unfa-
vorable use. The digital watermarking technique
is regarded as a potential solution to this problem,
and is widely researched on various kinds of mul-
timedia contents. In particular, watermarking
for audios, digital still images, and video images
have been extensively investigated. More infor-
mation may be found in the references [Yeung98b]
[Hartu99], which provide a good overview and
survey on multimedia watermarking techniques.

In this paper, new watermarking schemes for 3D
polygon models are proposed and examined. The
purpose of this research is to provide the means

1Presently with Tokai Co. Ltd.

for creators to make a digital signature [Garfi95]
[Schne96] on their products, along with providing
the means for users to validate the integrity of the
polygon data provided by various creators.

For example, let us consider a vendor, wishing
to distribute a reference 3D model of a mechan-
ical part to customers. The vendor wants cus-
tomers to use the model data intact, because the
use of modified or corrupt data can cause seri-
ous mismatches between the vendor and customer
later. Customers will also benefit from using cer-
tified model data to avoid unexpected modifica-
tion, damage, and confusion of models.

It is well known that such a certification mecha-
nism is provided by digital signature with public-
key cryptography [Garfi95] [Schne96]. The prob-
lem is how to sign a model and how to manage
the signature with the model. It is trivial to write
a signature on a model file, but it is not simply



applicable to structured models, which are often
built by gathering ready-made components. In
such cases, we wish to preserve the original signa-
tures of components. Simply by signing a model
file, the final structured model can be certified,
but certificates of each component are purged.
Maybe we can insert a signature into a model file
as a comment, but such comments are not nec-
essarily preserved by CAD tools. Thus, we must
find a way to embed the signature into the model
itself, instead of writing a signature in the model
file.

This study focuses on how to embed/retrieve a
signature and how to provide a feasible system to
3D model users. Our method is fragile and public
in watermarking terminology, and is not intended
to be robust as it is. Nevertheless, our scheme
does not prevent using other robust watermarking
technology at the same time, because our method
is transparent to any geometrical and topological
watermarking method.

In the next section, the preceding watermarking
techniques for polygon models are examined to
clarify the difference and original contribution of
this paper. Then, a new watermarking scheme
and its application are described in Section 3.
This method utilizes the redundancy in polygon
models, leaving essential model data intact. Sec-
tion 4 presents another redundancy to embed in-
formation, which could be used with the scheme
described in Section 3.

2 RELATED WORKS

Watermarking on 3D models is a relatively new
research theme. The first watermarking research
on 3D models was presented by Ohbuchi et al.
[Ohbuc97] [Ohbuc98] They presented three tech-
niques: Triangle Similarity Quadruple Embed-
ding (TSQ), Tetrahedral Volume Ratio Embed-
ding (TVR), and Mesh Density Pattern Embed-
ding (MDP). TSQ and TVR embed watermarks
in the geometrical domain, while MDP uses a
topological domain by remeshing.

Kanai et al. [Kanai98] proposed a method based
on wavelet transform and multiresolution repre-
sentation. Praun et al. [Praun99] also presented
a method based on multiresolution surface rep-
resentations. These techniques embed data in
the frequency domain by perturbing geometrical
data.

Benedens [Bened99] [Bened00] presented Nor-
mal Bin Encoding (NBE) and Affine Invariant

Embedding (AIE), both of which are based on
mesh surface normals. Wagner [Wagne00] embed-
ded watermarks in the relative length of vector
norms, where only vertex coordinates are modi-
fied. Ohbuchi et al. [Ohbuc01] presented a water-
marking technique in mesh spectral domain using
eigen vector decomposition.

All these methods are geometrical or topological,
and modify the original model data to embed the
watermark by modifying vertex coordinates im-
perceptively or changing the construction of faces
by remeshing. Our method, on the other hand,
preserves model data as is, except for the harm-
less change in the order of description.

Another difference is that most of these meth-
ods are intended to be robust, or resistant to in-
tentional and unintentional modification. A ro-
bust watermark will persist despite attempts at
removal, but there are some applications that do
not require such robustness. For example, it is
enough for verification purposes that the modifi-
cation on the original can be detected, even if the
watermark is lost by this modification. This kind
of watermark is called “fragile”.

Fragile watermarking for 3D models was first pro-
posed by Yeung and Yeo [Yeung98a] [Yeo99] for
verification purposes. In their method, a water-
mark is embedded by perturbing the coordinates
of objects. The watermark is encoded by using
a secure (secret) key before embedding. Bene-
dens [Bened00] presented a Vertex Flood Algo-
rithm (VFA) for model authentification. VFA
embeds the watermark into the distances between
vertices and the center of mass of a start trian-
gle by modifying vertex coordinates. In short,
all these methods [Yeung98a] [Yeo99] [Bened00]
modify geometrical data to embed information.

Both our method and the preceding ones
[Yeung98a] [Yeo99] [Bened00] are fragile and in-
tended for verification use. However, our method
uses neither geometrical nor topological data for
embedding, hence preserving the essential model
data intact.

3 WATERMARKING BY PERMUTA-
TION

3.1 Redundancy in Polygon Models

There are many kinds of polygon model represen-
tations, but the fundamental form is the same.
A polygon model consists of vertices, faces, and
additional information. Vertices are defined by



coordinate values, and faces are defined by a se-
quence of vertices. Other information such as tex-
ture is also included. An example of a polygon
model skeleton is shown below, which is described
in VRML [Int97].

IndexedFaceSet {
coord Coordinate {

point [
x0 y0 z0,
x1 y1 z1,
...

]
}
coordIndex [
vi, vj , vk, −1,
...

]
}

Each vertex (point) is represented by three sets
of coordinate values (xi, yi, zi). Each face (poly-
gon) is represented by a sequence of vertex indices
(vi, vj , vk, ...), which is terminated by −1.

There is no required order of vertices. If we have
n vertices, we have n! options to describe the set
of n vertices. This means that �log2 n!� bits of
information can be carried by selecting one of the
options. The same redundancy exists in face de-
scription, as no specific order is required. We can
carry �log2 n!� bits by n faces in the same way
as in vertices. Face descriptions depend on ver-
tex indices, so one must adjust the description
of faces according to the selected order of ver-
tices. However, this does not prevent utilizing
the redundancy in face description. After adjust-
ing vertex indices, one can choose any order of
faces to carry information.

3.2 Full / Partial Permutation Scheme

A serious drawback of this approach is that it
takes a rather long time for a large n to en-
code/decode information to/from a permuted se-
quence. The way to improve it is to cut up the set
of n items (vertices or faces) into small chunks.
Let k items make up a chunk of items. We en-
code/decode information per k items, and repeat
it for �n/k� chunks. This scheme gives up some
of the possible capacity, while shortening the pro-
cessing time.

Let us call the original scheme “Full Permuta-
tion Scheme” (FPS), and the new scheme “Par-

tial Permutation Scheme” (PPS). The informa-
tion capacity F (n) that is carried by n items with
FPS is given by Eq. 1, and the capacity P (n, k)
of PPS is given in Eq. 2.

F (n) = �log2 n!�, (1)

P (n, k) =
⌊n
k

⌋
�log2 k!�. (2)

Fig. 1 displays F (n) and P (n, k), where k = 8.
A chunk of 8 items can carry 15 bits. Encoding
is easily realized by preparing a look-up table of
215 entries. Decoding is also easy by preparing
an 8-stage decision tree.

0.E+0

2.E+5

4.E+5

6.E+5

8.E+5

1.E+6

0 20000 40000 60000

n: the number of items

In
fo

rm
at

io
n

(b
it) F(n)

P(n,8)

Figure 1: Capacity of Permutation

0

2

4

6

8

10

0 20000 40000 60000

n: the number of items

F
(n

)
/P

(n
,8

)

Figure 2: The Ratio of F(n) to P(n,8)

Though the capacity of PPS looks poor compared
to FPS, there is little difference between them.
Fig. 2 shows that F (n)/P (n, 8) < 8 holds for
n < 60000, and that F (n)/P (n, 8) does not grow
in proportion to n. Rather, it is proportional to
the logarithm of n, which grows slowly. This is
rationalized by the following explanation.

The value of n! is approximated by Stirling’s for-
mula:

n! ≈
√

2πn · nn · e−n. (3)

According to Eq. 1 and Eq. 3, F (n) is O(n log n).
On the other hand, P (n, k) is O(n) from Eq. 2,
provided that k is constant. Thus F (n)/P (n, k)
is O(log n).



3.3 Evaluation

The previous section outlined the fundamentals
of our idea. Now, the idea has to be examined on
real 3D models. We pick up five polygon models,
that are shown in Table 1. All these models are
originally acquired from WWW as public VRML
model file (.wrl) [Int97], and then converted to Di-
rectX model file (.x) by Crossroads 3D [Rule97]
and Direct3D Retained Mode library [Micro97] in
our development environment for later process-
ing.

File name Vertex Face Size (byte)
x wing.x 3099 6084 506107
satelite.x 4304 4572 583692
Briefcase.x 4786 6180 654457
purple-walter.x 5314 5312 715340
panzer.x 20424 42333 3746982

Table 1: 3D Models

Table 2 shows the evaluation results on these
model files. Fv and Ff are the FPS capacity (bit)
on vertices and faces, respectively. Pv and Pf are
that of PPS of k = 8. In Table 2, WD means
Watermark Density, that is the ratio of total wa-
termark capacity (Fv +Ff or Pv +Pf ) to file size.
As seen from Table 2, the watermark capacity is
about 2–3% by FPS, and about 0.4% by PPS.
Watermarks of 105–107 bits are generally more
than suffice for verification purposes.

3.4 Embedding and Retrieving Digital
Signature

This section outlines how to embed and retrieve
data. As described in Section 1, the digital
signature technique of public-key cryptosystem
[Garfi95] [Schne96] is adopted here. It is natu-
ral to use the appropriate one-way hash function
jointly, as we can carry limited capacity of infor-
mation with polygon models.

Digital signature on polygon model is performed
as follows.

1. Sort vertices in geometrical order.

2. Calculate vertex signature value of sorted
vertex data.

3. Encode vertex signature with creator’s se-
cret key.

4. Permute (or renumber) vertices according
to encoded vertex signature data.

5. Adjust face descriptions according to
renumbered vertices.

6. Sort faces by vertex indices.

7. Calculate face signature of sorted face data.

8. Encode face signature with creator’s secret
key.

9. Permute faces according to encoded face
signature data.

In fact, there are many options in this procedure.
For example, sorting of vertices and faces could
be in any order, if reproducible on the consumer
side.

Verification is realized by the following process.

1. Sort vertices in geometrical order.

2. Calculate vertex signature value of sorted
vertex data.

3. Retrieve encoded vertex signature value
from unsorted vertex data.

4. Decode the encoded vertex signature with
creator’s public-key to obtain original ver-
tex signature.

5. Verify the calculated vertex signature
against the original vertex signature.

6. Sort faces by vertex indices.

7. Calculate face signature value of sorted face
data.

8. Retrieve encoded face signature value from
unsorted face data.

9. Decode this encoded face signature with
creator’s public-key to obtain original face
signature.

10. Verify the calculated face signature against
the original face signature.

One should recall that our method is “fragile”.
Renumbering of vertices and faces easily destroys
the encoded signature, but it is still detected
as signature mismatch or signature format error.
Addition or deletion of vertices and faces will also
be detected, because such operations destroy the
embedded signature. Modification of coordinates
or vertex indices results in a different signature
from the encoded one, thus detected. Forgery of
a signature is practically impossible, as long as



Full Permutation Scheme (FPS) Partial Permutation Scheme (PPS)
File name Fv Ff Fv + Ff WD (%) Pv Pf Pv + Pf WD (%)

x wing.x 31477 67711 99188 2.45 5805 11400 17205 0.42
satelite.x 45753 49000 94753 2.03 8070 8565 16635 0.36
Briefcase.x 51609 68918 120527 2.30 8970 11580 20550 0.39
purple-walter.x 58104 58080 116184 2.03 9960 9960 19920 0.35
panzer.x 262973 589572 852545 2.84 38295 79365 117660 0.39

Table 2: Watermarking by Permutation

the adopted public-key cryptosystem is safe and
the secret-key of creator is properly protected.

Our method only guarantees that the model is in-
tact or modified. It can not determine how much
the model is modified or where. If such informa-
tion is important, the method of Yeo and Yeung
[Yeo99] is worth considering, because it can give
hints of how much and where. Yeo and Yeung’s
method embeds data by perturbing vertex coordi-
nates, so it presumably fits with our scheme that
does not use geometrical domain at all.

One problem remains with our scheme. We
adopted a public-key cryptosystem for the digi-
tal signature. The creator’s public-key is neces-
sary to verify the model. It does not make sense
to encode the public-key of the creator in the
model, because an embedded public-key has to
be verified against the creator’s public-key any-
way to rely on the verification result. Thus, users
must access the creator’s public-key by another
reliable means by themselves. This means that
user must know the creator’s information along
with the model itself. It is impossible to access
a creator’s public-key without knowing who the
creator is.

In the next section, we propose another scheme
to encode information in polygon models. We
can incorporate some additional information by
this method; e.g. creator’s name, version, release
date, copyright notice, license condition, and con-
tact address.

4 WATERMARKING BY POLYGON
VERTEX ROTATION

This section describes another redundancy of the
polygon model, which exists in polygon descrip-
tions. The new technique is entirely orthogonal
to the FPS and PPS described in the previous
section. Thus, it may be used jointly.

4.1 Redundancy in Face Description

There is no one way to describe a polygon.
For example, all of three descriptions (vi, vj , vk),
(vj , vk, vi), and (vk, vi, vj) represent the same tri-
angle. As the faces have a front side and back
side, three equivalent descriptions (vi, vk, vj),
(vj , vi, vk), and (vk, vj , vi) are different from
(vi, vj , vk). In general, a polygon with n vertices
can be represented in n ways, as rotating vertices
of the polygon. We can embed information by
utilizing this redundancy. Let us call this scheme
Polygon Vertex Rotation (PVR).

PVR can cooperate with FPS or PPS described
in Section 3, if the sorting of faces is properly per-
formed in FPS and PPS. In step 6 of the embed-
ding procedure (Section 3.4), the sorted result of
faces must be insensitive to the vertex rotation of
each face. Such sorting procedure can be realized
as follows: (1) Normalize vertex rotation first, (2)
then sort faces according to vertex indices. A face
description can be normalized by rotating vertices
until the vertex of the lowest number of the index
reaches first place. To embed data by PVR with
FPS/PPS, a new step 6’ is required between step
6 and step 7 in Section 3.4.

6’ Embed data by rotating vertices of each
face.

Data retrieval from PVR is performed as follows.

1. Sort faces by normalized vertex indices.

2. Retrieve data from vertex indices of faces,
according to the sorted order.

It should be noted that the retrieval from PVR is
independent of PPS or FPS. Thus, PVR can be
used to carry various information such as creator
information for PPS/FPS. Forgery of PVR data
is impossible, if PVR is used with PPS or FPS.
PPS and FPS protect the face description from



modification by the digital signature, so any at-
tempt to change PVR data is detected by PPS or
FPS as a signature mismatch.

4.2 Full PVR and Partial PVR

Let Φ be the set of faces of a polygon model,
and ν(φ) the number of vertices of a face φ ∈
Φ. Taking all faces into account, the total degree
of freedom of the model is given by

∏
φ∈Φ ν(φ).

Thus, the information capacity Θ(Φ) of a face set
Φ is given by the following equation:

Θ(Φ) =
⌊∑

φ∈Φ log2 ν(φ)
⌋
. (4)

Let us call this method “full” PVR (FPVR).
FPVR has the same problem as FPS. For exam-
ple, we must handle such high numbers as 3100

to encode/decode data for a model consisting of
100 triangles. Hence we examine “partial” PVR
(PPVR), which partitions Φ into chunks of faces.

Partitioning of Φ is simple, where the model con-
sists of the same kind of polygons: e.g., only tri-
angles. In this case, any chunk of k faces carry
�k log2 ν(φ)� bit, since ν(φ) is constant. How-
ever, general polygon models consist of various
kinds of polygons. In this general case, we have
many options to partition Φ. This makes the ca-
pacity of each chunk different, and thus the total
capacity is dependent on the way of partitioning
of Φ.

Now, let us concentrate here on the case of k = 2
for simplicity. Given two faces (φ1, φ2), the chunk
capacity is calculated as �log2{ν(φ1)ν(φ2)}�. Let
θ(Φ) be the total capacity of PPVR for Φ. θ(Φ)
is represented as follows, if the set of (φ1, φ2) for
Φ is given.

θ(Φ) =
∑

(φ1,φ2)

�log2 ν(φ1) + log2 ν(φ2)� .(5)

The partitioning of Φ must be reproducible on the
customer’s side. Under this condition, basically
any way of partitioning Φ is acceptable.

We adopt the following heuristics to partition Φ
in the following discussion.

1. Sort faces according to normalized vertex
indices. 2

2. Mark all faces “unused”.

3. Take two faces that are topologically adjoin-
ing from the top of sorted face list. Mark
selected pair of faces “used”.

2See Section 4.1 for normalization of vertex indices.

4. Repeat Step 3 and take as many pairs as
possible.

This is a kind of greedy algorithm, and does not
guarantee the quality of the solution. Also, it
can leave some faces unused. However, it is still
regarded good enough according to the evaluation
results shown in Table 3.

Table 3 presents some evaluation results of PVR.
Θ is the capacity of FPVR, and θ is the capacity
of PPVR of k = 2 with greedy partitioning. It is
apparent that Θ is the upper bound of θ, but the
ratio θ/Θ shows that PPVR utilizes 80–100% 3 of
the possible capacity Θ(Φ). Watermark Density
(WD) is the ratio of θ to the corresponding file
size. WD of PPVR is almost half of the WD of
PPS, compared to Table 2.

4.3 Packet PVR

As mentioned earlier, FPVR and PPVR are not
robust. At the end of this paper, we present a
modified PVR scheme more robust than FPVR
and PPVR.

In a communication area, a packet is organized
to make data transfer more reliable. Usually, the
packet consists of a preamble, sequence number,
contents, check sum, etc. Longer data are split
into a couple of packets, and transferred as units
of original data. If some of the packets are dam-
aged or lost, the corresponding packets are re-
transmitted and reconstructed with other pack-
ets. We may apply this idea to polygon model.
Let us call this scheme “packet PVR”. Fig. 3 il-

Sequence
number

Marker

Contents

Figure 3: Polygonal Packet

lustrates the concept of the polygonal packet. Let
3In purple-walter.x, θ is equal to Θ. This is not a mis-

take, but caused by rather exceptional conditions. First,
our greedy algorithm counted all faces for pairs. Second,
this model consists of only tetragons. In such a case, Θ = θ
holds, because log2 ν(φ) is exactly 2.



File name θ (bit) Θ (bit) θ/Θ File size (byte) WD (%)
x wing.x 8790 9642 0.91 506107 0.22
satelite.x 8022 8751 0.92 583692 0.17
Briefcase.x 7932 9795 0.81 654457 0.15
purple-walter.x 10624 10624 1.00 715340 0.19
panzer.x 66714 73251 0.91 3746982 0.22

Table 3: Watermarking by Polygon Vertex Rotation

us make things simple and consider a model con-
sisting of just triangles. In Fig. 3, 16 triangles
are used to form a polygonal packet. The encod-
ing scheme is based on PPVR of k = 2. Since
32 = 9 > 8 = 23, three bits of information (0–7)
are encoded in a pair of triangles. Moreover, one
code is left for control use (void), because a pair
of triangles can represent 9 codes.

In Fig. 3, eight symbols are indicated. Each rep-
resents 3 bits of information encoded between two
triangles. A marker has a void value, and corre-
sponds to the preamble or trailer of communica-
tion packet. Two markers announce the existence
of a packet. Contents are represented by 3 pairs
of triangles, and thus contain 9 bits of data. One
of 9 bits is used as a check bit to distinguish the
contents and sequence number. If the check bit is
zero, the other 8 bits are sequence number. If the
check bit is one, the others are regarded as con-
tents. A sequence number is used to reconstruct
the original message from the contents of many
packets.

In packet PVR, the encoding procedure is easy.
We just scan the model and find 16 unused tri-
angles that are connected in the specified rela-
tionship; then we embed the markers, sequence
number, and contents. To decode, we have to
scan the value of triangle pairs exhaustively. If
we find two void values in the specified locations,
and if all 16 triangles exist in the specified re-
lationship, we decode the sequence number and
contents according to check bit value.

Packet PVR is not perfect, but more robust
than FPVR, PPVR, FPS, and PPS. These four
schemes are easily destroyed by renumbering,
adding or deleting vertices and faces, because
they depend on the order of description. On the
other hand, packet PVR allows renumbering and
removal of vertices and faces to some extent.

The evaluation results of packet PVR are shown
as ψ in Table 4. The models examined here are
partially different from the models in previous
sections, because the packet PVR presented here

can only handle polygon models consisting only
of triangular faces. The results of FPVR (Θ in
Fig. 4) and those of PPVR (θ) are also shown
for comparison. The capacity of packet PVR is
about one sixth that of PPVR, but this would be
a reasonable drawback of robustness.

File name vertex face Θ θ ψ
scud.x 136 240 380 360 64
tiger.x 303 602 954 903 152
chess1.x 389 772 1223 1158 216
gumby.x 406 760 1204 1140 208
x wing.x 3099 6084 9642 9126 1680

Table 4: Watermarking by Packet PVR

5 CONCLUSION

The many studies on watermarking of 3D poly-
gon models have used geometrical or topological
domain to embed data. In the present investi-
gation, we presented new watermarking schemes
that utilize the redundancy of polygon models to
carry information. The framework for digital sig-
nature on polygon models was also presented. To
our knowledge, no researcher has pointed out this
kind of watermarking techniques to date. This is
the original contribution of this paper.

Five watermarking schemes (FPS, PPS, FPVR,
PPVR, and Packet PVR) are presented and eval-
uated on real 3D polygon models. FPS and PPS
can be used to protect the integrity of model data
with the digital signature of a public-key cryp-
tosystem. Three PVR schemes can carry addi-
tional information, and work with FPS and PPS.

These schemes only use redundancy of descrip-
tion, so other watermarking schemes that use ge-
ometrical and topological domain are also usable
with our schemes.



ACKNOWLEDGMENTS

This work was partially supported by a
grant from the Telecommunications Advance-
ment Foundation and a Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science
and Technology of Japan.

REFERENCES

[Bened99] O. Benedens. Geometry-based wa-
termarking of 3D models. IEEE Com-
puter Graphics and Applications, 19(1):46–
55, 1999.

[Bened00] O. Benedens and C. Busch. To-
wards blind detection of robust water-
marks in polygonal models. In Proc. EU-
ROGRAPHICS 2000, pages C199–C208.
Blackwell, 2000.

[Garfi95] S. Garfinkel. PGP: Pretty Good Pri-
vacy. O’Reilly, 1995.

[Hartu99] F. Hartung and M. Kutter. Multime-
dia watermarking techniques. Proceedings
of the IEEE, 87(7):1079–1107, July 1999.

[Int97] International Standard ISO/IEC 14772-
1:1997. The
Virtual Reality Modeling Language, 1997.
http://www.web3d.org/fs specifications.htm.

[Kanai98] S. Kanai, H. Date, and T. Kishinami.
Digital watermarking for 3D polygons us-
ing multiresolution wavelet decomposition.
In Proc. Sixth IFIP WG 5.2 International
Workshop on Geometric Modeling: Funda-
mentals and Applications (GEO-6), pages
296–307, 1998.

[Micro97] Microsoft Corp. Direct3D, 1997.

[Ohbuc97] R. Ohbuchi,
H. Masuda, and M. Aono. Embedding data
in 3D models. In Proc. European Work-
shop on Interactive Distributed Multimedia
Systems and Telecommunication Services
(IDMS ’97), LNCS 1309. Springer, 1997.

[Ohbuc98] R. Ohbuchi, H. Masuda, and
M. Aono. Watermarking three-dimensional
polygonal models through geometric and
topological modifications. IEEE Jour-
nal on Selected Areas in Communications,
16(4):551–560, 1998.

[Ohbuc01] R. Ohbuchi, S. Takahashi,
T. Miyazawa, and A. Mukaiyama. Water-
marking 3D polygonal meshes in the mesh

spectral domain. In Proc. Graphics Inter-
face 2001, pages 9–17. Morgan Kauffman,
2001.

[Praun99] E. Praun, H. Hoppe, and A. Finkel-
stein. Robust mesh watermarking. In Proc.
SIGGRAPH 1999 Conf. Computer Graph-
ics, pages 49–56. ACM, 1999.

[Rule97] K. Rule. Crossroads 3D, 1995–1997.
http://home.europa.com/˜keithr/Crossroads/.

[Schne96] B. Schneier. Applied Cryptography
(2nd Ed.). Wiley, 1996.

[Wagne00] M. G. Wagner. Robust watermarking
of polygonal meshes. In Proc. Geometric
Modeling & Processing 2000, pages 201–
208. IEEE Computer Society, April 2000.

[Yeo99] B-L. Yeo and M. M. Yeung. Watermark-
ing 3D objects for verification. IEEE Com-
puter Graphics and Applications, 19(1):36–
45, 1999.

[Yeung98a] M. Yeung and B-L. Yeo. Fragile wa-
termarking of three dimensional objects. In
Proc. 1998 Int’l Conf. Image Processing,
ICIP98, volume 2, pages 442–446. IEEE
Computer Society, 1998.

[Yeung98b] M. M. Yeung(Ed.). Digital water-
marking. CACM, 41(7):30–77, July 1998.


