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ABSTRACT 
 

This paper presents a novel approach to multiresolution edge detection, which combines the grayscale 
morphological filtering, pyramid data structure and fuzzy technique. It mainly addresses the linking of 
edge nodes at adjacent levels in image pyramid. In previous pyramidal approaches, linking is based on 
linear relationship and intensity proximity only. The approach proposed here contains multiple linking 
mechanisms and introduces fuzzy technique. It considers the parent-child linking relationship of edge 
nodes between the two adjacent levels as fuzzy model, which is trained offline using real image data. 
Through this fuzzy linking model, the coarse, low-resolution edge map is propagated and refined to the 
fine, high-resolution edge map in the pyramid. The validation experiment is carried out on one synthetic 
image and two real images, and the results show that our approach has better performance on the 
localization and detection of continuous large-scale object boundaries than Canny’s edge detector and 
other previous multiresolution approaches. In addition, the proposed approach has high computational 
efficiency. 
 
Keywords: mathematical morphology, pyramid structure, fuzzy sets, edge detection, multiresolution 
image analysis. 
 
 
 

1. INTRODUCTION 
 

Recently, in the area of edge detection and image 
segmentation, more and more attention has focused 
on multiresolution, multiscale approaches because of 
their ability to process and analyze image at multiple 
levels of resolution simultaneously. A vast amount of 
research has been devoted to the construction of 
different multiresolution, multiscale representations 
of images, such as pyramids, wavelets and 
hyperstacks. The hyperstack approaches, see [De91a, 
Koste97a, Vinck96a], use the scales-pace of the 
image, and accomplish the forming of segments and 
boundaries by a downward projection from the root 
nodes, which are easy to lead to a “partial volume” 
result and mistakenly isolate micropatterns. Pyramids 
are described as special data structure, see [Biste90a, 

Burt81a, Meer88a, Rezae00a, Tomor95a], in which 
each node contains the complex information about 
sub-region linked to it. These approaches need 
iteratively to recompute the father node value and 
change the linking relationship between the father 
node and the child node. It is evident, that these 
kinds of strategies are time-consuming.  
 

On the other hand, there also exists another 
category of algorithm, see [Chen98a, Hong82a, 
Jihon99a, Pacha98a], which takes the pyramid as a 
family of multiresolution images created from an 
initial image by repetitive filtering and subsampling. 
The coarse segmentations and boundaries are 
obtained on top level first. Then various methods are 
used to construct the subtree of links representing 
segmented region on the base level. But those 



algorithms, which are all based on linear linking 
relationship and intensity proximity only, are poor in 
edge localizing and not robust enough to allow 
segments and boundaries to be created at lower 
levels of the subtree. The purpose of this paper is to 
improve the performance of this category of pyramid 
method by including additional linking criteria and 
introducing fuzzy technique into the edge nodes 
linking process, and reduce time-consumed by 
mainly focusing on relevant regions of interest. First 
the proposed algorithm constructs a multiresolution 
pyramid structure by successive morphological 
filtering and subsampling of the original image. Then 
it considers the parent-child linking relationship of 
edge nodes between the two adjacent levels as fuzzy 
model, which is trained offline using real image data. 
Via the fuzzy linking model, links are created 
between the edge nodes of the successive levels by 
testing the “similarity degree” of edge nodes. Finally 
the coarse, low-resolution edge map, which is 
generated on the top level by conventional edge 
detection method, are propagated and refined to a 
fine, high-resolution edge map on the bottom level 
by this linking subtree. 

 
This paper is organized as following: 

Section 2 gives a brief description of the construction 
of image pyramid utilizing morphological filtering. 
In Section 3, we give a thorough description of how 
to construct the nonlinear fuzzy linking model to 
create the linking subtree for edge nodes in 
morphological pyramid. The overall performance of 
the proposed approach is discussed in Section 4 by 
analyzing experiment results and comparing with 
other edge detection methods. Finally a conclusion of 
this method is given in Section 5. 

 
 

2. CONSTRUCTING MORPHOLOGICAL 
PYRAMID 

 
The first step in our proposed approach is to 
construct a pyramid data structure based on 
mathematical morphology. We adopt, here, flat 
(grayscale) morphological operators, see [Fitzp99a]. 
The flat erosion of a grayscale image I(x, y) by a 
structuring element B is defined as 
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Similarly, the flat dilation is defined as 
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The grayscale opening and closing are defined, 
respectively, as 
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and  
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According to this definition, grayscale 
openings and closings are increasing, translation 
invariant and idempotent, so they can be used as 
morphological filters. Obviously they are a kind of 
nonlinear filter, and can preserve the edge 
information, compared to other linear filters, such as 
Gaussian filter. 

 
Given an image I(x,y) and a structuring 

element B, a morphological pyramid can be defined 
as a collection of images, { }NLIMP L ,...,1,0, == , 

where LI is the image at level L, downsampled from 
the filtered image at level L-1 using morphological 
filters. The choice of N determines the scales of the 
objects to be detected. Given that the largest texture 
required to be removed out of the edge map has a 
maximal axis width of d1, and the smallest object 
required to be kept in the edge map has a minimal 
axis width of d2, then 
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where s denotes the sampling spacing, and in general 
is equal to 2. 

 
 

3. PYRAMID EDGE NODES LINKING 
 

The second important step of the proposed procedure 
is to define the linking relationship of edge nodes 
between two adjacent levels. After applying 
conventional edge detection technique, such as Sobel 
operator, local adaptive gradient threshold technique 
(see [Qiu90a]), a coarse, low-resolution edge map 
can be obtained on the top level. Then we consider 
the parent-child linking relationship of edge nodes 
between two adjacent levels as a fuzzy model, which 
takes multiple linking criteria as input and is trained 
offline. Through this fuzzy linking model, the coarse, 
low-resolution edge map is propagated and refined to 
the fine, high-resolution edge map in the 
morphological pyramid.  
 

Without loss of generality, we define 
sampling spacing as s = 2. For each parent edge node 
in level L, we only search a corresponding 33×  
subregion of candidate child edge nodes on level L-1 
for the child edge nodes that have more similarity 
degree evaluated by a fuzzy linking model. We 
construct this fuzzy linking model as following. 

 
3.1. Defining Fuzzy Input and Output Variables 
 
The first fuzzy input variable x1, logical distance 
from object boundary, is defined by 
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where |)2||,2max(| jjiidcp ′−′−= , ),( ji ′′  and  

),( ji  denote the position of the parent node and that 
of the corresponding candidate child node, 
respectively, and }12,2,12{ +′′−′∈ iiii , 

}12,2,12{ +′′−′∈ jjjj , and f(a, b) denotes the 
direction filtering on the node (a, b) in the binary 
parent edge map, where ‘1’ denotes the edge node 
and ‘0’ non-edge node. For calculating f(a, b), We 
first define four direction masks as 
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then, if ia ′≠  or jb ′≠ ,  f(a, b) is the convolution 
of the binary parent edge map on the node (a, b) with 
the mask defined by direction of node (a, b) and 

),( ji ′′ . Otherwise f(a, b) equals to the sum of 
convolution on all four directions minus 3. Obviously, 

),(1 jix  is related to the distance between the node (i, 
j) and the center )2,2( ji ′′  of the candidate child 
nodes and the number of edge nodes on this direction. 
 

The second fuzzy input variable x2, intensity 
proximity, is defined by 
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where Ip and Ic denote the intensity of the parent and 
the child, respectively, and maxI∆  denotes the 
maximum intensity difference between the parent 
and all their candidate children. 
 

The third fuzzy input variable x3, local 
gradient ratio, is defined by 
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where G(i, j) denotes the gradient of the candidate 
child and GmaxLoc the local maximum gradient of all 
the candidate children. 
 

The last fuzzy input variable x4, global 
gradient ratio, is defined by 
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where GmaxGlob the global maximum gradient in the 
image on the child level L-1. 
 

We define one fuzzy output variable as 
]1,0[∈y , denoting similarity degree between the 

candidate child and parent. When y>0.5, this 
candidate child is a valid child of the parent edge 
node and is an edge node. Otherwise it’s not. 

 
3.2. Preparing Training Data 

 
Preparing training data is an important step in 
constructing fuzzy edge linking model. First the 
example image pyramids are obtained by applying 
the method described in Section 2. And then we can 
extract the edge map of images on every level of 
pyramids based on manual outlining or semi-
automatic intensity-based technique. In order to 
define the child-parent linking relationship between 
the edge nodes on the adjacent level in those 
example image pyramids, we introduce a fuzzy 
linking reference model, which has the same input 
and output variable as the mentioned above but only 
has few fuzzy sets and few fuzzy rules. When 
searching on the child level for every parent edge 
node applying the fuzzy linking reference model, we 
only link the child edge node to the most similar 
parent, where the fuzzy linking reference model has 
largest output, and construct a pair of input-output 
example data (the output is ‘1’) for this linking 
relationship. Obviously, the linking relationship 
between child edge node and parent edge node is not 
exclusive, and we cannot confirm the relationship of 
this child edge node with other adjacent parent edge 
nodes, so we just don’t construct the input-output 
data pairs for them. But for every searching non-edge 
node in child level, we also construct a pair of input-
output example data (the output is ‘0’). 

 
3.3. Training Fuzzy Linking Model 

 
After getting training data, we now train the fuzzy 
linking model by the following steps. 
 

Step 1. Defining fuzzy sets for each fuzzy 
variable 

For the above fuzzy input variables xi in the 
domain interval [0, 1], we define Ni fuzzy sets, which 
are denoted by Ai

l, i=1, 2, 3, 4, l=1, 2, …, Ni. The 
shapes of the membership functions can be chosen 
freely and can be the same or different for each fuzzy 
variable. Without loss of generality, we define 
membership functions with triangular shapes, which 
cover the whole input space. The fuzzy sets on each 
variable are complete, that is, for each point in the 
range we can get at least one fuzzy set on which the 
value of membership function is not equal to zero. 
Similarly, for the fuzzy output variable y we define 
Ny fuzzy sets Bl, l=1, 2, …, Ny, which are complete in 
[0, 1], with trapezia shape membership functions. 



Step 2. Constructing fuzzy rules based on 
Table Lookup Method, see [Wang97a]. 

For each four-input-single-output data pair 
(x1

k, x2
k, x3

k, x4
k, yk), k=1, 2, …, N, the extracted 

fuzzy rule can be expressed as following: 
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where A1

l, A2
m, A3

n and A4
q denote the fuzzy sets 

defined on the input variables x1, x2, x3, x4, 
respectively, and Bj denotes the fuzzy sets defined on 
the output variable y. They have the largest 
membership function output for this input-output 
data pair on each variable. After removing the 
conflicting rules, we can obtain a rule base. 
 

Step 3. Constructing fuzzy linking model 
Based on the extracted rule base, we use 

singleton fuzzifier, product inference engine, and 
center average defuzzifier, and the constructed 
system can be expressed as follows:  
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where n is the number of input, M is the number of 
fuzzy rules in the rule base, and ly  is the centroid of 
the fuzzy set Bj, )( iA xl

i
µ  is the membership function 

value of xi on fuzzy set Ai
l. 

 
 
4. EXPERIMENTS 

 
First we define a simple fuzzy linking reference 
model, which has three fuzzy sets with Gaussian 
membership function for each input fuzzy variable 
and two fuzzy sets with trapezia shape membership 
function for the output fuzzy variable, and 
simultaneously we define 26 fuzzy rules for it. Then 
according to the method described in Section 3, we 
extract the edge maps of 10 optical images as 
training data. For the new fuzzy linking model, we 
define 4 fuzzy sets for x1, 4 fuzzy sets for x2, 5 fuzzy 
sets for x3, 6 fuzzy sets for x4 and 2 fuzzy sets for 
output variable y, whose membership functions are 
also defined, see Fig.1. After being trained, a new 
fuzzy linking model with 359 merged rules is 
constructed according to Eq.10. 
 

In the following section we will give some 
examples applying the proposed method and the 
trained linking model. Without loss of generality, the 
sampling space used here is s = 2, and the structuring 
element B is a 33×  rhombus shape window, and we 
use the opening operator as the morphological 
filtering. In order to obtain a thinner boundary, we 

only take the node that has the largest similarity 
degree y in the horizontal or vertical 31×  adjacent 
edge nodes as the final output edge node. In addition, 
the experiment results using conventional Canny’s 
edge detector and another multiresolution edge 
detection method, the morphological pyramid (MP) 
based edge detector (see [Chen98a]), are also 
presented here for the sake of comparison. 
 

Fig.2 shows two original images for the 
experiments in this paper. Fig.3 shows the 
experiment results of the proposed edge detection 
procedure and other two approaches applied to the 
scissors image (see Fig.2a). The edge map in Fig.3a 
is generated using conventional Canny’s edge 
detector with the standard deviation 2=σ . The 
result using the MP-based edge detector is presented 
in Fig.3b, where the number of MP levels N is 8. The 
edge map in Fig.3c is the result of using the proposed 
method, in which the number of MP levels N is 4 and 
a Sobel detector is applied on the top level image to 
get the initial coarse edge map. Because the content 
in the original image is very simple and the contrast 
between object and background is very clear, so the 
edge maps of all three methods is good. But there is 
still significant difference, which the proposed 
method has yielded less interior texture edge and 
more clear exterior boundary than Canny’s method, 
and has obtained more high edge localization 
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The membership functions for all 
variables. (a, b, c, d, e) The 
membership functions for x1, x2, 
x3, x4 and y, respectively 

Figure 1 



    
  (a)    (b)    (c) 

 
Experiment results of Fig.2b with the proposed method and other two methods. (a) Canny’s edge detector 

at 3=σ . (b) MP-based edge detector. (c) The proposed method. 
Figure 4 

 

      
  (a)    (b)    (c) 

 
Experiment results of Fig.2a with the proposed method and other two methods. (a) Canny’s edge detector 

at 2=σ . (b) MP-based edge detector. (c) The proposed method 
Figure 3 

   
          (a)              (b) 

 
Two original images for experiment 

Figure 2 

     
            (a)    (b)   (c) 

 
A Gaussian noise contaminated synthetic image to verify the effect of the proposed method with different 

edge detection methods applied on top level of MP. (a) The original image. (b) The initial edge map on 
top level with Sobel edge detector and the final edge map on bottom level. (c) The initial edge map on top 

level with thresholding method and the final edge map on bottom level. 
Figure 5 



accuracy and more smooth edge map than the MP-
based edge detector 
 

The three methods of detecting the object 
edge are also compared for the boat image, see Fig.4. 
The edge map generated by Canny’s edge detector 
with the standard deviation 3=σ  is showed in 
Fig.4a. The result of applying the MP-based edge 
detector is given in Fig.4b, where the number of MP 
levels N is 5. The edge map generated by the 
proposed method is presented in Fig.4c, where the 
number of MP levels N is 4, and we still use Sobel 
edge detector to extract the low-resolution edge map 
in top level. Obviously the proposed method can 
detect out more consistent boundary of large-scale 
object and generate less false edge than any other 
two methods, in such complex image. 

 
Fig.5 demonstrates other significant features 

of the proposed method: strong ability to refine the 
boundaries and good localization accuracy. Fig.5a is 
a synthetic image with a gradual-changing gray 
background, and a Gaussian white noise with zero 
mean and 0.01 variance has been added to it. Using 
the proposed method, first a morphological pyramid 
of 4 levels is created on that image. Then through our 
fuzzy linking model, two very similar edge maps are 
formed on the bottom levels from the different initial 
coarse edge maps used in the top levels, see Fig.5b 
and Fig.5c, respectively. In Fig.5b the Sobel edge 
detector is used to extract the top edge map, while in 
Fig.5c first a simple thresholding method is used on 
the top level to get segmented image and then a 
binary morphological operation is used to get the top 
edge map. Obviously the object contours in the top 
levels in Fig.5b and Fig.5c are a little different (Note 
that they are inverted with black ground for better 
comparison and the boundaries in Fig.5b is not as 
regular as those in Fig.5c). However, through our 
fuzzy edge linking technique, the two edge maps on 
the bottom level are closely similar except a few 
different edge points, and very loyal to the original 
image. So it is easy to see that our fuzzy linking 
model has a very strong ability to refine the 
boundaries on every level and can finally obtain 
good boundary localization accuracy. In addition, 
this example has also demonstrated the proposed 
method has good performance in the presence of 
noise. 

 
 

5. CONCLUSION 
 

In this paper we have described a multiresolution 
approach for edge detection, which combines the 
morphological filtering, pyramid data structure and 
fuzzy technique. In our approach, first an image 
pyramid is constructed through repetitive 
morphological filtering and subsampling of original 
image, and then a coarse, low-resolution edge map is 

generated on the top level by a conventional edge 
detection technique. We model the parent-child 
linking relationship of edge nodes between the two 
adjacent levels using fuzzy technique and train this 
fuzzy model offline. Through this fuzzy linking 
model, the edge map is formed on the bottom level 
from the coarse-to-fine edge detection. 
 

Our multiresolution edge detection approach 
has a number of advantages besides that it has the 
outstanding performance on detecting the boundary 
of large-scale object. Firstly, the flat (grayscale) 
morphological operators used in our approach are 
closely related to the nonlinear filtering based on 
statistics, which not only can preserve the edge 
information but also has good performance on 
removing noise. So it is easier to detect the coarse 
edge on the top level than using other linear filter in 
constructing image pyramid. Secondly, by fuzzy 
linking model, a coarse, inaccurate edge map can be 
refined at every level towards the real boundary of 
object and finally the accurate edge localization can 
be obtained at the bottom level just like the example 
in Fig.5. So it largely decreases the quality demand 
of edge detection method on top level. The third 
advantage of our approach is its computational 
efficiency. As we know from Eq.5, the minimum 
number of levels N needed to construct MP in our 
proposed approach only depends on the fact that the 
required maximum texture in the image can be 
removed in the edge map. So it is distinctly less than 
the number of levels N used in MP-based edge 
detector, see [Chen98a], which is related to the 
number of segments in the original image. Moreover, 
after getting the linking model having been trained 
offline, the parent-child linking relationship is only 
evaluated once in edge adjacent area in our approach, 
so its computation efficiency is obviously much 
higher than that of previous MP-based edge detector 
and almost the same as that of canny’s method, and it 
can be used in real-time applications. In addition, our 
approach also demonstrates good performance in the 
present of noise. 

 
We have used one synthetic image and two 

real-world optical images to validate our approach, in 
which only the scissors is ever used as training 
image. By visual inspection of the edge detection 
results, it is easy to find that our approach has better 
performance than the conventional Canny’s edge 
detector and MP-based edge detector. Causing by 
various factors, the boundary delineated manually is 
not always the same with that estimated 
automatically in real-world image. This phenomenon 
is also reported by Rezaee, et al, see [Rezae00a], and 
this is why here we have not introduced a valid 
quantitative evaluation to the proposed approach, 
which is one of the subjects of our future studies. 
Also due to this reason, when constructing the 
training data set, we have to combine manual or 



semi-automatic detection method and reference 
fuzzy linking model to guarantee the validation of 
training data set. In addition, although our approach 
can make the coarse, inaccurate boundary finally 
shrinks to a stable, reliable boundary, the continuous 
broken points on the coarse boundary has much 
effect on the final edge map. It can be improved by 
using those edge detection methods that can get 
continuous boundary in the top level, such as 
extracting the edge from segmented image, or 
constructing another valid fuzzy linking model 
suitable for expanding searching diameter in the 
candidate children edge nodes. The latter also is 
another subject of our future studies. 
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