
Active Visualization in a
Multidisplay Immersive

Environment using COTS

Chandrajit Bajaj

Center for Computational Visualization
Dept. of Computer Sciences & TICAM

University of Texas at Austin
http://www.ticam.utexas.edu/CCV

Exploratory Visualization of Large
Simulations

Exploratory Visualization of Large
Imaging Data

Scalable Visualization

Visualize increasingly large data meshes from
imaging & simulation
Improve performance by adding
computational resources

Isosurface Large displayVisualization
Cluster

Objective
primary costs in scalable visualization:

Disk I/O (loading field data from disks)Disk I/O (loading field data from disks)
Extraction (geometry)Extraction (geometry)
Rendering (geometry)Rendering (geometry)

A Scalable Visualization Framework
Scales with field datasets
Scales in computation
Scales in disk I/O
Scales in rendering

Scalable Closed-Loop
Visualization

Pose Tracker

Cluster
A PC cluster of 128 Nodes (Compaq

SP750)
PIII 800 MHZ CPU and 256 MB

memory
100 Mb/s Ethernet (partial nodes with

Servernet II and Gigabit Ethernet)
32 nodes with GeForce II graphics

cards
9 GB system disk and 18 GB data disk
Linux kernel 2.2.19

Large Display

Isocontour Visualization
Input:

Scalar Field F defined on a mesh
Query Isovalue w

Output:
Contour C(w) = {x | F(x) = w}

Isocontouring
Two primary stages in contour extraction from a Two primary stages in contour extraction from a
mesh:mesh:
Search for intersected cells Search for intersected cells
Contour approximation within an intersected cellContour approximation within an intersected cell

15 distinct cases for triangulating a 3D regular cell

Scalable Isosurface extraction
Scalable with the number of processors

Good load balance and speedup
Improve interactivity with more processors

Scalable I/O
Parallel disks and balanced disk I/Os
Avoid I/O bottleneck for large datasets

Scalable with the size of datasets
Out-of-core computation
Minimum data replication
Handle larger datasets when resources are fixed

Computation Model

N: Total size of the problem
M: Main memory of a single processor
P: Number of processors
D: Number of disks.
B: Size of a disk block
L: Latency parameter of the BSP model
g: Bandwidth parameter of the BSP model

N > P*M

Computation Time

wT

()iocwp
TTTT ++=max

ioT

: Local computation time

: Disk access time

: Communication timecT

Isocontouring Algorithms

Contour Tree [Van Kreveld]

Seed Set [Bajaj/Pascucci/Schikore]

Extrema Graph [Itoh/Koyamada]Propagation

Span Filtering [Gallapher]
Sweeping Simplices [Shen/Johnson]

Kd-Tree [Livant/Shen/Johnson]

LxL Lattice [Shen et al.]
Interval Tree [Cignoni et al.]

Marching Cubes [Lorenson/Cline]

Octree [Wilhelms/Van Gelder]

Cell by
Cell

C
on

tou
r Strategy

Range SpaceGeometric Space

Search Space

External Search Data Structure

Meta-block tree (Kanellakis ’93)

External Interval Tree (Arge and Vitter ’96)

Binary Blocked Interval Tree (Chiang and Silva ’98)

Optimal disk space
Optimal query I/O operations








Β
ΝΟ







 +

B
TNO Blog

Parallel Isocontouring

SIMD Hansen/Hinker ’92

Parallel (Cluster) Ellsiepen ’95

Parallel LxL lattice Shen et al. ’96

Parallel ray tracing Parker et al. ’98

Range Partition Bajaj et al. 99

Contour Spectrum
Spectrum of a data set can represent the work load
for different isovalues p

The overall work load diagram for each
isovalue is the sum of the diagrams of atomic units

Ideal Data Partition

Ideal data partition for load balanced parallel
computations (two processor case)

Static Data Partitioning

Why Static partitioning?
Communication is slow
Dynamic data assignment requires run-time
redistribution or data replication
It gives good load balance for massive datasets

How?
Deterministic algorithm
Randomized algorithm

Deterministic Algorithm
1. Partition volume into

blocks of the same order
as disk blocks
2. Partition range space

into an nxn lattice
3. Sort blocks in each

lattice element by their
range sizes
4. Assign the sorted

blocks in a round-robin
fashion

Randomized Algorithm

Well balanced when the number of blocks is large

1. Partition volume into blocks of the
same order as disk blocks
2. Assign blocks randomly to processors

Randomized Algorithm

It shows that with high probability no processor has much larger
that the average work load if there are many blocks.

Theorem (Raghavan 88) Let naa ,,1 L be real numbers in]1,0(

. Let nxx ,,1 L be independent Bernoulli trials with

jjx ρ=Ε)(. Let ∑ =
=

n

j jj xa1βψ . If 0)(>Ε βψ , then for any 0>ν

)(

)1()1(
))()1(Pr(

βψ

ν

ν

ββ ν
ψνψ

E
eE 








+

<+> +

P. Raghavan Journal of Computer and System Sciences, 37:130-143, 1988

Scalable Parallel & Out-of-core
Isocontouring
(Sketch of preprocessing Algorithm)

Assume input to be slabs distributed among D disks
Rearrange data into blocks of size θ(B)
Assign data statically onto the processors and disks

Good load balance
Minimum data replication

Communicate blocks to their destined disks
Build external interval tree for blocks on each disk

Load only relevant data blocks
Minimize disk access

Parallel and Out-of-core
Isocontour Querying

Each processor runs independently
Searches its external interval tree to find its active
blocks
Loads its active blocks and extract isosurfaces
Renders the extracted isosurfaces with its local
graphics board
Final Image is composited by the Metabuffer

Multi-resolution Isosurfaces

24,084 triangles 651,234 triangles 6,442,810 triangles

Test Datasets

16.5 GB1600x1000x5186Female
Cryosection

6.6 GB1800x1000x1878Male
Cryosection

656 MB512x512x1252Male MRI

SizeDimensionName

Speedup

Visible Male MRI Dataset with random data distribution

Extraction and Rendering Time

Visible Male MRI Dataset (isovalue = 800)

Workload Histograms

Male MRI Dataset with 32 processors

Deterministic Greedy Algorithm Randomized Algorithm

Extraction Time

Male and Female Cryosection Datasets

Workload Histogram for Male
Cryosection Dataset

Male Cryosection Dataset with 96 processors

View Dependent Isocontouring

Why?
Many polygons are invisible
Reduce extraction and rendering time

Conditions
No pre-existing polygons for generating occlusion
maps
Data Blocks are distributed among multiple
processors
Conservative visibility culling (No holes)

View-dependent Rendering

Visibility Culling
Object space culling

Interactive walkthrough (Teller and Sequin ’91)

Occlusion BSP Tree (Naylor ‘92)

Prioritized-layer projection (Klosowski and Silva ’99)

Image Space Culling
Hierarchical Z-Buffer (greene et al. ’93)
Hierarchical Tiling (greene ’96)
Hierarchical Occlusion Map (Zhang ’97)
Lazy Occlusion Grid (Hey ’01)
Randomized Z-Buffer (Wand ’01)

View-dependent Isocontouring

View-dependent Isocontouring
Octree front-to-back traversal (Livnat and
Hansen ’98)

Parallel ray-tracing (Parker et al. ’98)

Ray-casting & Propagation (Liu et al. ’00)

Parallel Multi-pass (Gao and Shen ’01)

Parallel Single-pass (Zhang and Bajaj ’02)

Algorithm outline

Occluder Selection
Find initial occluding blocks by raycasting
Build occlusion map by extracting and
rendering isosurfaces in the occluding
blocks

Visibility Culling
Cull the remaining blocks with the occlusion
map

Results

of triangles extracted Extraction and rendering time

Parallelization
Parallelize occluder selection

Each processor shoots a subset of rays
Occluding blocks are the union among processors
Block ranges are replicated on each processor

Parallelize occlusion map construction
Each processor extracts and renders a subset of occluding
blocks that reside on its local disk
Occlusion maps of individual processors are merged

Parallelize Visibility Culling
Each processor queries its own external interval tree and
tests its local blocks
Each processor extracts and renders visible blocks on its local
disk

Results

Speedup Extraction and rendering time

Good Features

Conservative (no hole)
Single Pass
Easily Parallelizable
Well Load Balanced
Out-of-core

Parallel Rendering

Fast display of large isosurfaces
Based upon the Metabuffer architecture

Parallel renders mapped to tiled displays
Load balance among rendering processes
Many possible configurations

Scalable Closed-Loop
Visualization

Pose Tracker

Graphics Pipeline

Main Memory
polygons

Geometry
Processor

primitives

Rasterizer
fragments

Fragment
Processor Framebuffer

D1D2D3

Parallel Rendering

Application

G G G

R R R

Application

G G G

R R R

Application

G G G

R R R

D1D2 D3 D1D2D3

Sort First Sort Middle Sort Last

Scalable Parallel Rendering

Scalable Display Wall (Princeton)
Myrinet & sort-first

WireGL (Stanford)
Sepia (Compaq)

ServerNet II & custom compositing

Meta-Buffer (UT)
Lighting 2 (Stanford)

Metabuffer Features
Independently scalable
number of renders and
display tiles
The viewport of a
render can locate
anywhere in the display
space
Viewports can overlap
Viewports can be
different size (multi-
resolution)

Configuration I

Display

Configuration I

Each Renderer has the same viewport
Polygons can be assigned to any renderer
Display has the same resolution as a rendering
process

Load balance for isosurface rendering
Each processor generates similar number of
triangles
No need to redistribute triangles
Efficiently use memory as cache for change of
viewpoint

Configuration II

Configuration II
Each renderer has a viewport with the size of a tile

Faster rendering and higher resolution on large display
Independent number of renderers and tiles
Combination of sort-first and sort-last

Load Balance
Polygons cannot be assigned arbitrarily
Viewports are positioned with constraints
Load balance among the viewports
Different viewport locations for different view parameters

Viewport Positioning Problem
Conditions

m rendering server to cover n tiles (m > n)
Each tile has the resolution
Each server renders C triangles/sec
T triangles in the scene

Constraints
The viewport of each server has the same resolution
servers only render triangles in their viewports
Every triangle is covered by the union of viewports and
rendered by at least one server

Best time: T/(m*C); worst time T/((m-n+1)*C)
NP-hard. Have to use approximation method

hw×

hw×

Greedy algorithm
Find the center of mass of all
triangles.
Sort triangles by the distance to
the center of mass
Each triangle is assigned to a
viewport in the order of
decreasing distance

Create a new viewport if no
viewport can cover the triangle
If multiple viewports are applicable,
chose the one with least mobility
Close a viewport if its triangle count
exceeds a threshold

Iterate the viewports to move
triangles from over-loaded ones
to under-loaded ones

Progressive Image
Composition

It is slow to recompute viewport positions and
redistribute polygons when view point changes
Change the resolution of viewports for time-critical
rendering

The Metabuffer supports multi-resolution
Initially polygons are well-balancedly distributed
When the user navigates, viewports are enlarged to
encompass its assigned polygons. Thus those renderers still
renders at the same rate but with lower resolution
When the user pauses at some viewpoint, polygons are
reshuffled to reduce viewport sizes.

Movie

Multiresolution Multi-Tiled
Displays: Human Vision

Peripheral vision
Not sensitive to detail

Huge multitiled displays
Only small percentage viewed

Gaze of users
Concentrate rendering resources

Periphery
Rendered in low resolution

Visual acuity

Continuous
Dynamic assignment
LOD and resolution
Generalized ROI

Frequency
Distance
History

Discrete
Points on graph
Static assignment

Active Visualiztion:
Male VH (9,128,798)

Male Timings

Conclusion
A end-to-end scalable parallel framework
Parallel Multi-resolution Isocontour extraction

Load balanced and completely out-of-core
Minimum data replication
View-dependent isocontour extraction

Parallel Multi-resolution rendering
Load balance for different configurations
Progressive image composition for time-critical rendering
Foveated resolution display

Compression

Output from large dataset is also large
Store isosurfaces in compressed format to save
storage space
Use compression to save communication between
computational servers and rendering clients

Post-extraction surface compression is
usually expensive

Extract isosurfaces in compressed format
allow incremental decompression and rendering

Surface Compression

Turan ’84
Deering ’95
Chow ’97
Taubin/Rossignac ’96
Touma/Gotsman ’98
Bajaj/Pascucci/Zhuang ‘99

Edge Index

A

B

D

C

To reconstruct the red triangle, one only needs to know function
values at vertex A, B, C, D and indices of edge AB, AC and AD

Cell Configuration
The configuration of a cell can be derived from the
function values and indices of its relevant vertices

> isovalue

< isovalue

2D Example

Red Vertices: Relevant Vertices
Green Cells: Valid Cells

Advantages

Compressed Output: Isosurface is
extracted directly in compressed format
Minimal Memory requirement: Only two
slices are needed in memory at any time
Compressed Input: Each slice may be
stored in compressed image format (jpeg)
Incremental Transmission: It can be
transmitted and decompressed incrementally

Guaranteed Right Topology

14 bits/vertex 10 bits/vertex 6 bits/vertex

Compression Results

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

Hipip (0.0) Foot (600.0) Foot (1200.0) Engine (89.0) Engine (180.0)

B
yt

es

Original
M1
Edge Index

M1 alg. is in Bajaj/Pascucci/Zhuang ’99 and uses 8 bits/vertex

Compression Results

Original

7,536,227 bytes

M1 Algorithm

587,344 Bytes

Edge Index

407,658 Bytes

Average Error
Average Vertex Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35

bit/vertex

er
ro

r Edge Index
M1 Alg.

Blackhole data (isovalue = 1.23)

