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Exploratory Visualization of Large 
Simulations



Exploratory Visualization of Large 
Imaging Data



Scalable Visualization

Visualize increasingly large data meshes from 
imaging & simulation
Improve performance by adding 
computational resources

Isosurface Large displayVisualization
Cluster



Objective
primary costs in scalable visualization:

Disk I/O (loading field data from disks)Disk I/O (loading field data from disks)
Extraction (geometry)Extraction (geometry)
Rendering (geometry)Rendering (geometry)

A Scalable Visualization Framework
Scales with field datasets
Scales in computation 
Scales in disk I/O
Scales in rendering 



Scalable Closed-Loop 
Visualization 

Pose Tracker



Cluster 
A PC cluster of 128 Nodes (Compaq 

SP750)
PIII 800 MHZ CPU and 256 MB 

memory
100 Mb/s Ethernet (partial nodes with 

Servernet II and Gigabit Ethernet)
32 nodes with GeForce II graphics 

cards
9 GB system disk and 18 GB data disk
Linux kernel 2.2.19



Large Display



Isocontour  Visualization
Input:

Scalar Field F  defined on a mesh
Query Isovalue w

Output:
Contour C(w) = {x | F(x) = w}



Isocontouring
Two primary stages in contour extraction from a Two primary stages in contour extraction from a 
mesh:mesh:
Search for intersected cells    Search for intersected cells    
Contour approximation within an intersected cellContour approximation within an intersected cell

15 distinct cases for triangulating a 3D regular cell



Scalable Isosurface extraction
Scalable with the number of processors

Good load balance and speedup
Improve interactivity with more processors

Scalable I/O
Parallel disks and balanced disk I/Os
Avoid I/O bottleneck for large datasets

Scalable with the size of datasets
Out-of-core computation
Minimum data replication
Handle larger datasets when resources are fixed



Computation Model

N: Total size of the problem
M: Main memory of a single processor
P: Number of processors
D: Number of disks. 
B: Size of a disk block
L: Latency parameter of the BSP model
g: Bandwidth parameter of the BSP model  

N > P*M



Computation Time
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Isocontouring Algorithms

Contour Tree [Van Kreveld]

Seed Set [Bajaj/Pascucci/Schikore]

Extrema Graph [Itoh/Koyamada]Propagation

Span Filtering [Gallapher]
Sweeping Simplices [Shen/Johnson]

Kd-Tree [Livant/Shen/Johnson]

LxL Lattice [Shen et al.]
Interval Tree [Cignoni et al.]

Marching Cubes [Lorenson/Cline]

Octree [Wilhelms/Van Gelder]

Cell by
Cell
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Search Space



External Search Data Structure

Meta-block tree (Kanellakis ’93)

External Interval Tree (Arge and Vitter ’96)

Binary Blocked Interval Tree (Chiang and Silva ’98)

Optimal disk space 
Optimal query I/O operations 
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Parallel Isocontouring

SIMD Hansen/Hinker ’92

Parallel (Cluster)  Ellsiepen ’95

Parallel LxL lattice Shen et al. ’96

Parallel ray tracing Parker et al. ’98

Range Partition Bajaj et al. 99



Contour Spectrum
Spectrum of a data set  can represent the work load 
for different isovalues p

The overall work load diagram for each 
isovalue is the sum of the diagrams of atomic units



Ideal Data Partition

Ideal data partition for load balanced parallel 
computations (two processor case) 



Static Data Partitioning

Why Static partitioning?
Communication is slow
Dynamic data assignment requires run-time 
redistribution or data replication
It gives good load balance for massive datasets 

How?
Deterministic algorithm
Randomized algorithm



Deterministic Algorithm
1. Partition volume into 

blocks of the same order 
as disk blocks  
2. Partition range space 

into an nxn lattice
3. Sort blocks in each 

lattice element by their 
range sizes
4. Assign the sorted 

blocks in a round-robin 
fashion



Randomized Algorithm

Well balanced when the number of blocks is large

1. Partition volume into blocks of the 
same order as disk blocks  
2. Assign blocks randomly to processors



Randomized Algorithm

It shows that with high probability no processor has much larger
that the average work load if there are many blocks.

Theorem (Raghavan 88) Let naa ,,1 L be real numbers in ]1,0(
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Scalable Parallel & Out-of-core 
Isocontouring
(Sketch of preprocessing Algorithm)

Assume input to be slabs distributed among D disks
Rearrange data into blocks of size θ(B)
Assign data statically onto the processors and disks

Good load balance
Minimum data replication

Communicate blocks to their destined disks
Build external interval tree for blocks on each disk

Load only relevant data blocks
Minimize disk access



Parallel and Out-of-core 
Isocontour Querying

Each processor runs independently
Searches its external interval tree to find its active 
blocks
Loads its active blocks and extract isosurfaces
Renders the extracted isosurfaces with its local 
graphics board
Final Image is composited by the Metabuffer



Multi-resolution Isosurfaces

24,084 triangles 651,234 triangles 6,442,810 triangles



Test Datasets

16.5 GB1600x1000x5186Female 
Cryosection

6.6 GB1800x1000x1878Male 
Cryosection

656 MB512x512x1252Male MRI

SizeDimensionName



Speedup

Visible Male MRI Dataset with random data distribution



Extraction and Rendering Time

Visible Male MRI Dataset (isovalue = 800)



Workload Histograms

Male MRI Dataset with 32 processors

Deterministic Greedy Algorithm Randomized Algorithm



Extraction Time

Male and Female Cryosection Datasets



Workload Histogram for Male 
Cryosection Dataset

Male Cryosection Dataset with 96 processors



View Dependent Isocontouring

Why?
Many polygons are invisible
Reduce extraction and rendering time

Conditions
No pre-existing polygons for generating occlusion 
maps
Data Blocks are distributed among multiple 
processors
Conservative visibility culling (No holes)



View-dependent Rendering

Visibility Culling
Object space culling

Interactive walkthrough (Teller and Sequin ’91)

Occlusion BSP Tree (Naylor ‘92)

Prioritized-layer projection (Klosowski and Silva ’99)

Image Space Culling
Hierarchical Z-Buffer (greene et al. ’93)
Hierarchical Tiling (greene ’96)
Hierarchical Occlusion Map (Zhang ’97)
Lazy Occlusion Grid (Hey ’01)
Randomized Z-Buffer (Wand ’01)



View-dependent Isocontouring

View-dependent Isocontouring
Octree front-to-back traversal (Livnat and 
Hansen ’98)

Parallel ray-tracing (Parker et al. ’98)

Ray-casting & Propagation (Liu et al. ’00)

Parallel Multi-pass (Gao and Shen ’01)

Parallel Single-pass (Zhang and Bajaj ’02)



Algorithm outline

Occluder Selection
Find initial occluding blocks by raycasting
Build occlusion map by extracting and 
rendering isosurfaces in the occluding 
blocks

Visibility Culling
Cull the remaining blocks with the occlusion 
map 



Results

# of triangles extracted Extraction and rendering time



Parallelization
Parallelize occluder selection

Each processor shoots a subset of rays
Occluding blocks are the union among processors
Block ranges are replicated on each processor

Parallelize occlusion map construction
Each processor extracts and renders a subset of occluding 
blocks that reside on its local disk
Occlusion maps of individual processors are merged

Parallelize Visibility Culling
Each processor queries its own external interval tree and 
tests its local blocks
Each processor extracts and renders visible blocks on its local 
disk



Results

Speedup Extraction and rendering time



Good Features

Conservative (no hole)
Single Pass
Easily Parallelizable
Well Load Balanced
Out-of-core



Parallel Rendering

Fast display of large isosurfaces
Based upon the Metabuffer architecture

Parallel renders mapped to tiled displays
Load balance among rendering processes
Many possible configurations



Scalable Closed-Loop 
Visualization 

Pose Tracker



Graphics Pipeline

Main Memory
polygons

Geometry 
Processor

primitives

Rasterizer
fragments

Fragment 
Processor Framebuffer



D1D2D3

Parallel Rendering

Application

G G G

R R R

Application

G G G

R R R

Application

G G G

R R R

D1D2 D3 D1D2D3

Sort First Sort Middle Sort Last



Scalable Parallel Rendering

Scalable Display Wall (Princeton)
Myrinet & sort-first

WireGL (Stanford)
Sepia (Compaq)

ServerNet II & custom compositing 

Meta-Buffer (UT)
Lighting 2 (Stanford)



Metabuffer Features
Independently scalable 
number of renders and 
display tiles
The viewport of a 
render can locate 
anywhere in the display 
space 
Viewports can overlap
Viewports can be 
different size (multi-
resolution) 



Configuration I

Display



Configuration I

Each Renderer has the same viewport
Polygons can be assigned to any renderer
Display has the same resolution as a rendering 
process

Load balance for isosurface rendering
Each processor generates similar number of 
triangles
No need to redistribute triangles
Efficiently use memory as cache for change of 
viewpoint



Configuration II



Configuration II
Each renderer has a viewport with the size of a tile

Faster rendering and higher resolution on large display
Independent number of renderers and tiles
Combination of sort-first and sort-last

Load Balance
Polygons cannot be assigned arbitrarily
Viewports are positioned with constraints
Load balance among the viewports
Different viewport locations for different view parameters



Viewport Positioning Problem
Conditions

m rendering server to cover n tiles (m > n)
Each tile has the resolution 
Each server renders C triangles/sec
T triangles in the scene

Constraints
The viewport of each server has the same resolution
servers only render triangles in their viewports
Every triangle is covered by the union of viewports and 
rendered by at least one server

Best time: T/(m*C); worst time T/((m-n+1)*C)
NP-hard. Have to use approximation method   

hw×

hw×



Greedy algorithm
Find the center of mass of all 
triangles.
Sort triangles by the distance to 
the center of mass
Each triangle is assigned to a 
viewport in the order of 
decreasing distance

Create a new viewport if no 
viewport can cover the triangle
If multiple viewports are applicable, 
chose the one with least mobility 
Close a viewport if its triangle count 
exceeds a threshold

Iterate the viewports to move 
triangles from over-loaded ones 
to under-loaded ones



Progressive Image 
Composition

It is slow to recompute viewport positions and 
redistribute polygons when view point changes
Change the resolution of viewports for time-critical 
rendering

The Metabuffer supports multi-resolution
Initially polygons are well-balancedly distributed 
When the user navigates, viewports are enlarged to 
encompass its assigned polygons. Thus those renderers still 
renders at the same rate but with lower resolution
When the user pauses at some viewpoint, polygons are 
reshuffled to reduce viewport sizes.



Movie



Multiresolution Multi-Tiled 
Displays: Human Vision

Peripheral vision
Not sensitive to detail

Huge multitiled displays
Only small percentage viewed

Gaze of users
Concentrate rendering resources

Periphery
Rendered in low resolution



Visual acuity

Continuous
Dynamic assignment
LOD and resolution
Generalized ROI

Frequency
Distance
History

Discrete
Points on graph
Static assignment



Active Visualiztion:
Male VH (9,128,798)



Male Timings



Conclusion
A end-to-end scalable parallel framework
Parallel Multi-resolution Isocontour extraction

Load balanced and completely out-of-core
Minimum data replication
View-dependent isocontour extraction

Parallel Multi-resolution rendering
Load balance for different configurations
Progressive image composition for time-critical rendering
Foveated resolution display



Compression

Output from large dataset is also large
Store isosurfaces in compressed format to save 
storage space
Use compression to save communication between 
computational servers and rendering clients

Post-extraction surface compression is 
usually expensive

Extract isosurfaces in compressed format
allow incremental decompression and rendering



Surface Compression

Turan ’84
Deering ’95
Chow ’97
Taubin/Rossignac ’96
Touma/Gotsman ’98
Bajaj/Pascucci/Zhuang ‘99



Edge Index

A

B

D

C

To reconstruct the red triangle, one only needs to know function
values at vertex A, B, C, D and indices of edge AB, AC and AD



Cell Configuration
The configuration of a cell can be derived from the 
function values and indices of its relevant vertices

> isovalue

< isovalue



2D Example

Red Vertices: Relevant Vertices
Green Cells: Valid Cells  



Advantages

Compressed Output: Isosurface is 
extracted directly in compressed format
Minimal Memory requirement: Only two 
slices are needed in memory at any time 
Compressed Input: Each slice may be 
stored in compressed image format (jpeg)
Incremental Transmission: It can be 
transmitted and decompressed incrementally



Guaranteed Right Topology 

14 bits/vertex 10 bits/vertex 6 bits/vertex



Compression Results
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M1 alg. is in Bajaj/Pascucci/Zhuang ’99 and uses 8 bits/vertex



Compression Results 

Original

7,536,227 bytes

M1 Algorithm

587,344 Bytes

Edge Index

407,658 Bytes



Average Error
Average Vertex Error
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