
OPTIMIZING RAY-TRACING FOR COMPLEX SOLIDS
J. J. Jiménez, R. J. Segura, F. R. Feito

Departamento de Informática. Universidad de Jaén
Escuela Politécnica Superior,

Avda. Madrid, 35, 23071 - JAÉN
SPAIN

e-mail: {juanjo,rsegura,ffeito@ujaen.es}

ABSTRACT

Ray-tracing algorithm is very used to produce realistic synthetic images in Computer Graphics. Yet, the
time necessary to obtain images of high quality is very high. The bottleneck of this method of
visualization appears when the intersection between the rays and the differents objects appearing in the
scene, is computed. In this paper, an implementation of the ray-tracing method is presented, using a
robust and efficient algorithm to determine the intersection between a ray and a polygon in 3D. We think
that the use of this algorithm could decrease the time necessary to produce realistic synthetic images.

Keywords: visualization, ray-tracing, intersection, realistic images.

1. INTRODUCTION.

One of the main objectives in the field of Computer
Graphics is the generation of synthetic realistic
images. For that, the methods more commonly used
nowadays are, on the one hand, the ray-tracing
method and on the other one, the method based on
radiosity.

The main disadvantage that both methods
present is that the time necessary for the generation
of the scene is high, so they are not usually useful
when it is attempted to carry out a system that
generates the graphics in real time.

Most research developed at the moment in
the field of visualization are basically focused on
reducing the times for different algorithms. For
that, several alternatives are proposed: reducing the
number of objects to be treated in the scene by the
use of occluders, reducing the number of
intersections by the use of detail levels, or reducing
the time necessary to determine the intersections
between rays and objects.

In this article we present the application of
a robust and efficient algorithm for the generation
of images by the ray-tracing method. The main
advantage of this algorithm is that it is valid for any
kind of objects represented by their boundaries:
manifold or non-manifold, with or without holes,
with concave or convex sides. For the

implementation of the ray-tracing method, only
improvement techniques based on the use of
bounding box have been implemented. Despite that,
the times necessary for the generation of scenes
have been reduced against the necessary ones in
other software for ray-tracing.

In the first section, a revision of the main
technique of ray-tracing will be carried out. In the
next section, the algorithm of test of intersection
segment-polygon proposed in [Segura98], will be
reviewed. Then, the most relevant aspects of the
implementation of ray-tracing method using such
algorithm, will be presented. Finally, some images
obtained will be shown.

2. RAY-TRACING ALGORITHM.

Ray-tracing [Foley90][Wat00] determines the
visibility of surfaces tracing imaginary light rays,
from the observer to the objects of the scene. For
that, a projection centre (the observer) and a
window on an arbitrary view plane are selected.
The window can be considered a regular mesh, the
elements of which correspond to pixels with the
required resolution. For each pixel of the window, a
visual ray that goes from the projection centre to
the scene is released. The colour of pixel would be
the one of the nearest object to the projection
centre. Besides, in order to calculate shadows, an
additional ray is also released from the intersection

point with the nearest object to each of the light
sources. If one of these rays of shadow intersects an
object, such object is under shadow in that point
and the algorithm ignores the contribution of the
light source of the shadow ray.

The illumination model developed by
Whitted and Kay spreads basically ray-tracing to
include the specular reflection and the refractive
transparency. Apart from shadow rays, this
algorithm generates reflection and refraction rays
from the intersection point. In turn, each of these
reflection and refraction rays can generate
recursively shadow, reflection and refraction rays.
In this algorithm a branch of the rays tree ends
when the reflected and refracted rays do not
intersect an object or when a maximum depth
established by the user, has been reached.

Whitted found that about 75 and 95% of
time needed to generate an image, was devoted to
calculate intersections. Because of that, the
strategies to improve the efficiency of algorithm of
ray-tracing, try to accelerate the calculation of these
intersections, or to avoid such calculations. For
that, the use of bounding box, coherence
techniques, or Binary Spacial Partitioning (BSP
trees) are extensively used in this method.
Likewise, new techniques to improve the times of
calculations of intersections between rays and
different objects that can be included in the scene,
appear regularly in literature [Badouel90]
[Moller97].

In this article, this algorithm of rays
tracing has been implemented using new algorithms
for the calculation of intersections [Segura98] and
using bounding-box to avoid the calculation of
some of these intersections. Next, we explain the
fundamentals of the algorithms of intersection
calculation used.

3. TEST OF INTERSECTION SEGMENT-
POLYGON.

The formulation of the problem of the
determination of intersection between polygons and
straight line segments can be expressed as follows :
let polygon be P, formed by n points, p1, p2,..., pn,
and a straight line segment S , the extremes of
which are q1 and q2, it is pretended to determine the
intersection between both objects.

In the case 3D, the classic solution consists
in determining firstly the intersection of the straight
line with the plane on which the polygon is. Once
such intersection is determined, the inclusion of the
point in the polygon is studied. For that, both the

polygon and the point are projected to 2D
(generally, rejecting one of the three coordinates
will be sufficient); then, the inclusion of the point
on the projected polygon is studied. Any test of
inclusion such as the crossing-count one
[Haines94] or Feito´s [Feito95] can be used. In the
case that the point is inside the polygon, then the
ray intersects the polygon.

The problem of the previous process
mainly lies on that the whole process is threatened
by problems of integrity and precision. Besides, it
is necessary to calculate the point of intersection
with the plane, though afterwards, it is determined
that, actually, intersection does not exist, as such
point is not included in the inner part of the
polygon. This makes calculations increase
unnecessarily.

The algorithm.

Next, it is presented the algorithm for ray-polygon
intersection test in 3D [Segura98]. The algorithm
returns whether intersection between a ray (known
the initial and final extremes) and a polygon exists
or not. The process of covering the polygon by
means of triangles could be made as a
preprocessing of the algorithm.

int testIntersSegment(point3D Q,point3D Q’)
{
int cut=0;
if Q y Q’ are coplanar
then return (FALSE)
else

Cover the polygon with triangles
Foreach triangle Ti

Switch Ti.testIntersSegment (Q,Q’){
VERTEX: return TRUE;
EXTERNALEDGE: return TRUE;
INSIDE: cut+= Ti.sign();
INTERNALEDGE: cut+= ½*Ti.sign();

}
return (cut==1);
}

Figure 1: Intersection test ray-polygon.

The calculation times of the previous
algorithm improve up to a 16% the time necessary
for the calculation of intersections for polygons
with few sides. In the case the polygon is convex,
then the polygon covering will be disjoint (in fact it
will be a classic triangulation) so, once an
intersection with any of the triangles is found, it
will not be necessary to continue the calculation for
the rest of them. This can also accelerate the
calculations necessary for the intersection test. The
testIntersectSegment algorithm for a triangle can be
seen in [Segura01].

4. IMPLEMENTATION DETAILS.

For implementation of algorithm an object-oriented
approach has been used. A ray-tracing method
which belongs to scene class, has been defined. A
scene stores information about objects and lights.

Tests have been done with complex
polihedric pieces and using point lights. Lights
follow Warn´s model, using lighting cones. C++
language has been used for the design of the
system. Classes have been designed for storing 3D
objects, as well as scenes, lights, and so on. 3D
objects have a number of attributes: colour,
material, specular and diffuse reflection coefficient.

As for image generation strictly speaking,
no antialiasing techniques have been used, merely
releasing a ray per pixel. In spite of that, and
because no round-sided polyhedrons have been
used, results are good. As far as depth of tree of
rays is concerned, it has been set in four, though in
figures 2.a and 2.b two scenes can be seen,
generated with depth 1 and 4 respectively.

The method is also efficient in case figure
has been built up starting from a triangles-mesh
(figure 2.h). In such a case again, the intersection
test is simplified considerably, as it is not necessary
to cover the different faces of the solid with
triangles. Efficiency improvement is at 16%
approximately, as compared to other algorithms of
intersection calculations with triangles, although
when we have to calculate the point of intersection
exactly, if it exists, times are quite close to those of
other algorithms like the one proposed in
[Moller97] or [Badouel90].

So, we have made a study about the
number of intersections calculated to obtain figure
2.a. Objects contain 30 and 40 vertices
respectively, with 18 and 28 faces. The size of the
final scene is 300x300 pixels. It has been carried
out 5,052,567 intersection tests, and only there has
been intersection in 351,387 cases, that is, a 7% of
cases. So, a 93% of calculations of intersection
points has been avoided.

So, we have only had to compute the
intersection point in 7% of cases; as the method
used to test the intersection is a 16% better than
other algorithms when the intersection does not
exist (that is, a 93% of cases), we have a very
interesting improvement with respect to other
algorithms to compute the intersection point.

5. CONCLUSIONS AND FUTURE WORK.

In this article we have just presented an application
of an algorithm for determining the intersection
segment-polygon proposed in [Segura98]. For
scene generating, complex pieces, more than
showiness and scene realism, have been used,
proving that the mentioned algorithm increases the
efficiency of ray-tracing method, as it accelerates
the calculation of intersections.

For future work, the application of texture
to objects and the improvement of their materials,
will be carried out. Likewise, we intend to
undertake an exhaustive comparative of times with
other algorithms of intersection test applied to ray-
tracing.

REFERENCES

[Agrawal94] Agrawal, A., Requicha, A.: A
paradigm for the robust design of algorithms
for geometric modelling, Eurographics’94,
Computer Graphics Forum, Vol.13, No.3,
pp.33-44, 1994.

[Badouel90] Badouel, F.: An efficient Ray-Polygon
intersection, Graphic Gems, Academic
Press, pp:390-393, 1990.

[Feito95] Feito, F.R.: Orientation, Simplicity and
inclusion test for general polygons.
Computer & Graphics, Vol. 19, No. 4,
pp595-600, 1995.

[Foley90] Foley, J.D. e.a., Computer Graphics.
Theory and Practice. Addisson Wesley,
1990.

[Glassner89] An introduction to ray-tracing. Ed.
Glassner, A. Academic Press, 1989.

[Haines94] Haines, E.: Point in Polygon strategies.
Ed. Glassner, A. Graphics Gems IV,
Academic Press, 1994.

[Hoffman89] Hoffman, C.: Geometric and Solid
Modelling. An introduction, Morgan
Kaufmann Publishers, 1989.

[Moller97] Moller, T., Trumbore, B.: Fast,
minimun storage ray-triangle intersection,
Journal on Graphic Tools, Vol.2, No.1,
pp.21-28, 1997.

[Segura98] Segura, R.J., Feito, F.R., An algorithm
for determining intersection segment-
polygon in 3D. Computer & Graphics, Vol.
23, No. 4, 1998.

[Segura01] Segura, R.J. Feito, F.R., Algorithms to
test Ray-triangle intersection. Comparative
study, Proceedings of the 9th International
Conference in Central Europe on Computer
Graphics, Visualization and Computer
Vision, 2001. (Accepted).

 [Watt00] Watt, A. 3D Computer Graphics, 3rd Ed.
Addisson Wesley, 2000.

a) b)

c) d)

e)
f)

g) h)

Scenes generated using the ray-tracer proposed in the paper
Figure 2.

