

TOWARDS INTERACTIVITY ON TEXTURING
IMPLICIT SURFACES: A DISTRIBUTED APPROACH

R. Zonenschein1;2 J. Gomes2 L. Velho2 N. Rodriguez1

1Department of Computer Science, Pontifícia Universidade Cat´olica do Rio de Janeiro
Rua Marquês de S˜ao Vicente 225, 22453-900 Rio de Janeiro, RJ, Brazil

ruben | noemi@inf.puc-rio.br

2IMPA – Instituto de Matem´atica Pura e Aplicada, Rio de Janeiro
Estrada Dona Castorina 110, 22460-320, Rio de aneiro, RJ, Brazil

ruben | jonas | lvelho@visgraf.impa.br

ABSTRACT

We describe a distributed system for texture mapping implicit surfaces. The method uses a particle system
associated with the gradient vector field of the function that defines an implicit surface to acquire texture
coordinates at a support surface. As each particle trajectory is independent of each other, this method has a
special suitability to run in parallel. Our results show good improvement as more processors are added to
the system, with speedups of up to 13 with 32 processors, performance such as required by an interactive
system.

Keywords: implicit surfaces, texture mapping, parallelism

1 INTRODUCTION

Texture mapping is a successful technique in com-
puter graphics. It maps a texture source onto an object
increasing surface detail while maintaining the un-
derlying geometry. While these are some properties
greatly desired in computer graphics systems (fine de-
tails and simple geometry), in order to be successfully
used, texture mapping demands interactivity, requir-
ing a good degree of performance.

The texture source, known as atexture map, may be
described by an image, a look-up table or a mathe-
matical function. They may then be classified in two
types, depending on their core nature, either 2D or
3D. This classification yields two variations of texture
mapping techniques: 2D texture mapping [Barr83a],
which gives the idea of sticking a label onto an object
surface, or wrapping it with a 2D layer; and solid tex-
turing [Peach85a, Perli85a, Wyvil87a], which gives
the idea of carving an object out of a 3D structure such
as wood or marble. In both cases, texture mapping is
basically a matter of associating a texture space to the
surface space, where the texture will be applied.

In the case of solid texturing, a 3D texture space is

embedded in the object space and texture coordinates
values are thus defined at all surface points. Although
limited to textures that have a 3D structure, solid tex-
tures has the advantage that it can be applied with suc-
cess to any model in 3D, independently of its descrip-
tion.

2D texture mapping is specially suited to parametri-
cally described surfaces, since the mapping of two
parametric spaces is usually straightforward. Im-
plicit surfaces [Blinn82a], i.e, those defined by an
iso-contour of a distance function, present an intrin-
sic difficulty for traditional 2D texture mapping: im-
plicit surfaces do not have a natural coordinate sys-
tem defined on them, therefore, association of texture
coordinates to surface points cannot take place. 2D
texture mapping of implicit surfaces has then relied
on parameterization techniques, which is not always
possible.

We have devised a global method [Zonen95a,
Zonen97a] that allows one to apply 2D textures onto
implicitly defined objects. Our method uses an intrin-
sic property of implicit models, the gradient vector
field of the function that defines the implicit surface,
to generate a force field. This is then used to simu-

late a particle system that maps the implicitly defined
model to a support surface holding the texture.

Implicit surfaces and 2D textures have been a topic of
intensive research. Pedersen[Peder95a] presented a
method that performs local parametrizations creating
patches over it. The patches can then be textured and
interactively manipulated. Smets-Solanes[Smets96a]
described a method that constraints a particle system
to lie on the implicit surface. Assuming that a texture
is already applied onto the surface, his method allows
one to animate the texture while maintaining it on the
surface. For a detailed comparison of their methods
and the one presented in this paper, we refer the reader
to our paper [Zonen98b].

The ultimate goal of a texture mapping system is to
provide tools for the user to interactively map a tex-
ture onto a model and continuously refine it. Our
method has proved to be able to provide such rich
set of tools for texture mapping control [Zonen98a].
Moreover, the potential of this method also encour-
aged us to further generalize it to be used on compos-
ite deformable implicit objects [Zonen98b].

Although these improvements confirmed the useful-
ness of our method, they also highlighted the neces-
sity of better iteration performance. Complex and
deformable models involve large number of particles
participating in our simulation, increasing the com-
putational cost. Interactive control over this particle
system requires faster computation methods.

We have been working on two distinct approaches to
achieve the degree of interactivity our system should
have: multiresolution and parallelism. In this paper
we exploit an intrinsic suitability of this method to
run in, and gain the most of, a distributed system.
While most computer graphics applications use the
parallelism paradigm for batch rendering, we use it to
increase user interactivity. We haven’t found publi-
cations on parallelism applied specifically to texture
mapping.

2 PARTICLE TEXTURING OF IMPLICIT
SURFACES

An implicit surface is defined as the set of pointsx

in space that satisfy an equationF (x) = c, where
F :R3

! R andc 2 R. Thus,F defines a contin-
uous family oflevel surfaces, one for eachisovalue
c. The level surfaces ofF follow the gradient vector
fieldrF orthogonally, as can be seen in the Figure 1.
This observation is the starting point for a method for
sampling implicit surfaces [deFig96a] and for the tex-
turing method described in this section.

Figure 1: Gradient field follows level surfaces.

We interpretrF as a force field, which we use to
drive a particle system. LetS be an implicit surface
defined by a functionF . We employ the gradient vec-
tor fieldrF to generate a force field defined in the
ambient space, and we use it to guide particles that
are initially at rest onS. The motion of a particle is
governed by the differential equation

d
2
x

dt2
+

dx

dt
+rF = 0;

wherex is the position of the particle,t is time and
is a viscosity constant.

This establishes a correspondence between points on
the implicit surface and points on a support surfaceT ,
where a 2D texture is defined beforehand: the texture
attribute for each point onS is taken from the inter-
section of the corresponding particle trajectory with
T . This projection mapping method can be classified
as a two-step texture mapping technique[Bier86a].
While the projection step associates the impicit sur-
face to the support surface via particle simulation, the
mapping step associates the 2D texture to the support
surface. Figure 2 shows the steps of this process and
Figure 7 illustrates the results of the algorithm in 3D.

Figure 2: The method and its steps

The pseudo-code in Algorithm 1 shows the inner
loop of the particle system simulation. Although bet-
ter performance can be achieved using an adaptive
Range-Kutta integration, for the sake of simplicity we
present the most simple computation of a particle tra-
jectory along the gradient vector field using a direct
Euler method.

Algorithm 1 Particles simulation inner loop

for each particlep atS
while p does not intersectT

p = p + dtrF (p)

Although computationally simple, the amount of time
needed to run the particle system may vary depending
on various factors, such as:

� Spatial relationship: the proximity betweenS
andT .

� Time step: time step (dt) chosen for the simula-
tion.

� Model complexity: number of particles partici-
pating in the simulation.

Moreover, fast computation is extremely desired
when interactivity is a goal. We have designed an in-
teractive control system that takes advantage of the
particle texturing method providing tools for the user
to manipulate the texture placement in various ways.
This system, described in depth in [Zonen98a], intro-
duces global and local control tools, using the ge-
ometric, parametric and temporal characteristics of
the method. Interacting with this system, a user can
manipulate different parameters and introduce other
forces in the medium while globally visualizing the
results. Some of the control parameters are:

� Time step (dt).

� The weight of contribution to the field between
rF andrT (rT contributes to the field at-
tracting the particles toT).

� The function parameters of external forces,
used mostly for local changes.

� The position of the basic elementsS, T , and
external forces. Any slight change on their po-
sitions affects the texture placement.

Even though we rely on hardware with texture-
dedicated engines, real time interactivity can only be
achieved with the help of other computation schemes.
In the following section we describe our approach for
applying the particle system method in a distributed
system.

3 DISTRIBUTED SYSTEM FOR PARTICLE
TEXTURING

The particle system described in the previous section
has a special suitability to run on distributed proces-
sors. Each particle has its trajectory depending only
on the forces applied to it, without any interference
with other particles. This is thus anembarrassingly
parallel problem [Foste95a], where computation con-
sists of a number of tasks that can execute indepen-
dently, without communication.

We have used the LAM implementation of the MPI
communication standard as a programming environ-
ment to develop a client-server version of our par-
ticle system method. We have taken the indepen-
dency property of particles to assign the simulation
in chunks to different processors. The following three
pseudocodes resume this approach.

Algorithm 2 first initializes the MPI environment.
This amounts to the basic MPI routines of taking the
number of processors participating in the distributed
system and the processorid. It then initializes the par-
ticle system, reading files and setting parameters for
the simulation. Depending on the MPIid assignment,
the processor is switched to the corresponding code,
behaving as a master or a slave. When the master and
slaves work are done, the textured model can then be
visualized.

Algorithm 2 Main

Initialize MPI
Initialize particle system
if (id == 0)

Run master
else

Run slave
Visualize

The main duty of master algorithm 3 is particle as-
signment. It divides the total number of particles in
equal parts, and distributes the resulting sets among
the processors, assigning the remainder of the divi-
sion to the last processor. For each slave, it then sends
an MPI message with their first and last particles as-
signment. As we will describe in section 5, different
strategies for particle assignment may be used when
working with multiresolution models. The algorithm
finalizes its work waiting for a message of completion
from each slave.

Algorithm 3 Master

Calculate number of particles per slave
For each slave

Send message with First and Last particles
Wait for completion
Exit slaves

Slave algorithm 4 waits to receive a message with the
first and last particles representing its scope of action
in the assignment. After processing the particles sim-
ulation, as in algorithm 1, it then sends a message
of completion to the master. The confirmation is re-
ceived via adie tag message, when the processor frees
itself.

Algorithm 4 Slave

Receive message from master
If message contains First and Last particles

Simulate particles from First to Last
Send message DONE to master

If message is DIETAG
Exit

It should be noted that the code presented above has a
cost of initializing the particle system at each proces-
sor. This can be highly time consuming as the geom-
etry data of a 3D model may be too large. This appar-
ent pitfall is overcomed when applying the algorithm
to behave in an interactive way, as desired by a con-
trollable texture mapping system. Moreover, there are
very few data being passed between processors. Par-
ticle assignments from master to slaves are done only
once per slave, using two integers, one for the first
and other for the last particles. The parameters that
the user may vary do not impose much communica-
tion overhead either, as the distance functionF used
for the simulation is very compact. In this interactive
system, each particle’s(u; v) texture coordinates can
be passed straight to the visualization module. Algo-
rithm 5 describes the interactive steps of the slaves
processors.

Algorithm 5 Interactive slave

Receives message with First and Last particles
While message received is not DIETAG

Get system parameters
Simulate particles from First to Last
Sends data to Visualization module

4 RESULTS

Our tests were run in a dedicated Linux cluster with
32 machines in a 10 Mbits/sec network. Table 1
shows the results we obtained using three differ-
ent models, with 262, 530 and 2558 particles with
timestep of0:0078. Taking the runtime on one ma-
chine as a parameter, we calculate both speedup
(S), the factor by which execution time is reduced
on p processors, and efficiency (E), a percentage
of the desired ”one processor” runtime when run-
ning in p processors. This amounts to the following

formulae[Kumar94a]:

E =
T1

p � Tp
;

whereTp is the runtime obtained withp processors,
and

S =
T1

Tp
= E � p:

Particles p Time(ms) Speedup Efficiency
262 2 0.214 1.59 0.79

4 0.134 2.53 0.63
8 0.080 4.23 0.53
16 0.048 6.99 0.43
24 0.031 10.80 0.45
32 0.025 13.65 0.44

530 2 0.477 1.50 0.75
4 0.272 2.63 0.66
8 0.203 3.53 0.44
16 0.107 6.70 0.41
24 0.073 9.77 0.40
32 0.056 12.59 0.40

2558 2 2.315 1.49 0.75
4 1.223 2.82 0.70
8 0.918 3.76 0.47
16 0.562 6.14 0.38
24 0.377 9.14 0.38
32 0.287 12.00 0.38

Table 1: Performance, speedup and efficiency
related to sequential runtime: 0.341, 0.718 and
3.454 (ms) respectively to 262, 530 and 2558
particles

The system performance is better viewed in the
graphs in Figures 3 and 4. As more processors are
added to the system, higher speed is obtained. The
speedups are plotted in Figure 5, and the system effi-
ciency is plotted in the graph in Figure 6.

Figure 3: Performances with 262 and 530 particles

Figure 4: Performance with 2558 particles

Figure 5: Speedups

Figure 6: Efficiency

As the visualization module does not present a bottle-
neck in our system architecture ((u; v) texture coordi-
nates of each particle do not impose communication
overhead) we can gain the most of the speedups ob-
tained. Although the efficiency was expected to de-

crease as more processors participate in the simula-
tion, their values prove the effectiveness of such sys-
tem.

Load balance is obtained taking advantage of the ge-
ometry proximity of particles at their starting points
on the model. As we use a polygonized implicit
model, we can be sure that all particles on a polygon
are close to each other, and so are each consecutive
polygon. Because closer particles commonly have
similar trajectories along the simulation, load balance
is guaranteed assigning them to different processors.

5 CURRENT WORK

We are currently working on a system that com-
bines multiresolution models and the distributed sys-
tem presented. A multiresolution model is basically a
3D object described in different levels, from the most
coarse to a very refined one. In our texturing system,
this implies varying the number of particles partici-
pating in the simulation, with texture placement qual-
ity accompanying the geometry level. We believe that
our interactive system can greatly improve in speed
and functionality with this combination.

We have set our particle system to run in a contin-
uous fashion. Basically, when a particle reaches the
support surfaceT , (u; v) texture coordinates can be
passed to the display module, and the particle is free
to restart its simulation atS. We interpret this as a
starting point for a new resolution level of particles to
be simulated. While no user interaction takes place,
finer resolution levels are continuously simulated and
their results displayed over the prior level. When the
user interacts with the system, the most coarse level
of resolution is computed again, restarting the con-
secutive levels’ simulations. In fact, depending on the
scope of the control tool used by the user, only parts
of the model should be driven to the coarse level. This
is particularly relevant when a local control tool is
used. In this case, we compute the range of action of
this tool and apply the coarse level simulation only on
this range. The remaining parts of the model maintain
their resolution levels path.

We can take more advantage of the multiresolu-
tion approach implementing it in a distributed sys-
tem. Particle assignment among processors are pre-
calculated involving all resolution levels. As each
processor knows which particles it should compute
at each level, system parameters settings define what
each processor should do at a given time. Slave al-
gorithm 6 can thus be rewritten to accommodate mul-
tiresolution processing.

Algorithm 6 Interactive slave for multiresolution

Receive message with First and Last particles
While message received is not DIETAG

For each resolution level
Get system parameters
Simulate particles for this level, if applicable
Send data to Visualization module

From the user’s point of view, two desired characteris-
tics of an interactive texture mapping system are then
achieved. One is the basic motivation of this paper:
faster computation. The other one is a very good feed-
back degree. At any moment, the user is prompted
with a result of its texture placement. Even though
coarse in the begining, the user may then decide if
an interaction is needed, using either global or local
control tools. At all times, the system is continuously
being updated with better resolution levels.

6 ACKNOWLEDGEMENTS

This research has been developed in the VISGRAF
laboratory at IMPA, as part of the PhD program
of the first author at the Computer Science Depart-
ment of PUC-Rio. VISGRAF laboratory is spon-
sored by CNPq, FAPERJ, FINEP and IBM Brasil. We
would like to thank Roberto de Beauclair Seixas, from
IMPA, for his advice on analyzing the results.

REFERENCES

[Zonen95a] Zonenschein, R., Gomes, J., Velho, L.,
de Figueiredo, L. H.: Textura de superf´ıcies
implı́citas com sistemas de part´ıculas”, Pro-
ceedings of SIBGRAPI’95 (Brazilian Sympo-
sium on Computer Graphics and Image Pro-
cessing), in Portuguese, pp. 305–306, 1995.

[Zonen97a] Zonenschein, R., Gomes, J., Velho, L.,
de Figueiredo, L. H.: Texturing implicit sur-
faces with particle systems,SIGGRAPH’97
Visual Proceedings, p. 172, 1997.

[Zonen98a] Zonenschein, R., Gomes, J., Velho, L.,
de Figueiredo, L. H.: Controlling texture map-
ping onto implicit surfaces with particle sys-
tems,Workshop on Implicit Surfaces ’98, pp.
131–138, 1998.

[Zonen98b] Zonenschein, R., Gomes, J., Velho, L.,
de Figueiredo, L. H., Tigges, M., Wyvill, B.:
Texturing composite deformable implicit ob-
jects, Proceedings of SIBGRAPI ’98 (Brazil-
ian Symposium on Computer Graphics and
Image Processing), pp. 346–353, 1998.

[Barr83a] Barr, A.: Decals,State-of-the-Art of Im-
age Synthesis, SIGGRAPH’83 Course Notes,
1983.

[Bier86a] Bier,E. A. and Sloan Jr, K. R: Two Part
Texture Mappings,IEEE Computer Graphics
and Applications, Volume 6, Number 9, 1986,
pp. 40–53, 1986.

[Blinn82a] Blinn, J. F., A generalization of alge-
braic surface drawing,ACM Transactions on
Graphics, 1(3), pp.235–256, 1982.

[deFig96a] de Figueiredo, L. H., Gomes, J.: Sam-
pling implicit surfaces with physically-based
particle systems, Computer & Graphics,
20(3), pp. 365–375, 1996.

[Foste95a] Foster, I.: Designing and Building Paral-
lel Programs,Addison Wesley, 1995.

[Kumar94a] Kumar, V., and others: Introduction
to Parallel Computing,Benjamin/Cummings,
1994.

[Peach85a] Peachey, D.: Solid texturing of complex
surfaces,Proceedings of SIGGRAPH’85, pp.
279–286, 1985.

[Peder95a] Pedersen,H.K.: Decorating implicit sur-
faces,Proceedings of the SIGGRAPH ’95, pp.
291–300.

[Perli85a] Perlin, K.: An image synthesizer,Pro-
ceedings of SIGGRAPH’85, pp. 287–294,
1985.

[Smets96a] Smets-Solanes,J.P.: Vector field based
texture mapping of animated implicit objects,
Eurographics ’96 Conference Proceedings,
Poitier, France, 1996.

[Wyvil87a] Wyvill. G., Wyvill, B., McPheeters, C.:
Solid texturing of soft objects.IEEE Computer
Graphics & Applications, 7(12), pp. 20–26,
1987.

Figure 7: An overview of the texture mapping method

