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ABSTRACT

In recent years the Hessian matrix and its eigenvalues became important in pattern recognition.

Several algorithms based on the information they provide have been introduced. We recall the

relationship between the eigenvalues of Hessian matrix and the 2nd order edge detection �lter,

show the usefulness of treating them separately and exploit these facts to design a combined

threshold operation to generate sparse data sets.
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1 INTRODUCTION

A common approach to analyze the local be-

haviour of a 2D/3D image I is to consider its

Taylor expansion in the neighborhood of a point

x0

I(x0+�x) � I(x0)+�x
TrI(x0)+�x

TH(x0)�x

(1)

where rI is the gradient vector and H denotes

the Hessian matrix { a matrix built of the second

partial derivatives of I .

H =

0
@ Ixx Ixy Ixz

Iyx Iyy Iyz
Izx Izy Izz

1
A (2)

with Iab = @2I
@a@b

de�nes the Hessian matrix for

the 3D image (volume).

1.1 The Hessian matrix and its eigenvalues

Expansion (1) plays a crucial role in �lter de-

sign [M�olle97], [Theu�00] and, up to second or-

der, locally approximates the structure of the im-

age [Frang98]. Its components, both the gradi-

ent and the Hessian matrix, can also be used

separately. The gradient vector is widely used

as a normal to an implicitly de�ned isosurface.

Its magnitude provides us with an edge detector

and can be used as a modulation factor in 3D

imaging [Levoy88]. The usefulness of the Hessian

matrix is less known. Its elements approximate

2nd order derivatives, and therefore encode the

shape information { both a qualitative and quan-

titative description of how the normal to an iso-

surface changes. Haar Romeny et al. [Haar 94]

exploit the transformation of an image into so{

called Gauge coordinates to �nd a compact ex-

pression for Gaussian curvature of the intensity

surfaces given by 2D images:

K =
detH

1 + krIk2
(3)

For 3D images, the expressions for Gaussian and

mean curvatures are more complicated, neverthe-

less still expressed in terms of elements of the Hes-

sian matrix and the gradient vector.

Particularly interesting are the eigenvalues and

eigenvectors of the Hessian matrix. Sato [Sato98]

and Frangi [Frang98] independently employ

eigenvalues to design a �lter for vessel enhance-

ment in 3D medical digital images. Two years

later Sato et al. [Sato00] generalize the previously

introduced concept to enhance tubular, blob, and

sheet{like structures. This approach, however,

implements the concept of a multifeature transfer

function, and leaves the user to set the parame-

ters in 5D space (I , rI , and three functions of

the eigenvalues) or even, including segmentation

information, in 6D space.

1.2 Sparse volumes

Sparse volumes can be, when appropriately re-

organized, displayed at interactive frame rates

without hardware acceleration. There are di�er-

ent techniques both to generate reasonable sparse

data sets and to display them. Saito [Saito94]



proposes a non{uniform Poisson{disk{sampling.

Each voxel of the generated sparse data set is rep-

resented by a simple 3D entity like a point, line,

cross or a triangle, and is passed to conventional

rendering technology achieving real{time results.

This approach can be considered as an interac-

tive non{realistic previewing. The algorithm in-

troduced by Mroz et al. [Mroz00] decimates a vol-

ume with respect to the visualization technique

to be applied - MIP. In this case back projection

is used. Other real{time, but still high{quality

back projection techniques have been introduced

in [P�st00], and [Rusin00].

1.3 Outline of the presented work

We introduce a framework for using eigenvalues

of the Hessian matrix to reduce volume data.

We show how the eigenvalues are related to the

Laplacian edge �lter, demonstrate the suitability

of thresholding them for feature detection, and

propose a technique resulting in a sparse volume.

Rather then back{projecting sparse volumes to

bene�t from high frame rates, in this work we

concentrate on a visual comparison of ray{traced

original volumes vs. sparse volumes generated us-

ing our novel approach. Backprojection/splatting

display with frame rate evaluation is left as a sub-

ject to future work.

2 METHOD

2.1 Relation of eigenvalues to Laplacian

The Hessian matrix H , as a real{valued and sym-

metric matrix, has real{valued eigenvalues. Find-

ing the eigenvalues and eigenvectors of the Hes-

sian matrix is closely related to its decomposition

H = PDP�1 (4)

where P is a matrix of H 's eigenvectors and

D is a diagonal matrix having H 's eigenvalues

at the diagonal. Equation (4) is a similarity

transformation under which the trace of matrix,

Tr(X) =
Pn

i=1
Xii, is an invariant. Putting these

facts together for a 3D image, we get

�1 + �2 + �3 = Tr(D) = Tr(PDP�1) =

= Tr(H) = Ixx + Iyy + Izz =

= L (5)

The rightmost term denotes the Laplacian �lter

and the equation (5) puts it into relationship with

the eigenvalues of the Hessian matrix.

The Laplacian �lter and its variant, the Laplacian

of Gaussian (LoG), provides the image process-

ing community with an isotropic edge detection

�lter [J�ahne97]. The importance of edge infor-

mation for machine vision is usually motivated

from the observation that under rather general

assumptions about the image formation process,

a discontinuity in image brightness can be as-

sumed to correspond to a discontinuity in either

depth, surface orientation, reectance or illumi-

nation [Linde96]. The importance of Laplacian

and LoG for bioperception has been emphasized

by the work of Marr [Marr82]

2.2 A simple way of using eigenvalues

Given the Hessian matrix eigenvalues, equa-

tion (5) shows how to combine them into the

Laplacian operator. Experimenting with eigen-

value images, however, we have found that treat-

ing them separately rather than adding them

provides us with information more suitable for

thresholding. Fig. 1 and further examples at

our project web page [Hlad�u00] demonstrate this

property for 2D images. For the decimation of

2D images we propose a combined thresholding

as follows:

Inew[p] =

�
I [p] if �1[p] � T1 _ �2[p] � T2
0 otherwise

(6)

where p = [x; y] denotes the coordinates of a

pixel.

For a 3D image there are three eigenvalues, �1 �
�2 � �3, for each voxel. Fig. 2 shows axial slices

of eigenvalue volumes computed from a CT head

data set. Since, in our experience, images cor-

responding to �2 always lack good contrast, we

exclude them from the decimation process and

specify a combined thresholding just with the two

remaining eigenvalues �1, �3:

Vnew[v] =

�
V [v] if �1[v] � T1 _ �3[v] � T3
0 otherwise

(7)

where v = [x; y; z] denotes the coordinates of a

voxel.

De�nitions (6) and (7) preserve just those pix-

els/voxels of the original data with salient fea-

tures. This can be seen from the fact, that �nd-

ing eigenvectors of the Hessian matrix is related

to �nding the directions with extreme values of

the second derivatives, i.e., directions of extreme

normal{to{isosurface change.

The only task of the user is to specify, in gen-

eral, two threshold values (Fig. 2). In our expe-

rience, however, the extreme eigenvalues exhibit

a symmetry �1[v] � ��3[v] in edge areas, so the

thresholds can be speci�ed symmetrically in the

initial step with the possibility of non symmetric

re�nement in the �nal step.



Figure 1: An example of an MRI image. a) original I, b) gradient magnitude krIk, c) Laplacian

operator applied to an image, d) �1 image, and e) �2 image. The Laplacian image corresponds to the

sum of eigenvalue images, which can be thresholded for salient features.

Figure 2: Part of an interface and demonstration of suitability for thresholding of the eigenvalues �1 and

�3. The image corresponding to eigenvalue �2 lacks contrast information, and is therefore excluded from

thresholding.



3 IMPLEMENTATION ISSUES

The presented approach bene�ts from the infor-

mation provided by eigenvalue volumes. In case

the eigenvalues already have been computed and

stored to disk for later use for any of the appli-

cations mentioned in section 1.1, it provides the

user with the possibility of an interactive preview

of the sparse data set after the simple interaction

discussed above.

The remainder of this section discusses implemen-

tation hints for the case when the eigenvalues are

not yet computed.

3.1 Computation of the Hessian matrix

The computation of the Hessian matrix requires

an approximation of the second order partial

derivatives (Eq. 2). A common approach to this

is to perform a convolution of the input data with

the derivatives of LoG �lter. Convolution, in gen-

eral, is known to be a time consuming process.

For the LoG convolution, however, the separabil-

ity of the Gaussian kernel can be exploited re-

ducing the time complexity, for one voxel, from

O(k3) to O(3k), where k is the kernel size. The

other possibilities to speed up the convolution re-

side in using hardware speci�c features. For the

SGI architecture Hopf and Ertl [Hopf99] speed

up the 3D convolution up to 7 times. For the

Intel/Windows platforms a good starting point

could be the Image Processing Library [Intel00]

optimized for Pentium processors.

3.2 Eigenvalues of the Hessian matrix

While solving a 2�2 matrix for eigenvalues leads

to a quadratic equation, the explicit formula for

the 3�3 case would be complicated due to cu-

bic polynomials. In this case it is better to use

a numeric solution. For symmetric real{valued

matrices, the fast converging Jacobi's method is

recommended [Press92].

4 RESULTS

Table 1 and �gures 3{5 show that using de�nition

(7) the volume can be, for visualization purposes,

represented by approximately 10 % of its voxels.

The thresholds T1 and T3 from this de�nition al-

low the user to interactively control the trade{o�

between quality of the display and quantity of the

information stored in the decimated volume.

Equation (7) de�nes a variant of a 2nd order edge

detector which is important for bioperception (see

section 2.1). This is most noticeable by compar-

ing the rendered images of the engine block data

sets (Fig. 3). In the decimated volume, areas cor-

responding to edges are emphasized and provide

the observer with a better topological information

of the data set.

All tested volumes have been quantized to 256

gray levels. To compare the visual appearance,

the volumes have been displayed by a direct vol-

ume rendering algorithm (DVR) implemented in

the VolumePro architecture [P�st99].

5 CONCLUSION

We propose an easy{to{use framework for ex-

ploiting eigenvalues of the Hessian matrix to re-

duce volume data. We recall the relation of eigen-

values to the Laplacian �lter, the suitability for

thresholding eigenvalue images/volumes and de-

�ne a combined threshold operation to generate

a sparse data set. We evaluate our approach for

several volume data sets of di�erent modalities.

The advantage of sparse data sets resides in the

possibility of their fast visualization due to back

projection techniques mentioned in section 1.2.

In this work we rather concentrate on the visual

comparison between the DVR generated images

of original volumes and volumes generated using

our approach. A backprojection/splatting dis-

play with frame rate evaluation is left as a subject

to the future work.
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Please refer to the web page [Hlad�u00] for the following color images.

Figure 3: Engine Block. DVR of decimated (left) and original (right) data sets

Figure 4: CT Head. DVR of decimated (left) and original (right) data sets

Figure 5: MRI Head. DVR of decimated (left) and original (right) data sets


