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ABSTRACT

Imaged-based rendering is a well-known method in computer graphics to achieve photo-realistic images.
In this paper we show how conventional image-based rendering algorithms can be extended to visualize
general relativistic effects in a restricted class of spacetimes. We propose a generalized aberration formula
in order to treat the visualization of special and general relativistic effects on the same footing. In this way,
image-based general relativistic rendering can be regarded as an extension of special relativistic rendering.
As an example, we present snapshots from the viewpoint of an observer traveling at warp speed.
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1 INTRODUCTION

Albert Einstein’s Theory of Relativity is among the
most famous areas of physics today. But despite the
popularity, its abstract mathematical foundation ren-
ders it hard to comprehend. People usually have an in-
tuitive understanding of flat three-dimensional space
or a curved two-dimensional space. However, one
does not have a notion of the flat four-dimensional
spacetime Special Relativity deals with, let alone the
curved four-dimensional spacetimes General Relativ-
ity uses to describe the effects of gravitational fields.
Spacetime diagrams are the most widely used means
to display relativistic properties. While being an ap-
propriate tool for scientists, they are hardly under-
standable without prior knowledge, and therefore not
feasible in order to convey general relativistic proper-
ties to a broader public.

To stimulate intuition, we suggest images of every-
day objects as they would be seen in an environment
dominated by relativistic effects. They are targeted at
the fields of popular science and edutainment in the
first place, but can be a useful visualization tool for
scientists as well.

Unlike traditional, geometry-based techniques, a
photo-realistic, well-known environment follows
most naturally when using an image-based render-
ing scheme. Furthermore, the delicate and time-
consuming step of fine-grained geometric modeling
can be avoided. In this paper, we introduce an image-
based approach to general relativistic rendering as an
extension of special relativistic rendering[Weisk00c].
In a restricted class of spacetimes, a generalized aber-
ration formula can be formulated in order to treat the
visualization of special and general relativistic effects
on the same footing.

The paper is organized as follows. In the following
section, a brief overview on previous work is pre-
sented. Section 3 is focused on the physical and math-
ematical background for general relativistic image-
based rendering. Here, the generalized aberration for-
mula is introduced and the relativistic transformation
of the plenoptic function is presented. Section 4 de-
scribes the relativistic extensions that have to be in-
troduced in conventional image-based rendering tech-
niques. In Section 5, we present details on the imple-
mentation and results. The paper ends with a short
conclusion and an outlook on future work.



2 PREVIOUSAND RELATED WORK

Most of the previous work in relativistic visual-
ization focuses on geometry and color transforma-
tions induced by Special Relativity. Hsiung and
Dunn[Hsiun89] extended a classical ray tracer to
display geometric distortions as seen by a fast
moving observer. Later implementations[Hsiun90a,
Hsiun90b] take into account color changes due to the
Doppler effect as well. The T-buffer[Hsiun90c] is an
alternative approach based on common polygon ren-
dering that is able to visualize special relativistic ge-
ometry effects in real-time. Weiskopf[Weisk00a] pro-
posed texture-based relativistic rendering for visual-
izing the apparent geometry and illumination of fast
moving objects.

In computer graphics, the demand for photo-realistic
image generation gave rise to image-based ren-
dering (IBR) as a new, non-geometry-based ren-
dering scheme. IBR today stands as a stan-
dard technique in computer graphics, QuickTime
VR[Chen95] being one if its most well-known appli-
cations. More advanced techniques include plenop-
tic modeling[McMil95], light fields[Levoy96], the
lumigraph[Gortl96], and view morphing[Seitz96].

IBR derives from the notion of the plenoptic
function[Adels91] containing all visually perceptible
information for each given point in spacetime. The
plenoptic function allows to define more general cam-
eras than the pin-hole camera commonly used in ray
tracing applications. An exhaustive treatment of ex-
tended camera paradigms was given by Loffelmann
and Groller[Loffe96].

Image-based algorithms were adapted to special rel-
ativistic visualization[Weisk00c] in order to produce
photo-realistic pictures including all special relativis-
tic effects. In this paper, the image-based approach
to special relativistic rendering is extended to more
complex scenarios of General Relativity.

Many textbooks give a comprehensive introduction to
General Relativity, the works of Weinberg[Weinb72]
and Misner et al.[Misne73] being among the most
popular and widely used. Previous work in general
relativistic visualization is entirely geometry-based.
Most implementations provide a proprietary general
relativistic ray tracing system and confine themselves
to a few simple setups with well-known metrics,
like neutron stars and black holes[Ertl89, Nolle89,
Nemir93, Nolle96]. A more general approach to non-
linear ray tracing as a visualization technique was pre-
sented by Groller[Groll95]. Weiskopf[Weisk00b] in-
vestigated four-dimensional non-linear ray tracing in
further detail and showed its applicability as a visual-
ization tool in gravitational physics.

3 PHYSICAL BACKGROUND

The plenoptic function P(x*,8,¢,A) is a physical
property defined as spectral intensity in a range of
wavelengths between A and A + dA at a point x* in
spacetime with the incoming light originating from
the direction (6, @), given in spherical coordinates. P
contains all information that is necessary to recon-
struct the visual perception of an observer at a given
point in spacetime.! It does not contain immediate
depth information.?

For a fixed point in space, a discrete approximation
of the plenoptic function can be composed from con-
ventional images that are arranged into a spherical
panorama. Samples of the plenoptic function can
thus be taken by means of a calibrated camera as de-
scribed, e.g., in [Weisk00c]. Relativistic visualiza-
tion has to construct a transformation of the plenop-
tic function from our everyday world into arbitrary
systems that exhibit the desired relativistic effects.
For Special Relativity, this means that we record the
plenoptic function in a frame of reference that is ap-
proximately at rest with regard to our sample objects,
and later generate snapshots as would be seen by a
fast moving observer. For general relativistic visu-
alization, we record the plenoptic function in an ap-
proximately flat spacetime?, and later transform into
snapshots as would be seen if the surrounding gravi-
tational forces were much stronger and no longer neg-
ligible.

In Special Relativity, light in vacuo travels along
straight lines. The geometric properties of a light ray
as a whole can thus be fully described by a point and
a direction in space at this point. Therefore it is pos-
sible to state the transformation of a light ray between
two special relativistic frames of reference as a point-
wise transformation, the Lorentz-transformation of
the plenoptic function[Weisk0Oc]. The relative speed
of the two frames of reference is the only parameter
in this transformation. Neglecting color transforma-
tions, special relativistic effects are contained in the
aberration equation (figure 1(a)),

cosO—f

0’ = arccos
1—BcosB’

)

where 6 and @ are the angles of an incident ray of
light as measured in two inertial frames of reference
Sand S'. S’ is moving with velocity v = Bc relative to

Linformation on the polarization of the incoming light is usually
neglected in the plenoptic function because the human eye is not
sensitive to polarization.

2Though some three-dimensional information can be recon-
structed from the plenoptic function at multiple points in space.

SGravitational forces on earth are weak enough for the space-
time to be reasonably flat, i.e., light paths on earth can be assumed
to be straight lines.
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Figure 1: (a) The special relativistic aberration function for a relative speed of 0.8c. (b) The generalized
aberration function for the warp metric at apparent speeds of 0.8c, 1c, and 5c. Unlike their special rela-
tivistic counterpart, all curves pass through (90°,90°). This means that front view and back view in the warp
metric stay clearly separated, whereas in special relativity at high velocities, objects to the back become
visible. 6 and 0’ are given in degrees. Similar diagrams are presented in [Clark99].

S; ¢ is the speed of light. Both angles are taken with
respect to the direction of the relative motion of S'.

General Relativity introduces a curved four-dimensio-
nal spacetime to take into account gravitational ef-
fects. Differential geometry presents the mathemat-
ical foundation of General Relativity. Its most fun-
damental property is the metric tensor—or metric for
short—, that contains all information about the curva-
ture of spacetime, or more physically speaking, of the
gravitational forces. In the absence of a gravitating
mass, the metric is identical to the Minkowski met-
ric known from Special Relativity, the corresponding
spacetime is called to be flat. In General Relativity, a
gravitating mass gives rise to non-trivial terms in the
metric tensor. Accordingly, the spacetime is curved.
Due to the curvature, light rays no longer follow sim-
ple straight lines. Instead, light travels along so-called
null geodesics, given by the geodesic equation
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and the null condition, confining the solutions of (2)
to lightlike paths,

dx# dx¥
v ( )wa =

guv is the metric tensor at position X in spacetime,
x# denotes the associated coordinates of the light ray.
The Ky, are the so-called Christoffel symbols that
can be calculated from the metric and its first order
derivatives. a is used to parameterize the path. Greek
indices run from zero to three. Given a starting lo-
cation and direction in spacetime, the geodesic equa-
tion yields an initial value problem for a system of

@)

non-linear ordinary differential equations. It is known
from the theory of differential equations that there
exists a unique solution to this problem, rendering a
unique path of a light ray.

Because of the complex nature of light paths in Gen-
eral Relativity, a generic approach to render rela-
tivistic images needs to take into account the full
four-dimensional layout of a scene. Under certain
conditions, however, it is possible to maintain an
aberration-like view as in the special relativistic case,
which makes it feasible to use image-based render-
ing techniques: First, the introduced spacetime needs
to be asymptotically flat. Second, all points in the
curved region of spacetime must be closer to the ob-
server than any visible scene object*. These two con-
straints allow a sphere to be drawn, centered at the
observer’s location, that separates space into a general
relativistic part inside, and an entirely non-relativistic
part outside (figure 2). As all light originates from ob-
jects outside, the inbound part of the plenoptic func-
tion on the sphere’s surface is independent of the par-
ticular shape of spacetime inside. In order to obtain
general relativistic images, it is therefore sufficient to
know the plenoptic function on the sphere’s surface,
and the behavior of the light rays within this sphere.

The full plenoptic function is usually hard to record,
so for practical purposes, further restrictions have
to be imposed. First, if all scene objects are far
away from the observer compared to the radius of
the sphere, the plenoptic function at all points on

4There have to be invisible objects as well in order to build up
the curved region in spacetime. Invisibility may be inherent to the
objects like, e. g. gravitational waves, due to their optical or spacial
properties like, e. g., sparsely distributed matter, or as simple as the
object lying outside the observer’s field of view.
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Figure 2: If gravitational forces are confined
to a limited region in space, a sphere can be
imagined around the observer that separates
curved and flat regions in spacetime. Light in
the flat region travels along straight lines. If
the sphere’s radius is small compared to the
distance to the object, the plenoptic function at
the surface can be approximated by the plenop-
tic function at the sphere’s center. For nearby
objects, this approximation introduces paral-
lax artifacts.

the sphere’s surface may be approximated by the
plenoptic function at the center of the sphere in the
flat source spacetime. Second, in a static scene, the
plenoptic function on the sphere’s surface is indepen-
dent of time. Combining both restrictions, a single
4rtsterad view is sufficient to describe the plenoptic
function at all points on the sphere. Note that the met-
ric may still be time-dependent. Third, for a cylin-
drically symmetric spacetime, spherical coordinates
may be defined so that the metric is independent of
angle @. If all these prerequisites are met, an aberra-
tion equation similar to (1) can be formulated to de-
scribe the connection between a flat spacetime and a
curved spacetime with strong gravitational forces,

o =1(0). )

The generalized aberration function f depends only
on the observer’s location and on the metric inside
the sphere. In this equation, possible absorption or
optical diffraction by the matter building up the metric
is neglected.

As a sample application, we investigate the so-called
warp metric[Alcub94], a physically sound solution to
Einstein’s general relativistic field equations that al-
lows a body to travel faster than light. The body itself
rests inside a warp bubble; it is the bubble that moves
through space and carries the body with it. For an
outside observer, the body appears to move at warp

speed—faster than light.> The warp metric is time-
dependent but meets all restrictions stated above. It
is cylindrically symmetric and differs from flat space-
time only in a small region at the bubble’s surface.
Assuming a point-like observer, the bubble can be
constructed infinitely small around the observer’s lo-
cation; in this sense, all scene objects are guaranteed
to be far away compared to the bubble’s extent.

The warp metric was alternatively visualized by
means of four-dimensional ray tracing in [Weisk00b].
Clark et al.[Clark99] investigated null-geodesics in
the warp metric on a physical footing.

Further well-known metrics include the Schwarz-
schild metric for static, spherically symmetric bod-
ies, and the Kerr metric that takes into account an
additional rotation of the body. Both metrics show
the required cylindrical symmetry but are unlimited
in spacial extent. However, they are asymptotically
flat, so given a certain degree of accuracy, a cut-off
radius can be defined and the metric be regarded as
flat on the outside. In this way, the proposed ren-
dering scheme can be applied to visualize the looks
of faraway objects—Iike distant stars—as seen by an
observer close to a static gravitating mass, or an ob-
server located on the symmetry axis close to a rotating
gravitating mass.

4 RENDERING TECHNIQUE

Aberration-based relativistic rendering is a straight-
forward extension to the rendering pipeline in tradi-
tional image-based rendering. It introduces an addi-
tional transformation of the plenoptic function used
for final image generation. This transformation con-
sists of conventional three-dimensional rotations to
orient the metric in space, and the calculation of
aberration according to (4). Shifts in wavelength
and intensity are currently neglected. The relativistic
modifications are located at the end of the rendering
pipeline, just before final image generation; all prior
steps are left unchanged.

This rendering scheme can be regarded as a subset
of the extended camera model by L&ffelmann and
Groller[Loffe96] that was originally developed for
ray tracers. It can, however, trivially be applied to
imaged-based renderers as well. We confine our ex-
tended camera to a fixed point in spacetime. No such
prerequisites are imposed on the directional mappings
that are given by the generalized aberration function.

SWhile the warp metric does not violate the Theory of Gen-
eral Relativity, constructing a warp bubble requires so-called exotic
matter with negative rest energy[Ford00]. Exotic matter still is in
accordance to General Relativity but has never been observed so
far. It may or may not exist.
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Figure 3: Snapshot of a sample scene at rest. (a) Front view. The camera points into the direction that
will later be used as direction of flight. It covers a horizontal angle of view of 60°. This camera parameter

remains fixed for all further images. (b) Back view.

In this sense, image-based relativistic visualization
can be regarded as viewing a real-world scene through
an extended camera with a generic relativistic lens ap-
plied.

By capturing a series of plenoptic functions along a
predefined path, a sequence of relativistic snapshots
can be generated and combined into a relativistic an-
imation. In regions where areas of the source images
are heavily scaled down by the relativistic transfor-
mation, numerical errors due to the discrete nature of
the input data may lead to disturbing flickering arti-
facts in parts of the movie. This problem is known
in traditional computer graphics as well and can be
addressed by filtering techniques. We treat filtering
issues in detail in the following section.

5 IMPLEMENTATION AND RESULTS

The described image-based relativistic rendering
scheme is implemented in a batch-job oriented soft-
ware renderer called Erganzingen. It extends the soft-
ware system described in [Weisk00c]. The renderer is
written in C++. It takes a series of images captured at
a single point in space, and blends and stitches them
into a 4ttsterad view, a spherical panorama. The gen-
eralized aberration function (4) is obtained numeri-
cally: the initial value problem for the geodesic equa-
tion (2) is integrated by means of the fourth-order
Runge-Kutta method[Press94] with adaptive step-size
control. For symmetric metrics such as the warp met-
ric, this is done in a pre-computing step for a discrete
set of 6 samples and stored in a lookup table. Interme-
diate values are later obtained by linear interpolation.

Aliasing effects are reduced by means of bilin-
ear interpolation on the source images. Alterna-
tively the source image can be thought of as a two-

dimensional texture with regard to coordinates 6 and
@, so texture filtering techniques can be applied. MIP
mapping[Willi83] as the most widely used filtering
technique is based on quadratic footprints, while the
highly non-linear relativistic transformations cause ir-
regularly shaped footprints. We have therefore imple-
mented a filtering scheme that calculates a rectangular
axis-aligned footprint of each source pixel based on
the first-order derivatives of the transformation func-
tions. Additionally, standard supersampling can be
applied. Erganzingen so far only visualizes apparent
geometry.

Raw image data for the supplied sample images in
figures 3—7 was captured using a standard DV camera
mounted on a telescope fork arm. The camera is cali-
brated on the fork arm to ensure that its optical center
remains fixed in space when the camera is turned to
different positions. So multiple views from a single
point are obtained that can be combined into a full 41t
sterad panorama. Positioning and image capturing are
automated and remotely controlled by a laptop.

The following example investigates a real-world
scene (figure 3) at high speeds. Figures 6 shows a
series of front view images rendered from the center
of a warp bubble traveling at various speeds. Plots of
some corresponding generalized aberration functions
are displayed in figure 1(b). Notably, while the appar-
ent field of view gets enlarged in the warp-drive front
view, straight lines remain straight, and angular dis-
tortions are weak. As the aberration transformation
depends only on angle 6, this is by no means natu-
ral but a very special case, especially when compared
to the special relativistic results (figure 4), where
straight lines become distorted to hyperbolae. Note
also that this property is immediately visible from the
rendered images, yet hardly apparent from the data
plots.



Figure 4: Comparing the front view at eighty percent of the speed of light. (a) Special relativistic view.
(b) View from inside the warp bubble. Image distortions inside the warp bubble are remarkably small
compared to the special relativistic result. At warp speed straight lines remain straight in the front view,
while special relativistic effects distort them to hyperbolae.

(b)

Figure 5: Comparing the back view at eighty percent of the speed of light. (a) Special relativistic view.
(b) View from inside the warp bubble. While Special Relativity magnifies objects to the back, the warp
bubble shows the opposite effect, and the apparent field of view gets even larger than at rest.

Looking opposite to the direction of mation offers a
slightly distorted view at velocities well below the
speed of light (figure 5). At warp speed, light from
a cone shaped region in space cannot reach the ob-
server anymore (figure 7). The properties of the aber-
ration function however ensure that there is no appar-
ent black void; instead, the virtual hole gets sewn up
with image information from the surrounding areas.

6 CONCLUSION AND FUTURE WORK

In this paper we have shown how to extend image-
based methods from special relativistic visualization
to render general relativistic scenes. An extended
aberration function has been described which allows
to treat the visualization of special and general rel-
ativistic effects on the same footing. We have pre-
sented an analysis of the requirements metric and

scene must meet for the method being applicable.
Photo-realistic snapshots of objects as seen through
strong gravitational fields can be generated at ease.
These images provide additional insight in the prop-
erties of certain spacetimes and are applicable for sci-
entific visualization as well as edutainment.

Further work in this area will improve the geodesic
calculator to include information about the gravita-
tional blue- or redshift, so relativistic effects on color
and intensity can be taken into account as well. Ad-
vanced texture-filtering techniques more suitable for
irregularly shaped footprints will be investigated in
order to enhance image quality. An improved auto-
mated system to capture multiple panoramic images
along a pre-defined path will allow to generate photo-
realistic general relativistic movies from a series of
snapshots.



(a)

Figure 6: Front view at warp speed. (a) 500 percent of the speed of light. (b) 1000 percent of the speed of
light. An apparently wider field of view is the only prominent effect.

(a)

(b)

Figure 7: Back view at warp speed. (a) 100 percent of the speed of light. (b) 120 percent of the speed of
light. Geometric distortions are much more prominent than in the front view (figure 6). At higher speeds,
image information from a cone shaped region to the back is no longer visible.
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