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ABSTRACT

A procedure is described for synthesizing an image with the same texture as a given input image.
To achieve this, the output image is built up by successively adding pixels selected from the input
image. Pixels are chosen by searching the input image for patches that closely match pixels already
present in the output image. It is shown that the accurate reproduction of features in the input
texture depends on the order in which pixels are added to the output image. A procedure for
selecting an ordering which transfers large complex features of the input to the output image is
described. This procedure is capable of reproducing large features even if only the interactions of
nearby pixels are considered. The procedure can be altered to allow specification of the placement
of particular features in the output texture. Several applications of this are described.
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1 INTRODUCTION

The texture of an image might be defined broadly
as the interrelationships between pixels in that
image. The ability to analyse and manipulate
image texture has a number of interesting appli-
cations. The simplest application is to create a
new image with the same texture but of different
size and shape to a sample image. Seamless edit-
ing of images is also a possibility. For example an
object could be removed from an image by syn-
thesizing a new section of the background texture
over the top of it. These applications all rely on
the ability to re-synthesize a sample texture to fit
a variety of constraints.

A number of texture re-synthesis methods are
described in the literature. One approach is
based on searching for specific features in textures
[Heege95] [Bonet97] [Porti99]. In these meth-
ods, the input image is decomposed into a set of
features. Statistics about these features are col-
lected, and used to synthesize a new image. One
problem with these methods is that they can only

recognize a set of features which have been speci-
fied in advance. While the results can be impres-
sive, it is difficult to devise a generic feature set
that can be used to describe all textures.

Another approach to the texture re-synthesis
problem is to analyse and reproduce interactions
between individual pixels [Monne81] [Gagal90].
Methods based on this approach define a func-
tion describing a pixel in terms of its neighbours
and a random element. This function is used to
generate a new image, pixel by pixel.

Recently, a new pixel-based technique has been
developed based on best-fit searching. Garber
[Garbe81] and Efros and Leung [Efros99] inde-
pendently developed this approach, in which each
pixel is selected by searching the input image for
a patch of pixels closely matching nearby pixels
already present in the output image. This results
in an output image pieced together from small
parts of the input image. Using this technique,
textures can be synthesized in which the relation-
ships between neighbouring pixels are extremely



ΩI : The set of pixel locations in
the input image.

I(s), s ∈ ΩI : The pixel in the input image
at location s.

ΩO : The set of locations contain-
ing pixels in the output im-
age.

O(s), s ∈ ΩO : The pixel in the output im-
age at location s.

L(s), s ∈ ΩO : The location of the pixel in
the input image that is in
the output image at location
s.

ΩK : The set of offsets considered
when calculating the simi-
larity of two texture patches.

K(u), u ∈ ΩK : Weighting given to a partic-
ular offset u.

A(s), s ∈ ΩI
B(s), s ∈ ΩO : Two uniformly random

functions.

Table 1: Table of symbols.

complex.

Efros and Leung report that for good results the
size of the patch searched for in the input im-
age should correspond to the size of the largest
feature in the texture. To allow larger features,
Wei and Levoy [Wei00] propose a hybrid of the
feature-based and best-fit techniques that gener-
ates the output in a pyramid of successively finer
resolutions.

This paper presents a refinement of the pixel-
based best-fit re-synthesis procedures introduced
by Garber [Garbe81] and Efros and Leung
[Efros99]. The most important change is to the
selection of the order in which pixels are added to
the output image. This order is selected to allow
reproduction of features larger than the size of
the patches searched for in the input image. The
procedure avoids decomposing the input image
into a predefined feature set, and can therefore
re-synthesize a wide range of textures. An ex-
tension to this procedure is presented that allows
specification of the layout of different regions of
texture in the output image.

2 RE-SYNTHESIS PROCEDURE

The procedure described in this paper takes as
input an image containing a sample of a texture
and produces another image with the same tex-
ture.

The procedure has two stages. In the first stage,
pixel interrelationships in the input image are
analysed. The extent to which the value of each
pixel constrains the values that can be taken by
neighbouring pixels is determined. The reasons
for doing this are discussed in section 2.1 and
the calculations necessary are described in sec-
tion 2.2.

In the second stage, pixels are added to the ini-
tially blank output image until all locations have
been filled. The order in which pixels are added
is chosen to facilitate faithful reproduction of
the texture of the input image, using the results
from the first stage, as described in sections 2.1
and 2.2.1. Section 2.2.1 also describes the ini-
tialization of this stage in terms of choice of the
locations and values of seed pixels.

To add a pixel to the output image at a partic-
ular location, the surrounding pixels which have
already been added to the output image are ex-
amined. The closest match to these pixels is lo-
cated in the input image, and the corresponding
pixel from the input image is inserted in the out-
put. This is described below and in section 2.2.2.

Symbols used in this paper are listed in Table 1.

Colours are stored as RGB values. To compare
individual pixels, the sum of the absolute values
of the differences in each colour component was
used:

d((r1, g1, b1), (r2, g2, b2)) =
|r2 − r1|+ |g2 − g1|+ |b2 − b1|

(1)

To measure how closely patches from the input
image match a patch in the output image, a dis-
tance function can be used. The distance func-
tion used in this paper is a weighted Manhattan
(city block) distance function. To allow synthe-
sis of textures with a random element, the dis-
tance function contains a small random compo-
nent with weight specified by the parameter ε:

D(s, t) = ε |A(s)−B(t)|
+
∑

u∈ΩK ,t+u∈ΩO
K(u)d(I(s+ u), O(t+ u))

(2)

The Manhattan distance was chosen over the
more commonly used Euclidean distance as it is
more forgiving of outliers. I.e. a good match in
most pixels in the patch will not be negated by a
poor match in one or two pixels.



Figure 1: Barcode texture.

For each location t in the output image, a pixel
I(s) from the input image is chosen. The location
s in the input image is selected to minimize the
distance D(s, t) as given in Eq. 2.

2.1 Ordering of pixel insertion

This section discusses the order in which pixels
are added to the output image in the second stage
of the procedure. As will be demonstrated, cer-
tain features such as branching patterns are only
reproduced correctly in the output image if the
placement of pixels proceeds in a particular or-
der.

Consider the values a particular pixel in a tex-
tural image could take. The pixel value must be
consistent with the values of all other pixels in
the image. These other pixels may be said to
constrain the values the selected pixel can take.

An important property of these constraints is that
the constraint imposed by a distant pixel in some
direction may also be provided by a closer pixel
in the same direction. In general, most of the
constraint will be imposed by nearby pixels. For
example, in Fig. 1 the constraint imposed by pix-
els far above or below a given pixel will also be
provided by pixels a small distance above or be-
low that pixel. This kind of relationship may be
directional. In Fig. 1 it applies vertically but not
horizontally.

These constraints can be thought of in terms of
information theory [Blahu87]. Without any prior
knowledge, a pixel is equally likely to take any
value, and this requires a certain number of bits
to encode. If its neighbours impose constraints on
the values it can take, it will require (on average)
less bits to encode. The average number of bits
required to encode some information is referred
to as its entropy [Blahu87, pp. 55]. Entropy can
therefore be used to measure the constraints im-
posed on a pixel.

The pixel selection procedure is based on a search
for patches of pixels in the input image that
match those already placed in the output. These
patches must cover enough pixels to capture all
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Figure 2: Textures generated using differ-
ent orders of pixel insertion.

Input image (a), weighting of the distance function

K(u) used about the center pixel P (b), and the out-

put from raster scans proceeding from top to bottom

(c), bottom to top (d), left to right (e), and right to

left (f).

the constraints on each location, or the texture
will not be reproduced correctly. However, if the
patch size is too large, there will be less chance
of finding good matches in the input image. It is
therefore desirable to choose an order to add pix-
els to the output image in which the constraints
imposed on each location are captured by a small
neighbourhood of pixels.

One order that can be used to add pixels is a
raster scan. Fig. 2 shows images generated using
raster scans in different directions. The lichen
texture being synthesized has a complex branch-
ing pattern. As can be seen, the scan that pro-
ceeds from bottom to top (Fig. 2d) reproduces
this pattern the most accurately.

The other raster scans in Fig. 2 have various prob-
lems. The top to bottom scan (Fig. 2c) produces
anomalous dark blotches, and the lichen in the
sideways scans (Fig. 2e and 2f) have branches on
one side only.

These artifacts can be explained by considering
how the pixels constrain one another. The con-
straint imposed on a given pixel by the pixels im-
mediately below it is almost the same as the con-
straint imposed by all pixels below it. This is not
true of pixels above or to either side of that pixel.
The bottom-to-top raster scan therefore produces



a better result than the others tested.

To utilize these types of constraint, the re-
synthesis procedure assigns a priority to each lo-
cation in the output image. Highest priority is
given to locations which are highly constrained
by neighbouring pixels that have already been
added. Then the following procedure is followed:

While there are still empty locations in

the output image:

• Find the empty location with the

highest priority.

• Choose a pixel from the input image

to place in that location.

• Update priorities of empty

neighbouring locations based on the

new pixel value.

A system for assigning priorities needs to be cho-
sen. A simple prioritization scheme estimates
the entropy of each unfilled location given its
nearby neighbours, and gives higher priority to
locations with lower entropy. The problem with
this scheme is that there may be some areas of a
texture in which nearby pixels tightly constrain
each other, and others where there is less con-
straint and pixel values are more random. The
areas with tight constraints will always be given
higher priorities and therefore be disproportion-
ately represented in the output image.

The approach taken in this paper is to define a
normalized weighting W (s, u). This weighting in-
dicates the relative amount of information a pixel
I(s) gives about each of its neighbours I(s + u).
To ensure no part of the image is given an advan-
tage over another part, this weighting is defined
so that it sums to unity for each pixel I(s). The
priority of each empty location in the output can
then be defined as a sum of the weightings from
neighbouring pixels.

2.2 Analysing interactions between
neighbouring pixels

Weightings are needed to prioritize the order in
which pixels are inserted. They are also needed in
the distance function used to select these pixels.
To create these weightings, interactions between
neighbouring pixels in the input image are anal-
ysed. The calculation of these weightings is the
first stage of the synthesis procedure. For pur-
poses of computational simplicity, the effect of
each neighbour on a location is assumed to be
independent of the effects of other neighbours.
The interactions between constraints of different
neighbours on a location are neglected.

To compute the weightings, the amount of in-
formation every pixel provides about each of its
near neighbours first needs to be estimated. The
neighbours being considered are those whose off-
set from the central pixel is a member of the set of
offsets ΩK used to calculate the distance function
D(s, t) (Eq. 2).

These amounts of information may be measured
by considering each offset u ∈ ΩK in turn. For
each offset, the number of bits of information
G(s, u) provided by each pixel in the input im-
age I(s) about the pixel offset from it I(s+ u) is
estimated, as explained below.

Offset pixels I(s+ u) are grouped into sets based
on the value of the corresponding pixel I(s).
Within each set, the pixels will have a distribu-
tion of values. These values are modelled as be-
ing normally distributed in each colour compo-
nent (red, green and blue), and the parameters of
these distributions are estimated. This is used to
calculate the number of bits required to encode
pixels of each set.

To distribute the pixels I(s + u) into sets, they
are classified by the most significant m bits of
the red, green and blue components of I(s). The
value of m should be chosen so that the sets are
neither so small that an accurate estimate of the
mean and standard deviation is impossible, nor
so large that most of the information from I(s) is
discarded.

If it is assumed that all the pixels in a
set come from the same distribution, stan-
dard deviations calculated from the sets can
be used to describe individual pixels in those
sets. This gives standard deviations for each
pixel at each offset for each colour component:
σr(s, u), σg(s, u), σb(s, u).

These standard deviations can be used to calcu-
late the entropy of each pixel I(s+u) given I(s).
The average number of bits required to store a
normally distributed variable with standard de-
viation σ, to an accuracy of ± 1

2 , is:

1

2
log2(2π) +

1

2 ln 2
+ log2 σ (3)

Summing this for each colour component gives
the entropy of the pixel I(s+ u) given I(s):

H(s, u) = 3
2

log2(2π) + 3
2 ln 2

+ log2 σr(s, u)σg(s, u)σb(s, u)
(4)



Performing the same calculation without splitting
the image into sets gives the entropy of pixels in
the image independent of any of their neighbours,
Himage.

The number of bits given by a pixel I(s) about
another pixel offset from it I(s + u) can then be
found by subtracting the entropy of I(s+u) given
I(s) from the entropy of pixels in the image if
nothing is known about their neighbours. Call
this value G(s, u), where:

G(s, u) = Himage −H(s, u) (5)

2.2.1 Prioritization weighting

A normalized weighting W (s, u) suitable for pri-
oritizing the order in which pixels are added to
the output image can be defined from G(s, u) :

W (s, u) =
G(s, u)∑

−v∈ΩK
G(s, v)

(6)

The priorities of unfilled locations in the output
image may be defined from W (s, u) :

P (s) =
∑

u∈ΩK ,s+u∈ΩO

W (L(s+ u),−u) (7)

Additionally, locations near the edge of the image
have their priorities adjusted as if the positions
beyond the edge of the image were already filled
by pixels having average properties (i.e. with
weights W (s, u) averaged over all s). These lo-
cations then act as starting positions for filling
the output image. The value of the first pixel
added, having no neighbours, is chosen at ran-
dom from the input image (on the basis of the
random component of the distance function).

2.2.2 Distance function weighting

The distance function D(s, t) (Eq. 2) used to se-
lect pixels also requires a set of weightings. To
make best use of the input image, these weight-
ings should reflect the degree to which each neigh-
bour constrains the value of the pixel.

The entropy of a normally distributed random
variable, such as one of the color components of

a pixel, is the logarithm to base two of its stan-
dard deviation, to within a constant (see Eq. 3).
This means that for each time a constraint on a
particular location halves the standard deviation
of possible values of one color component of that
location, one more bit of information about the
location becomes known. In light of this relation-
ship, the weighting given to a neighbour might be
doubled for every bit it gives about a location.

The weighting system used in the distance func-
tion was chosen to satisfy this constraint:

K(u) = 2G(−u) (8)

where G(u) is the average value of the weightings
G(s, u) for a particular offset u.

2.3 Results of the procedure

Example results from the procedure are shown in
Fig. 3. A seven by seven neighbourhood of pix-
els (ΩK = [−3, 3]× [−3, 3]) was used to generate
these images.

The images in Fig. 3 required an average of four
and a half minutes and six and a half megabytes
of memory to produce on a 300Mhz Pentium II.
The time taken by the procedure increases ap-
proximately linearly with the size of the input
image, and can be extremely slow for large input
images.

Less successful results are shown in Fig. 4. In
particular the procedure is very sensitive to fea-
tures that only appear at the edge of the input
image. In this case the output tends to contain
artifacts such as repeating patterns. Also, as can
be seen in Fig. 4b, the procedure does not rec-
ognize regularly spaced components of a texture
such as tiles.

3 SPECIFICATION OF THE
PLACEMENT OF TEXTURE
REGIONS

Some textures contain several regions, with prop-
erties that differ from one region to another. A
simple extension to the distance function used to
select pixels gives a means of specifying the layout
of these regions in the output image. This exten-
sion requires the definition of two new images,
one which maps regions in the input, J(s), and
one which specifies corresponding regions in the
output, Q(t). It also requires weightings, L(u),



Figure 3: Sample results.
The output of the procedure is shown below each in-

put image.

which represent the relative importance of pix-
els from the input map in determining the value
of their surrounding pixels in the input image.
These are chosen using the same method as that
used to choose K(u). Then a new distance func-
tion is used in place of Eq. 2:

D(s, t) = ε |A(s)−B(t)|+∑
u∈ΩK ,t+u∈ΩO

{K(u)d(I(s+ u), O(t+ u))+

L(u)d(J(s+ u), Q(t+ u))}
(9)

(a) (b)

An implementation of the procedure can be ob-
tained from http://www.csse.monash.edu.au/
~pfh/resynthesizer/

Figure 4: Some failures.

3.1 Results of the extended procedure

An example of the use of the extended synthe-
sis procedure is shown in Fig. 5. The texture
used was a photograph of clouds (Fig. 5b). A
map of this texture was created showing regions
of cloud and blue sky (Fig. 5a). Another map, of
a checkerboard pattern, was used as the output
map (Fig. 5c). The result of applying the proce-
dure to these three images is shown in Fig. 5d.

Texture re-synthesis has been previously applied
to the removal of objects on a homogeneous back-
ground by synthesizing a new section of that
background [Igehy97] [Efros99]. The ability to
constrain placement of texture regions allows syn-
thesis of a new background to replace an object,
even if the background is non-homogeneous. An
example of this is shown in Fig. 6. Fig. 6a shows
a picture of a donkey standing in a field. In this
picture, the field is not homogeneous because of
perspective expansion. A feature map of the im-
age (Fig. 6b) was constructed with parts of the
image equidistant from the camera having the
same value. A new section of the background was
then synthesized to replace the donkey, using the
rest of the background as input texture. The new
section was constrained to join with the existing
background and to follow the feature map. The



(a) (b)

(c) (d)

Figure 5: Constraining a cloud texture to a
checkerboard pattern.

Input map (a), input texture (b), output map (c),

and output of the extended synthesis procedure (d).

(a)

(b)

(c)

Figure 6: Example of object removal.
Original image (from [Igehy97]) (a), map (b), and

image with object removed (c).

result is shown in Fig. 6c.

4 CONCLUSION AND FUTURE
WORK

A procedure has been described for synthesizing
an image of arbitrary size with the same texture
as that of a sample input image. The procedure
is capable of reproducing large features from this
input image, even though it only examines inter-
actions between pixels that are close neighbours.
Significantly, the procedure does not have any
preconceived notion of what features to expect
in the input texture.

A simple extension to this procedure allows fea-
ture placement in the new image to be con-
strained. It is effectively a generic filter, in that
when given an example of a change to one im-
age it can reproduce the same change in another
image.

Future work on the procedure described here
could refine the distance function to consider
matches that have similar structure even if they
are slightly lighter or darker or have a different
hue. It could also be extended to work on non-
flat geometries, to allow synthesis of textures cov-
ering three-dimensional objects. It might also be
applied to three dimensions to manipulate anima-
tions or solid textures, or to one dimension as a
sound synthesis technique.
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