

Photo-RealisticSimulation and Renderingof Halos


Jean-ChristopheGonzato
Sylvain Mar chand


LaBRI1


Universit́eBordeaux1
351,coursdela Libération,F-33405Talencecedex, France


[gonzato|sm]@labri.u-bordeaux.fr


ABSTRACT


We presenta techniquefor efficiently generatingphoto-realisticpicturesof halosandinsertingtheminto
existing photographs.First, we describean algorithmfor producingimagesof halosfrom physicalpa-
rameterseithercomingfrom existing photographsor suppliedby theuser. Theproblemwith theresulting
imagesis that they aresampledin a non-uniformway. Then,we proposea specificalgorithmfor recon-
structingthe uniform versionof theseimagesfrom their non-uniformsampling. Finally, we explain the
completealgorithmfor effectively includingcomputer-generatedhalosinto realphotographs,thusleading
to new pictureswith haloslooking asif they hadbeenpartof thenaturalscenescapturedby thecamera.
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1 Intr oduction


In this paperwe aim at generatingphoto-realisticim-
agesof halos that could be insertedinto real pho-
tographs.Haloscould be comparedto rainbows, al-
though in halos the sunbeamsare not deviated by
dropletsbut by ice crystals. In order to inserthalos
in realphotographs,we first have to computetheop-
tical phenomenon,dependingon the positionof the
light source– usuallythesun– togetherwith theloca-
tionsandshapesof thecrystals.Theimplementedal-
gorithm,issuedfrom physics,producespicturessam-
pledin a non-uniformway. More precisely, thevalue
of the halo is not known for the whole picture. We
proposeanefficient reconstructionalgorithmin order
to recover themissingpartof thehalodata.Finally, a
real photographandthe reconstructedhalo arecom-
binedtogetherinto anew picturenow takingthephys-
ical phenomenoninto account.


In Section2, webriefly introducethephysicsof halos
andthewaythesehaloscanbemodeledandgenerated
usinga computer. As mentionedabove, theresulting
halosarenot completelydefined.We presentin Sec-
tion 3 anefficientwayto reconstructthemissingdata,
basedon thenon-uniformsamplingtheory. We show
thenin Section4 how wemanageto retrieveessential
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information from real existing photographsin order
to generaterealistichalos,which canbesuccessfully
combinedto the initial photographsafter the recon-
structionstepfor thehalos.Finally, we presentsome
pictureswherehaloshave beeninsertedaccordingto
our methodat theendof this paper.


2 GeneratingHalos


Solarhalosarevisibleduringsunny winterdayswhen
thereis moisturein theair. Generally, onecanseea–
eitherpartialor complete– lightedcircle locatedat22
degreesaway from thesun.Many otherkindsof halo
exist, althoughthey arelessunlikely to occurin prac-
tice. Figure 1 shows an upper-tangentarc together
with sundogs.


2.1 PhysicalPhenomena


To easily explain thesephenomena,let us make a
comparisonwith the well-known rainbows. A rain-
bow is createdby the deviation of the sun rays by
dropletswhen the sun shineswhereasthe rain falls
elsewhere. During winter days, dropletsare trans-
formedinto small ice crystals.Thesunraysarealso
deviatedwhenthey travel throughthe crystals.Nice
photographsof varioustypesof haloscanbefoundin
[6, 9].







Figure1: Photographof a 22-degreehalowith
anupper-tangentarcandsundogs.


Ice Crystals. Generally, theseice crystalshave ap-
proximatelythesameshape.Moreprecisely, they can
beregardedasregularhexagonsasshown in Figure3.
Thecrystalscanlook like pencils(a)or plates(b) de-
pendingon thevalueof their ratioof lengthto radius.


Whena sunbeamhits oneof thesecrystals,seriesof
reflectionandrefractionphenomenagenerallyoccur.
Figure2 illustratesthis. Moreprecisely, whentheray
first hits the crystal, it may eitherbe reflectedat its
surface(a)– thusstayingoutside– or berefractedinto
its volume(b). Whenthe sunray entersthe crystal,
further reflectionsmayoccuron the inner facesuntil
a final refractionfinally allows the light to exit the
crystal.


(a)


(b)


Figure2: Severalinteractionsbetweensunrays
andice crystals,dependingon whetheror not
the sun ray is directly reflectedat the crystal
surface(a) or refractedinto thecrystalvolume
(b).


All of theseice crystals– both pencilsandplates–
constituteaninvisiblecloudof particlesslowly falling
acrosstheatmosphere.Whatmattersthenis theradii
andlengthsof theseparticlesaswell asthe way the
particlesare organizedwithin the cloud. In a non-
turbulentatmosphere,the crystalsfall in sucha way
that thesurfacefriction is maximal,asshown in Fig-
ure3. Whentheatmosphereis turbulent,thecrystals
areorientedrandomly.


Various Halos. Thekindsof haloswhichcanbeob-
serveddependnot only on thekind of crystalswithin
the cloud and the turbulenceof the atmosphere,but


(b)(a)


Figure 3: Shapesof standardice crystals.
Crystalswith length-to-radiusratiosabove or
below 2 arecalledpencils(a) or plates(b), re-
spectively. In a non-turbulentatmosphere,the
ice crystalsfall in suchasway thatthesurface
friction is maximal.


alsoon thelocationof boththelight source– usually
the sun – and the observer. Figure 4 shows all the
differentkinds of halos. Although thesehaloshave
differentnames– dependingmainly on their position
in thesky – they areall producedby thesamephysical
light-crystalinteractiondescribedabove.
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Figure4: Themostcommonhalosshown on a
schematicview of thecelestialsphere.


2.2 Computer Simulation


Initially designedin order to verify the consistency
of physicaltheories,simulationalgorithmsturnout to
improve the realismof computerimages.Moreover,
they canadvantageouslyenhanceexisting imagesby
takingphysicalphenomenainto account.


2.2.1 PreviousWorks


Although the very first simulation algorithmswere
generatingonly blackandwhitepicturesof halos,re-
cent techniquescangenerategrey-scaleor even col-
oredhalos.As far aswe know, only two mainworks
have beenpresentedin computergraphics: the first
one by Glassner[5, 4] in 1996, the secondone by
Jack̀el and Walter [8] in 1998. Let us first present
thebasisof all thesehalosimulationalgorithms,pro-
posedby Greenler[6] in 1980.
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eenler Algorithm. Greenler’s basic hypothesis
[6] is that a ray of sunis deviatedby onesingle ice
crystalduring its travel throughthe iced cloud. The
differenttypesof naturalcrystalsareapproximatedby
regularhexagonalcrystalsaswe haveseenabove.


Computing,as in standardray tracing, the quantity
of light passingthrougheachpixel of an imagerep-
resentinghalos is not realistic with a simple com-
puter. Indeed,for eachrayleaving theeyeandpassing
throughthepixel, thealgorithmhasto testall theori-
entationsin orderto find the oneswhich deviate the
rayinto thedirectionof thelight source.Greenlerpro-
posesto useaninverseray-tracingalgorithminstead.
By usinginverseray-tracing,knowing thedirectionof
thelight ray leaving thecrystalis equivalentto know-
ing whereto look in thesky for light comingto your
eye from the crystalwith that particularorientation.
Thusthepresentedalgorithmfollows thesesteps:


1. Chooseonecrystal– knowing the distribution
of the varioustypesin the cloud – with a ran-
domorientationin therangeof possibleorien-
tations;


2. Casta ray from thelight source(thesunfor in-
stance)to the crystal and computethe devia-
tion;


3. Placethe crystal in the atmospherein orderto
seethe light leaving thecrystal(seeFigure5).
This positioningis simply doneby plotting a
light point on a fish-eye view imageof the at-
mosphere.


4. Repeat the previous steps for an user-
predefinednumberof crystalsandorientations.


fish−eye view image
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L


crystal ice


L
light source


Figure5: Thebasichalosimulationtechnique.


Theresultingimagesimulatingthehalophenomenon
is in blackandwhite. Moreover, thevalueof thehalo
is not known for the whole image. More precisely,
theresultingspotdiagramrepresentstheintensitypat-
tern in the sky thatwe shouldseefrom light passing
throughacloudof icecrystals(similar to Figure7(a),
but in blackandwhite).


Colorless Halos. In 1996, Glassner[5] enhanced
the Greenleralgorithm by taking into accountthe
real part of energy coming from the sunand reach-
ing theeye of theviewer. Theresultingimage– also


a spot image – representsthe halo phenomenonin
grey scale.In fact,theauthorstoresfor eachpixel the
quantityof light hitting thepixel. Thisquantitycomes
from possiblydifferent light-crystal interactionsand
by thelossof energy duringreflection-refractionphe-
nomena. The rangeof energy for eachpixel of the
whole imageis spreadin the classicrangeof grey-
scalepictures(e.g. 256 levels). Figure 7(a) shows
sucha picture,resultingfrom our implementation.


Colored Halos. Colored halo phenomena are
mainlyvisibleneartheupper-tangentarcandnearthe
sundogs(seeFigure4). The simulationalgorithms
for coloredhalosarederivedfrom thegrey-scaletech-
niques,by castingseveral rays of light with differ-
entwavelengths.Two workspresenthow to integrate
color in halo simulation. Glassner, in 1996[4], first
proposedto take into accountthedifferentpathscov-
eredby thedifferentwavelengths– of colorspectrum
– in the crystal. The color spectrumis divided into
7 wavelengths.Jack̀el andWalter, in 1998[8], pro-
poseto decomposethecolor spectruminto 21 wave-
lengths.For eachpixel, a spectrumis storedandthe
final color is reconstructedafter the simulationhas
ended. To convert a color spectruminto the classic
RGB colorspace,themethodproposedby Hall [7] in
1989usingXYZ colorspaceis used.


Iterati ve or Parallel Algorithms. The main prob-
lem with theuseof aninverseray-tracingis thehuge
numberof raysto castfrom the light sourceto sim-
ulate the halo phenomenaas accuratelyaspossible.
Jack̀el andWalter [8] proposeto usea parallelalgo-
rithm in orderto castabout500,000raysperhalogen-
eration,100orientationsperray, and21 wavelengths
perorientation.Their resultingimageis a dot matrix
smoothedby the numberof light impacts. Glassner
[5] proposesto casta muchsmallernumberof rays.
As a consequence,the intensityof the light coming
from the halo is not known for the whole image. In
orderto reconstructthe missingdata,he proposesto
usedifferenttypesof filters. Thismethodis explained
in thenext section.


2.2.2 Implemented Algorithm


The algorithm for halo generationwe have imple-
mentedis not really new. In fact, we have imple-
mentedtheGreenleralgorithmenhancedby Glassner
for the real intensityof light coming from the light
source. The partsof energy reflected(Kr ) and re-
fracted(Kt ) in functionof the incidentangle(θi) and
of therefractionindex of theice(n2 � 1 � 31)arecom-







putedby theclassicFresnellaws:���� ��� Kr1 � n1 cosθi � n2cosθt
n1 cosθi � n2cosθt


Kr2 � n2 cosθi � n1cosθt
n2 cosθi � n1cosθt


Kr �
	 K2
r1 � K2


r2 �� 2
Kt � 1 � Kr


(1)


wheren1 therefractionindex of theair (n1 � 1), and
θt is the angleof refractioncomputedby the well-
known Snell-Descarteslaw.


Wechooseto simulatehalosby aniterativealgorithm
wherethe userhasthe possibility to definevarious
types of parameters:the types of the crystals, the
rangeof possiblecrystal orientation,the numberof
rays traced,the numberof levels of grey (for a col-
orlesshalo)andthenumberof wavelengthscompos-
ing the full color spectrum(for coloredhalos). Fig-
ure7(a)andits enlargementFigure8(a)show images
producedusingouralgorithm.As for theGlassneral-
gorithm,theintensityof thehalois notknown for the
wholeimage.


3 Recovering the CompleteHalo


The algorithm for halo simulation describedabove
producesimagessampledin a non-uniformway (see
Figures7(a) and8(a)), eachdot representingthe in-
tensitypatternof thehalo. Theproblemis now, from
this irregularsampling,to recover the missinginfor-
mationin orderto reconstructthewhole images(see
Figures7(b) and8(b)) from their samplestaken in a
irregularway.


3.1 GlassnerMethod for Reconstruction


Glassnerproposesin [4] to fill the missinginforma-
tion with black pixels and to usethen a superposi-
tion of thesameimagesmoothedby aseriesof Gaus-
sianblursat differentscales.This techniqueis tricky,
ratherempiricalthough.Its resultsaresatisfactorybe-
causeblurring andsub-samplingarein fact thebasic
operationsfor uniform reconstruction,provided that
theblurring is doneusinga (low-pass)reconstruction
filter closeto the one given by the theory of signal
samplingand reconstruction. The problem experi-
encedby Glassneris that small blurs do not get the
dotsto join upandform asmoothfield, whereaslarge
blursmake thewholepicturego fuzzy. That is quite
normal,sinceGlassnerbasicallytries to usean uni-
form reconstructiontechniquefor non-uniformsam-
pling.


3.2 Irr egular SamplingTheory


We proposeto refer to the irregular samplingtheory
in order to designan original andmoreefficient al-
gorithm for halo imagereconstruction. Let us first


briefly explain thetheoryfor one-dimensionalsignals
(suchassounds),thenwe will easilygeneralizeit to
two-dimensionalsignals(suchasimages).


Let s be a real-valuedone-dimensionalsignal,band-
limited in frequency. This meansthats hasspectrum
in someinterval ��� Ωs � � Ωs� , which is thecaseiff all
thecoefficientsof its FouriertransformScorrespond-
ing to partsof the frequency domainoutsidethis in-
terval arezero.More formally:�


Ωs � 0 � support 	 S��� ��� Ωs � � Ωs� (2)


whereS	 Ω � ��� � ∞� ∞
s	 t � e� jΩt dt (3)


It is possibleto reconstructtheoriginal signals from
samplestakenin a non-uniform(irregular)way if the
maximaldistancebetweentwo consecutive sampling
times doesnot exceedthe so-calledNyquist period
Ts � π  Ωs.


3.3 ReconstructionAlgorithm


Most irregularreconstructionalgorithmsareiterative
in nature[1]. Startingfrom someinitial guess,typi-
cally basedon thegivensamplingvalues,furtherap-
proximationsof s areobtainedstepby step,usingthe
available(assumed)knowledgeaboutΩs.


This is the caseof the Allebachalgorithm,which is
madeof 3 steps.Step1 consistsof theinterpolationof
thesamplingvalues.Theinterpolatedsignalcontains
many high frequenciesoutsideof ��� Ωs � � Ωs� . The
informationconcerningΩs canbeusednext. In step2
theinterpolatedsignalis low-passfilteredwith a cut-
off frequency slightly greaterthanΩs. Let s1 denote
thefirst signalresultingfrom steps1 and2, thenlook
at thedifferencesignals � s1. Accordingto thecon-
struction,s1 hasits spectrumwithin the samerange��� Ωs � � Ωs� , andfor obviousreasonswe know its co-
ordinatesat thegivensamplingpositions.Therefore,
the estimateindicatedabove canbe applied. Step3
is therecursivereconstructionof theerror– if signifi-
cant– sothatwecanagainrecoveracertainportionof
the remainingsignalby repeatingthe first two steps,
now startingwith the sampledcoordinatesof s � s1.
Continuing to usethe differencebetweenthe given
samplingvaluesof s and thoseof the n-th approxi-
mation we generateadditive correctionswhich lead
stepwiseto improvedapproximations.


Strohmerhasstudiedin [10, 3, 2, 11] thereconstruc-
tion of imagesfrom irregularsampling.In step1, dif-
ferentinterpolationscanbeused.WeusetheMarvasti
method,that is the Allebachalgorithmtogetherwith
the trivial interpolation(all the unknown valuesare
setequalto zero). The iterative schemeof the Alle-
bachalgorithmwould have convergedfasterwith the
Voronoi interpolation(nearestneighborhoodinterpo-
lation, usingthe arithmeticmeanfor equally-spaced







neighbors),but thecomputationof Voronoidiagrams
wastooslow to suit ourneeds.


3.3.1 ReconstructionFilter


Theinterpolationtechniquebeingchosen,let usnow
focus on the filtering operationof the Allebach al-
gorithm. It canbe performedby a simple convolu-
tion, provided that the impulseresponseof the filter
is known. Theproblemis that the theoretical(ideal)
reconstructionfilter is abox in thefrequency domain,
correspondingto a sinc function in the time domain,
morepreciselyto sinc	 t  Ts � where:


sinc	 t � � sin	 πt �
πt


(andsinc	 0� � 1) (4)


Unfortunatelythis function has an infinite support.
For practicaluse, it has to be truncated. To avoid
aliasing phenomena,one may tapper the truncated
versionof the sinc function by multiplying it with a
bell-shapedwindow, suchastheHannwindow (well-
known in signalprocessing):


wN 	 t � � 1
2 � 1 � cos � 2πt


N � 1 � π ��� (5)


for � t ��� N  2, whereN is thesizeof thewindow (here
in pixels). We thenstorethe impulseresponseof the
reconstructionfilter in an odd-lengthsquarematrix
definedby:


MN 	 x � y� � wN 	 t 	 x � y� � sinc	 t 	 x � y�! Ts � (6)


where � x �"� N  2 � � y �#� N  2 (7)


andt 	 x � y� �
$ x2 � y2 (8)
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Figure6: The impulseresponseof the recon-
structionfilter – here in the one-dimensional
casefor N � 11 (i.e. k � 5) andTs � 1 – is
the productof the sinc function with the bell-
shapedHannwindow.


3.3.2 AdaptiveFilter Size


Theproblemwith the imagesresultingfrom thehalo
simulationalgorithm is that the Nyquist criterion is
not respected:The maximal distancebetweentwo
samplesis muchgreaterthantheNyquistperiod.Ap-
plying a non-uniformreconstructionschemeon the
whole imagewould leadto thesameproblemsasthe
onesexperiencedby Glassner. We proposeinsteadto
performa local non-uniformreconstructionby adap-
tively choosingthe appropriateneighborhood– and
thus Nyquist period and reconstructionfilter size –
for every pixel. For that purpose,for eachpixel we
make thesquareareacenteredat this pixel grow until
it containsa sufficient numberof samples.The rela-
tion betweenthesquareneighborhoodsizeN andthe
NyquistperiodTs is givenby the following equation
(k beinganarbitraryconstant):


N � 2kTs � 1 (9)


Thenwe considerΩs � 2π  Ts andwe usetherecon-
structionfilter of sizeN % N. For thepurposesof effi-
ciency, thesesizesarepre-computedonceandstored
prior to the reconstructionalgorithm itself, together
with theassociatedfilters of varioussizes.


4 Combining Halos and RealPictures


In this section, we presenthow we include halos
in real photographsonce they have beengenerated
and reconstructed. This implies to retrieve essen-
tial informationfrom aphotographlikesunelevation,
cameraparameters,etc. Then, the way of inserting
computer-generatedhalos into existing photographs
is discussed.


4.1 Recovery of PhysicalParameters


In orderto generatea halo,theusermustsupplyvar-
ious data. Somedata concernthe snapshot(focal
length usedby the camera)whereasothersconcern
thesunitself (suncolorandelevationrelatively to the
horizon).


First, the useris asked to definethe focal length of
thecamerawhich hastakenthesnapshot.If theuser
cannotdetermineor evaluatethis length,theprogram
choosesastandard50-mmlens.To determinetheele-
vationof thesunin theatmosphere,theuserhasthen
to draw on the photographthe horizon line andhas
to indicatethe positionof the sun. The elevation of
thesunis automaticallydeterminedin functionof the
focal lengthusedfor the photograph(seeabove). If
thesunor thehorizonis notvisible in thephotograph,
theuserhasto evaluatetheelevationof thesunrela-
tively to the horizon. Finally, the color of the sunis
recoveredfrom thepicture.


Whenthehorizonline andthesunpositionareuser-
defined,theelevationof thesunis automaticallycom-







(a) IrregularSampling


(b) Uniform Reconstruction


Figure7: Halo reconstruction.


putedby thegeneralizedPythagorasformula(seeFig-
ure9). First, the lengthbetweenthe horizonandthe
sun(notedb) is computed.Second,we computethe
lengthbetweenthefocuspointandthesun(c), aswell
asbetweenthe focus point and the horizon (a). To
computethedifferentlengthsandto know theheight
andwidth of apixel,weassumethattheoriginalpho-
tographwastakenwith a standard24 % 36mm (i.e. a
2  3 ratio). If theheight-to-widthratioof themanipu-
latedimageis not equalto 2 3, thealgorithmresizes
automatically– by addingby virtual black pixels –
the imagein orderto have thegoodratio. As a con-
sequence,thepixelsarealwayssquare.Theelevation
of thesunfrom thehorizonline is equalto:


α � arcsin � a2 � b2 � c2


2ac
� (10)


(a) IrregularSampling


(b) Uniform Reconstruction


Figure8: Halo reconstruction(zoom).


After thesestepsof imagedataanalysis,our algo-
rithm cansimulatethe halo by using the techniques
presentedin Sections2 and3. The view frustumof
both thecomputer-generatedhalo imageandthereal
photographarethesamethanksto thelengthof focus
andthehorizonline definedby theuser.


4.2 Modification of the Original Picture


After halosimulationusingthedifferentused-defined
parameters,thefinal stepof our algorithmis to inlay
thehaloin thephotograph.Threecasesmustbecon-
sidered,dependingon the distanceof the userto the
cloud of ice crystals. More precisely, if the cloud is
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Figure9: Computationof thesunelevation.


far from theuser, thenthegeneratedhalohasonly to
be appliedabove the horizonline. In a secondcase,
if the useris inside the cloud, he canview the phe-
nomenonin its wholeview field, sothehalohasto be
appliedto thewhole image.Thelastcaseis aninter-
mediateone.Thehalocanbeseenbelow thehorizon
line but not on thewhole image.In this lastcase,the
userhasto definethe zonewherethehalo is visible.
Thiszoneis storedin a blackandwhite layer– white
colormeaningthatthehalois visible.


Finally, we have threelayersfor makingtheinsertion
of thehaloin thephotograph:Thefirst oneis thepho-
tographitself, the secondis the halo simulation,and
the third one is the maskof visible halo. The final
imageis computedby combiningtheoriginal photo-
graphandthecolor of thesunusingthehalodataas
analphachannel.Of coursethesedatahavebeenmul-
tiplied by the visibility maskof the halo prior to the
combination.


4.3 Results


The platespresentedin the last pageof this article
presenttwo original photographstogetherwith their
halo-enhancedversions.On theoriginal photograph,
the sunpositionandhorizonline areplotted. In the
first one,theviewer is insidethecloudof icecrystals.
In the secondone, the cloud is far from the viewer,
thusthevisiblehalois only abovethehorizon.


For the mountainphotograph,we cast100,000rays
to simulatethehalo. Theinsertionin thephotograph
takesabout30 seconds(18 s for thesimulationitself
and16 s for theimagereconstruction)ona PCwith a
PentiumIII processorat550MHz.


5 Conclusions


In this article, we proposea combinationof two al-
gorithms. The first one,issuedfrom the physics,al-
lows us to simulatevariouskinds of halo phenom-
ena.However, it generatesanincomplete– irregularly
sampled– image.Thesecondalgorithm,issuedfrom
signaltheory, allows usto completelyreconstructthe
haloimagefrom theresultof thepreviousalgorithm.


Thetwo algorithmsarepartof ageneralmethodused
to includehalosin realphotographs.Theelevationof
the sunin the realphotois computed,andthe image
of the generatedhalo is superimposedto the photo-
graphby usingthreelayers.The resultsarenot only
physicallyvalid,but alsovisuallyrealistic.Of course,
ourtechniqueworksnotonly for existingphotographs
but also for computer-generatedimagesas well, all
the physicalparametersbeingthenpart of the scene
model.
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(a)OriginalPhotograph


(b) Extractionof PhysicalParameters


(c) FinalPicture


Plate1: Mountainswith anambienticedcloud.


(a)OriginalPhotograph


(b) Extractionof PhysicalParameters


(c) FinalPicture


Plate2: Sunseton seawith andwithouthalo.






