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ABSTRACT

In this paper we will be describing a new animation architecture and its implementation in our system
LIVE. This model introduces a new blending layer approach which uses several motion generators on the
same character at the same time. Despite the numerous studies done, animating characters or complex
objects in a virtual world remains a difficult problem. In fact, the complexity of the data used to represent
the characters (often articulated rigid bodies) makes their control by an animator difficult and using only
one technique to generate motion tends to limit the quality of the animation. The solution will probably be
provided by the co-operative or concurrency use of several motion control methods.

Keywords: character animation, articulated rigid bodies, motion generators, kinematics, dynamic, motion
blending.

1. INTRODUCTION

Animating virtual humans with actions that reflect
real human motion is still a challenge. In fact, the
complexity of the data used to represent the
characters makes their control difficult. Several
motion control methods (called MCM) or motion
generators or motor skills exist [Thalmann91] to
control virtual humans. Each of them has its own
advantages but none are adapted to all situations. In
fact, not all the actions of a virtual human can be
generated in real time using only one technique.
Our approach is not to use just one, even improved,
to produce an animation, but to use multiple motion
generators to generate realistic animation, taking into
account our real time constraints. We can use several
motion generators co-operatively or concurrently. In
co-operative ways, several methods are used on
several different parts of the characters. In the
concurrent approach, two or more methods are used
on the same element of a character. In this last case,
the techniques are blended. To do so, we have
developed a specific layer called the blending layer.
This layer participates in a global project with a new
layer model for the animation software. We

implement this model in a platform called “Life In
Virtual Environment” (LIVE). This program is
inserted between a behavior model and a rendering
system. It is also integrated in a virtual environment.
In this paper, we will describe our layer model and
more particularly the blending layer. To synchronize
the different methods during the animation, we use
the task concept for which, the animation is divided
into elementary bricks named tasks.
This software works in real time environment with
virtual humans or with articulated rigid bodies; it is
not designed for real-time interaction. Motion
capture is not used in real-time interactions, this
method is only used to record a sequence. The
capture sequence is stored in a database, and then
this sequence is used with other methods (inverse
kinematics and dynamics) to generate the motion.
Our final goal is to create a system able to respond to
orders from a behavioral model or a user and to
synthesize the corresponding animation. Designing
such a system is a difficult objective, but this paper
describes how we begin to solve the problem in our
particular approach. We try to create smart avatars as
described in [Badler98]. In real-time applications,
avatars are human representations driven directly by



a real person. In general, an embodied character that
acts from its own motivations is often called an
agent. Balder calls an avatar controlled via
instructions from a live participant a smart avatar.

In section 2, we will present a background of
existing motion generators and the different
approaches where the authors use more than one
motion generator at the same time. In section 3, the
layer architecture of LIVE is presented and each
layer described. Section 4 presents our
implementation and our results. The last section
concludes and presents the directions for our further
work.

2. BACKGROUND

Among the numerous papers on motion control
methods, we can point out the studies of
[Thalmann91], [Boulic97] and [Maiocci96] for
motion capture, [Barzel88] and [Green91] for
dynamics and  [Welman93] for inverse kinematics.
One approach is to adapt an existing motion to new
situations or characters. A system introduced by
Witkin and Popovic, that modifies time-warped joint
trajectories by using keyframes with a scaling factor
and an offset [Witkin95]. Other researchers have
created parametric behavior from several sample in
order sequences to adapt motions [Rose98].
Some authors have used more than one motion
generator to produce motion. In [Zoran95], the
author uses a simplified dynamic model to edit
motion for behavior such as running and jumping. In
this paper, two methods (direct kinematics and
dynamics) are used to produce a new motion. In
[Zordan99], the upper-body motion of a running
human is modified; a new motion is produced with
motion capture and inverse kinematics. [Boulic92]
presents an approach with both direct and inverse
kinematics control.
The AGENTlib software architecture presents a
good approach to the subject of motion generators
mixing. In [Boulic97], the authors present a
management of action combination using keyframe
sequence, inverse kinematics and motion capture.
They also use a task system with priority and a
transition system between each task. The AGENTlib
architecture is grouped in a global project called
ACE [Kallmann00].
A similar project, that exists at the University of
Pennsylvania includes a low-level motor skills with
Jack [Badler99], a mid-level parallel automata
controller, and a high-level conceptual representation
for driving humans through complex tasks with a
Parameterized Action Representation (PAR)
[Badler98][Levison94] and an expressive motion
engine (EMOTE) [Zhao00][Badler98]. In the same
approach Perlin has developed a human animation
system Improv [Perlin96] which includes scripting

language to provide a sufficiently powerful interface
for instructing virtual humans. In [Blumberg95], the
authors discuss the problem of building autonomous
animated creatures for interactive virtual
environments which are capable of being directed at
multiple levels.
In a high level application, scenario languages are
defined for animation and simulation by [Multon98],
[Donikian99] and [Funge99]. In their system the
actions are described by a scenario and an animation
system generates the corresponding motion.

3. LAYER MODEL

3.1 PRESENTATION

LIVE is software that works on articulated rigid
bodies, such as human bodies. The goal of the
system is to answer an order by generating the
corresponding animation. For example, if a virtual
human is ordered to “go to the chair and sit down”,
the system may synthesize an animation where the
human walks to the chair and sits down on it. LIVE
is inserted between a behavior model and a rendering
engine. Our model generates an animation using
several motion generators. We use these methods in
a co-operative or concurrent way.
Here we present the architecture of LIVE. The
application is constructed on a layered model. Its
structure presents many advantages. For instance,
each layer is independent, and can be modified
without altering the others. That way, they can
evolve easier and faster.
Behavior Model Direct Order
Layer scheme
Figure 1

Figure 1 represents the hierarchical layered
architecture. The treatment is performed from top to
bottom. The information is processed successively
by each layer. A layer takes the information from the
layer above, transforms it and sends the result to the
layer below.
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There are four layers in LIVE. The decision unit
receives an order and chooses in the MCM library
the best motion generators to achieve the animation.
In this layer, we use a low-level script language; this
script calls a MCMs sequence to generate the
motion. This layer is currently being developed. The
MCM library is a set of several Motion Control
Method (MCM) or motion generators. To date, we
have four methods, which are described in section
3.4. The blending layer is used to collect sets of data
and mix them and is described in section 3.5. The
representation of articulated rigid bodies is described
in section 3.2.
The animation process is simple. When the behavior
model sends an action, the decision unit splits it into
a set of tasks. For each frame, each active task is
treated by motion generators and sends data to the
blending layer. The blending layer processes data
and sends the final data to the skeleton
representation layer which finally provides a mesh to
the render engine.

3.2 SKELETON AND SHAPE

LIVE is based on articulated rigid bodies. To
represent these bodies, we use three layers
[Chadwick89] : a skeleton layer, a muscle layer and
a shape layer. The most important is the skeleton
layer because it stores the position of the character’s
bones.
This skeleton layer is an articulated hierarchy which
provides the foundation to control the motion of the
character. The skeleton is represented by a hierarchy
of bones. Any two consecutive bones in the
hierarchy are connected by a ball and socket joint
(three degrees of  freedom). The orientation of each
joint gives the global position of the characters. In
fact, each bone stores its rotation with regard to its
parent in a euler angle, and the character has a vector
for its position.
The muscle layer is used with the dynamic motion
generators. Springs are used to simulate the muscles.
The springs are attached to the bones.
The shape layer is very simple, we associate a
triangular mesh  to each bone.

3.3 TASK

To perform the animation, we introduce a concept of
task. The task is the elementary brick of the
animation. To generate an animation, the decision
unit gives a set of tasks to the MCM library. In the
simulation loop, each motion generator executes its
associated tasks.
The structure of a task is simple. Each task is
associated to one motion generators and is applied to
a set of bones. A start and an end time specify the

time interval during which the task is performed. The
task can be stopped at any moment by a simple kill
command.
When two or more tasks involve the same bone at
the same time, the motion generators execute the
animation independently for every task in separate
buffers and sends the new orientation of the bone for
each task to the blending layer. This layer calculates
the final orientation for the bone. For this, each task
has a priority level (high, medium, low) and a weight
function. Operation of the priority system is
described in section 3.5.
Each task has specific parameters depending on its
associated motion generators. For the inverse
kinematics, the task has the final desired articular
configuration. For the direct kinematics method, we
add two data sets, the name of the keyframe
sequence and an initialization time. The method uses
this initialization time to create a smooth motion
between the current position of the characters and
the first keyframe of the sequence. In the case of a
cyclic keyframe sequence, a search method finds the
frame where the position between current state and
the frame state is closest.
A state is associated to each task to manage its
execution. The description of each state is described
in figure 2. A task generates an animation only when
it is in the RUN state.

WAIT State when current time is greater
than task start time.

START State when the task begins. This state
is used for initialisation.

RUN Normal state during the animation.
KILL End of the task. This state is used for

termination.
STANDBY When other tasks have a greater

priority on the same element at the
same time, the state of the task turns
to standby.

Task States
Figure 2

3.4 MCM LIBRARY

We describe here the library of motion generators.
We use only simple motion generators to control the
characters. It is the blending of several motion
generators which generates complex animation.
The first goal of the application is not the creation of
new motion generators. Therefore, we apply existing
algorithms to implement our motion method. The
library currently includes four methods.



3.4.1 DYNAMIC

The dynamic method is important in animation
because it is the only method that generates
animation using physical  laws. The drawback is that
it is not fast. Generally, Newton’s law or virtual
work principals are used to simulate the dynamics.
To simplify the development, we chose to use an
existing library of dynamics, Math Engine
[MathEngine]. This library is free for research and
provides rapid results.  Each character has dynamic
properties. A dynamics world is created based on
these parameters. At the beginning of the animation,
all the bones are inactive. When we animate a set of
bones with this method, the bones become active in
the dynamics world and their orientation is computed
by the library at each frame.

3.4.2 REAL-TIME MOTION CAPTURE

Motion capture is often used to animate a character.
This method supplies data from the real world using
sensors. In LIVE, we use a space mouse and some
Polhemus sensors. Each sensor is associated to a
bone and the position and orientation of the sensors
provide the new position and orientation of the bone.
Motion capture is used only to create a keyframe
sequence for a character.

3.4.3 PLAY BACK MOTION CAPTURE

Play back motion capture consists in playing a
keyframe sequence. This method provides the value
of the orientation of each associated bone at any time
by the help of a set of keys. Values are interpolated
between two keys with a slerp algorithm. At the
present time, we use a simple linear interpolator.
Each character has a library of keyframe sequences
representing different motions. Two kinds of
sequences are used by this technique, simple
sequences and cyclic sequences.
To store a sequence, we can use a very simple
method, simply by recording the animation. The
animation of a set of bones is recorded between a
start time and end time. After recording, the
keyframe sequence is stored in the character library.

3.4.4 INVERSE KINEMATICS

Taking the environment into account is difficult
using only motion capture or dynamic. Inverse
kinematics is efficient to adapt an existing motion to
the environment. In this task, we define a chain of
bones  and a goal. To solve the problem, matrix
inversion or optimisation methods are generally
used. As the matrix inversion is an expensive

process, we choose an optimisation method called
Cyclic Coordinate Descent (CCD) [Welman93].

Cyclic Coordinate Descent method
Figure 3

The CCD method minimizes the error on the
position of the final effector by adjusting the
orientation of each bone one by one. The idea is to
adjust the orientation of each joint, starting from the
fist and going through each joint until the last, so that
the final effector location matches the goal location.
The process is iterated until the error on the location
of the final effector is lower than a threshold (see
figure 3).
This method also allows, a path to be followed. The
path is defined with a list of points and computed via
a Hermite interpolation. Thus, part of the character
can follow a specific path in the virtual world.

3.5 DATA BLENDING

The blending layer is important in LIVE because it
allows the motion generators to be used co-
operatively and concurrently. At each time of
motion, tasks control a set of bone and for each bone
sends an orientation to the data blending. The layer
receives a set of orientations for each bone and
computes the final orientation according to a set of
parameters. To do so, we use a priority system.
Weight Functions
Figure 4



There are two cases: either a bone is associated to a
motion generator and there is not a conflict; or a
bone is associated to a set of motion generators and
there is a conflict which the layer must resolve with
this priority system. When there is not a conflict, the
blending layer does nothing ,the layer only receives
one euler angle and sends it on as a final orientation.
There are also no conflict when we  use several
motion generators on different bones; this is a co-
operative process. For example, using dynamic for
the balancing motion of the arms, a keyframes
sequence for the legs and inverse kinematics for the
head. If two motion generators are associated to the
same bone, it creates conflict. In this case, the
methods are used with a concurrent process. This
conflict has to be resolved by the blending layer. In
this case, the blending layer uses the information
provided by the tasks. Each task has a priority level
(high, medium or low) and a weight function (see
figure 4).
When conflict occurs, the layer receives two or more
orientations for one bone. The treatment is as
follows: the process compares the priority of each
task and keeps the higher priority tasks. If only one
orientation remains, the conflict resolution is over,
and the layer sends this orientation to the shape
layer. Otherwise, the process computes a weighted
average of the orientations returned by tasks with the
higher priority. The orientation is given by:

where nb_task is the number of tasks with higher
priority and weight_task(i) is the weight of the ith

task (given by the weight function) and ori_task(i) is
the orientation returned by the task i.

Priority Process
Figure 5

Figure 5 illustrates the selection of the task with
regard to the priority. From time 2 to 10, we only
have one task, so no conflict occurs. From 10 to 20,
the priority level of task 2 is higher than the priority
of task 1, so task 2 is selected and the state of task 1

becomes standby. From 20 to 30, two tasks are
active at the same time. In this case weights are used
to compute the orientation. The final orientation is
given by the equation: ori = (2.ori_task2 +
3.ori_task3) / 5 where task2_orientation and
task3_orientation are the orientations sent by task 2
and task 3.
The coefficient of each term is calculated with the
weight function. Figure 5 shows four examples of
weight functions. They depend on time, 0 is the
beginning and 1 is the end time of the task. Example
a is the most common because the weight is constant
during the animation. In the other cases, it changes
during the animation. In cases b and c the weight
grows with time. Thus, the task takes on a higher
priority in the animation. In case d, we can have a
smooth transition between the tasks because the
weight is lower at the beginning and at the end of the
task.

4. RESULTS

We implemented our layer model in C++. For the
interface, we used FLTK. In figure 6, we can see a
screen capture of the interface.  We also see the tree
representation of the scene on the left.
First space, we test each MCM individually. In this
case, the results are correct. The results are different
in the concurrency way. In this case, if we choose
two or more motion generators with divergent
motion on the same bone then the results are not
what we were waiting for. In this way, we can
produce realistic movements, if we choose the good
blending of motion generators. In figure 6, a human
walks to grasp a red box. In this case, we send a
command “walk to the red box” and “grasp the red
box”. For each command, the system executes a
specific script. The walk script uses several motion
generators, a cyclic motion capture and an inverse
kinematic at the end of motion. With this command,
the human character executes the action. The quality
of animation depends on the quality of capture and
complexity of the script.

5. CONCLUSION

We have presented a new architecture for the real-
time animation of virtual humans. We have also
presented a new technique for blending motion
control technique with a priority system.
With our application, many new movements can be
created with the MCM combination. Co-operation
works well and produces realistic movements.
Concurrency, on the other hand generally produces
wrong movements with an uncoordinated state, a
better choice of method and weight function could
produce better results.
We are presently working on decision layer which
would choose a set of tasks to perform an action as
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escribed by [Balder98]. We are also working to
ntroduce new transitions between tasks.
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