

RaFSi – A Fast Watershed Algorithm Based on Rainfalling Simulation


Stanislav L. Stoev


Computer Science Department,
University of Tübingen,


WSI/GRIS, Auf der Morgenstelle 10, C9,
72076 Tübingen, Germany


sstoev@gris.uni-tuebingen.de


ABSTRACT


In this paper, we present a fast watershed algorithm based on the rainfalling simulation. We
present the various techniques and data structures utilized in our approach. Throughout this work,
the processing of large data sets (images as well as volume data) is especially emphasized. The
results’ correctness, the fast execution time, and the memory requirements are discussed in detail.


First we introduce a sequential algorithm and discuss the cases, where the known algorithm pro-
duces erroneous results. Afterwards, the presented watershed algorithm is compared with immer-
sion based watershed algorithms with respect to running time and memory requirements.


Keywords: watershed transformation, rainfalling simulation, image segmentation, geodesic re-
construction, watersheds.


1 Introduction and Related Work


In the past years the watershed transformation
has proven to be a very useful and powerful tool
for morphological image segmentation. The first
algorithmic approaches originate naturally from
the field of topography [Band86]. Since then,
the watershed transformation is becoming more
and more popular in different science areas like
biomedical, medical image processing [Higgi93],
computer vision [Bilod94] etc. The idea of the
watershed construction is quite simple. A gray-
scale picture is considered as a topographic re-
lief. Every pixel of this digital image is assigned
to the catchment basin of a regional minimum.
This defines the influence zones of each of the
pre-determined regional minima. The watershed
lines are now defined as the lines separating influ-
ence zones from each other (as depicted in Fig-
ure 3).


Numerous techniques for computing the wa-
tersheds have been introduced during the past
years. The first who proposed an immer-
sion based watershed algorithm are Beucher
and Lantuéjoul [Beuch79]. In [Meyer94]


and [Beuch93] couple of techniques and algo-
rithms related to the problem of watershed com-
puting are described. Furthermore, Meyer de-
fines in [Meyer94] the watershed transformation
in the continuous and in the digital space in terms
of a distance function, called topographic dis-
tance. One of the classical algorithms for com-
puting the watershed transformation for a gray-
scale image is also found in this work. The com-
mon strategy described in the literature first deter-
mines the regional minima independent of their
altitude [Meyer94]. Afterwards, the adjacent pix-
els of these minima are added to a hierarchical
queue. At each iteration the pixels with the lowest
altitude are popped from the queue and processed.
This step is repeated until all pixels are processed,
simulating an over-flooding of the processed data
(called in [Meyer94]hill climbing). Thus, a sort
of ordered region growth is performed.


Another approach for catchment basin com-
puting is described in [Vince91]. The authors
simulate a flooding process, whereas the water
is coming up out of the ground and flooding the
catchment basins without predetermining the re-







gional minima. The preprocessing step here con-
sists of sorting all (pointers to) pixels in an ar-
ray. Utilizing a First-In-First-Out (FIFO) struc-
ture, the pixels at altitudeh+1 are processed af-
ter those at altitudeh. This divides the problem
into msubproblems, wherem is the number of all
present pixel altitudes. Due to the processing of
pixels at altitudeh in every iteration, the problem
is reduced to calculating the geodesicskeleton of
influence zones(SKIZ). After sorting the pixels
depending on their altitude, in order to guarantee
fast access to pixels at givenh, the SKIZ for each
h is computed. Hence, the plateaus at the cur-
rent altitude are flooded. Whenever two floods
originating from different catchment basins reach
each other, a dam is built to prevent the basins
from merging. The presented approach is applied
in [Vince91] to several data structures, including
graphs and grids with an arbitrary connectivity.


The authors of [Moga95] describe another
approach for computing the watershed transfor-
mation, based on rainfalling simulation within a
gray-scale image. In their work a parallel al-
gorithm is described. The first step transforms
the original image into alower completeimage
Il. In Il the pixels belonging to a non-minimum
plateau are labelled with the geodesic distance
to the plateau’s nearest outdoor. In doing so, a
second ordering relation for the pixels in a non-
minimum plateau is introduced in the resulting
image. Afterwards a raindrop starts at each pixel
and its path toward the line with the steepest de-
scent (due to gravity) is followed until a regional
minimum is reached (as shown on the right in Fig-
ure 1). The set of all pixels attracted on the way to
a particular regional minimum defines the catch-
ment basin for this minimum. This process is se-
quentially performed for every pixel, which re-
sults in a set of catchment basins. Adjacent catch-
ment basins are separated by watershed lines (de-
picted in below). Thus, raindrops falling on both
sides of a watershed line flow into different catch-
ment basins.


2 Motivation


The algorithms introduced in the previous section
work well with regular gray-scale images. How-


ever, as we will show in Section 4 and 5, when
processing large images or even volume data sets,
the time cost is significant.


In this work we present a new algorithm for
computing the correct watershed transformation
based on the rainfalling simulation. Our algo-
rithm utilizes structures similar to theArrowing-
technique presented in [Meyer94], while improv-
ing the memory and time cost of previous ones.
Although, our algorithm is applied to rectangular
grid structure, it is also applicable to grid struc-
tures with higher connectivity.


The idea of the rainfalling simulation is pre-
sented in [Moga95]. Unfortunately, several prob-
lems occur with the implementation as we will
outline in the remainder of this work. Further-
more, we propose efficient removing of these ob-
stacles and discuss in detail the time and memory
requirements for the presented approach (which
is omitted in [Moga95]).


3 Algorithm


In this section we describe our algorithm. First,
some useful notations are defined, then we outline
a description of the proposed algorithm. Finally,
special attention is payed on the details of the in-
troduced steps, illustrated in Figures 1 and 2.


3.1 Notations


For clarity, we introduce the single steps for the
2D case considering pixels located on a regular
rectangular grid without loss of generality. Be-
fore describing in detail our approach, we make
some definitions used throughout the remainder
of this work. We defineDf to be the domain of
the gray-scale image or volume data set, where
f denotes the image (volume) function.NG(p)
stands for the neighbours of a pixelp on the un-
derlying gridG. Furthermore, we define the fol-
lowing terms:


� A pixel p 2 Df is called anisolated mini-
mumif f(p) < f(q); 8q 2 NG(p);


� A pixel p 2 Df is defined as beingon a
plateauP with altitude h (or p 2 Ph), if
9q 2 NG(p) with h = f(p) = f(q);


� A pixel p 2 Df is called anoutdoor of a
plateauP , if p is on the plateauP and9q 2
NG(p) such thatf(p) > f(q);


� A pixel p 2 Df is called aninner pixelof a
plateauP , if 8q 2 NG(p); f(q) = f(p);


� A pixel p 2 Df is called aborder pixel(p 2
B(P )) of a plateauP , if p 2 P andp is not
an inner pixel;







� A plateauP is called aminimum plateau(or
PM ) in Df , if 9np 2 B(P ), such thatp is an
outdoor;


� A plateau P is called a non-minimum
plateau(orPN ) in Df , if 9p 2 P , such that
p is an outdoor.


3.2 The Rainfalling Simulation


The first step performed in [Moga95] is a prepro-
cessing step, which determines the regional min-
ima, as well as the lower distance within non-
minimum plateaus (the image is said to be trans-
formed into a lower completeimage). After-
wards, the simulation is started. In our algorithm,
this step isnot performed. We sequentially scan
the data only once, by performing the following
steps: Every pixelp is compared with the adja-
cent pixels and if possible the path of steepest de-
scent is followed andp is pushed on a stackSc1,
containing the pixels on the current path. Other-
wise, if a plateauP is reached, the whole plateau
is processed in order to determine the nearest out-
door o (see also Section 3.3). All pixels on the
plateau along the path towardo are pushed on the
stackSc as well. The algorithm continues with
the pixel o. Notice thato 2 B(P ), hence we
are still on the plateau, when continuing witho.
This way we are able to handle pixels, for which
more than oneq 2 NG(o) with f(q) < f(o) ex-
ists, as this is the case forp=(3,3) in Figures 1
and 2. Every time a regional minimum is reached,
which is either a plateau without outdoors or an
isolated minimum, the pixels pushed on the stack
Sc are traversed and marked with the label of the
reached minimum.


Now let the pixelpn be the next unprocessed
pixel on the path(p1; : : : ; pn) with coordinates
(x,y). At this stage we have the following options:


1. 9nq 2 N(pn) with f(pn) > f(q), hencepn
is an isolated regional minimum, which is
marked with the next available basin Id;


2. 9!q 2 N(pn) with f(pn) > f(q), this is the
regular case, where the algorithm follows
the steepest path toward a regional mini-
mum: along the shortest topographic dis-
tance;


3. 9nq 2 N(pn) with f(pn) > f(q), however
9q 2 N(pn) with f(q) = f(pn), which


1To speed up the algorithm,Sc is in fact not realized as a
stack, but every time we say that a pixelp is pushed onSc,
the value ofp in the output image is set topoint to the pre-
decessor ofp. Hence, when a minimum is reached, the path
constructed via setting thearrow in the direction of the pre-
decessor is traversed backwards and the pixels are labelled.


means, thatpn belongs to a (minimum or
non-minimum) plateau;


4. 9qi 2 N(pn); 1 � i � m with f(qi) =
f(qi+1) for i = 1; ::;m � 1 andf(pn) >
f(qi);8i. In this case the algorithm cannot
determine which of the neighbouring pixels
is the one, the raindrop should flow to.


In case 2,pn is pushed on the stackSc andq is
set to be the current pixel, since this is the pixel
with the lowest topographical distance topn. The
case 1 terminates the current loop and the pixels
pushed onSc are traversed and marked with the
label of the reached regional minimum. More dif-
ficult to treat are the cases 3 and 4. In case 3, the
pixels belonging to the reached plateauP are de-
termined andP ’s outdoors are pushed on another
stackHL. If HL is empty when all pixels belong-
ing toP are processed,P is a regional minimum,
thus a new Id is assigned and the pixels inSc
(andP ) are marked with this Id. Otherwise, the
plateau is processed as described in Section 3.3.


Finally, when case 4 occurs,pn is pushed on
Sc and each of the eligible pixelsqi is considered
as points hit by a raindrop and processed. Since
the last pixelpn of the current path(p1; : : : ; pn)
has a higher altitude than the pixelsqi and a path
is always following the steepest slope, none of the
pixels (p1; : : : ; pn) is affected whileqi are being
processed. This allows for the algorithm to re-
main consistency in this case. Hence, after pro-
cessing eachqi, the computation of the steepest
path for the pixelpn can be continued.


Conversely to [Moga95], with our algorithm
no preprocessing and precomputing of the lower
complete image is necessary. Moreover, our ap-
proach does not require additional memory, while
producing correct results corresponding to the
ones computed with the flooding algorithms dis-
cussed in Section 1.


3.3 Within a plateau


In order to correctly compute the flooding of a
non-minimum plateauP , the pixels pushed at the
stackHL have to be sorted. This in turn guaran-
tees, that a pixelp2 P , which is simultaneously
reached by two outdoorso1 ando2, is correctly
marked with the label of the outdoor with the
lower neighbour2. Therefore, we utilized a sorted
heap data structure offered by theSTL library
[Budd98, Musse96] for the first stage. Hereby,
the outdoors are pushed on the heap sorted with


2This is the way the pixels are labelled when the image
is flooded.







1


3


2


5


6


1 2


4


6543


F


C D


E


BA


6


15


88


12 13121211


1011 5 9 8


101215


12


13 1314


12 810 899


12


12 899


13 14


14 8


Figure 1: The (simple) image on the left and the corresponding relief in the middle. On the right, the first
row of pixels is processed.


respect to the outdoor’s neighbour altitude. When
flooding the plateau, sorting is no longer required,
because the pixels are already stored in the appro-
priate order. Hence, the neighbours of a popped
pixel in the plateau are processed in the correct or-
der. A simple index mechanism allows to assign-
ing the distance to an outdoor without additional
overhead. At the beginning, the numberi of pix-
els inHL is determined and saved. As soon as the
currently popped pixel is the pixel with the cardi-
nal numberi, the distance to the outdoors is incre-
mented. Since this step is skipped in [Moga95],
the produced results cannot be correct.


As introduced above, every time a plateau is
reached, it is completely processed and the inner
pixels are assigned to the appropriate outdoors.
However, this presumes that the outdoors are al-
ready assigned to a particular catchment basin.
Since this is in general not the case, we code
the flooding results in an arrow-like manner, such
that it can be utilized for the further data process-
ing. Similar to thearrowing technique described
in [Vince91] and [Meyer94], we save for every
pixel acoming from-flag as depicted in Figure 2.
This is a six bits long value, representing one of
up to 64 directions which the raindrop can fol-
low (which limits the approach to 64-connectivity
grids). When an unlabelled border pixel is hit, the
algorithm follows the arrows toward the appro-
priate outdoor, which is the next processed pixel.
In case a labelled pixelp0 is reaches within the
plateau, the catchment basin Id ofp0 is used to
label the current path (see Section 3.5).


3.4 On plateaus’ border


The next problem occurs when the currently pro-
cessed pixelp, which may be an outdoor as well,
is adjacent tom pixels qi; i = 1; ::;m with the
same altitudef(qi) = f(qi+1); i = 1; ::;m � 1,


such thatf(qi) < f(p) (corresponds to case 4 in
Section 3.2). In this case the intuitive solution is
to determine the pixel with the shortest distance
to an outdoor (ifqi is not on a plateau, the out-
door distance is 1). However, there are situations
even in the special 2D case with an eight connec-
tivity grid, where this criteria is not enough to se-
lect the next pixel on the current path (as depicted
in the Figure 2 forp=(3,3)). This inaccuracy is
removed by applying the following method dur-
ing the flooding process: Every time an unvisited
pixel with higher altitude than the currently ac-
tive plateau is detected, additional information is
stored in it (see Figure 2). Hereby, not only the
coming fromfield is set to point to the currently
active plateau pixel. Moreover, the altitude of the
nearest outdoor’s neighbour is saved3.


When a pixelp is reached, which is adjacent
to processed (labelled or not) pixels with lower
altitude, all pixelsq2 NG(p) are compared with
p’s altitude. Those, which have the lowest gray
level are stored in a simple queue (forp=(3,3) in
Figure 2, these are(4,3) and (3,4)). In order to
determine the right successor out of the queue,
the outdoor distance of each of these pixels is
considered. As introduced, in some cases it is
not enough to perform this task, e.g. forp=(3,3)
in Figure 2. Additionally, we take into account
the altitude of the outdoor’s neighbour for each
equidistant outdoor as shown in Figure 2. In this
special case both,(4,3) and (3,4) belong to the
same plateau, which is not the required in gen-
eral.


Let us assume, that the first raindrop hits
p0 = (1,1). Clearly the next processed pixel is


3Due to the sorted order of processing (flooding), the
nearestoutdoor with thelowestneighbouring pixel reaches
(and marks) correctly this pixel first (see Section 3.3).







0x03
0x01


0x01


0x04
0x03


0x050x04


0x06


0x00


0x02


0x03 0x07


1


2


1


next pixel on the way to the outdoor


5


predecessor in the current path


nearest outdoor’s altitude


6


distance to the nearest outdoor2
1


2


3


direction of plateau with nearest outdoor


4


direction code2


1


3


5


5


6


6


2


54321 6


5


2


6


2


5


5


5 5 6


5


6


5


66


5


13 1412


1012 8 8 6


8


12


14


8


1313


8 109


8 9 9 8


1211 5 9 10 8


10


14 9 812


15


1315 11 12 12 12


Figure 2: When the pixelp=(2,2) is reached, no unique pixel can be selected for continuing the path with
steepest descent. The thin arrows show how the pixels with higher altitude are marked, during flooding the
plateau at altitude8.


p1 = (2,2), followed by p2 = (3,3). Continu-
ing with p2, we cannot unequivocally decide yet
which pixel is the right successor. To guarantee
the correct computation, the adjacent pixels, in-
dependent of whether they belong to a plateau or
not, have to be processed first, in a sequential or-
der. In Figure 2 the plateau at altitude8 is pro-
cessed and the adjacent pixels with higher alti-
tude are labelled. When this step is performed,
some pixels, e.g.p=(2,6), are also labelled, even
though this is obviously wrong. However, when
p=(2,6) is processed, the adjacent pixel with the
lowest altitude isq=(3,6) and the stored infor-
mation is not applied. Merely if the pixel in
the stored direction and the lowest adjacent pixel
have the same altitude and distance to an outdoor,
the stored one is selected, as this is the case for
(3,3)and the plateau at altitude8.


Even though we reduced expensive recursive
function calls to the minimum, this is an expen-
sive step. This is due to the fact, that all the data
in the current scope have to be stored, the pixels
processed, whereupon the data has to be restored.
However, due to the fact, that during the recur-
sive calls the image is processed without affect-
ing the current path, that the maximal recursion
depth (for all data sets discussed in Section 5) is 8,
and the average number of recursions4 is 2.1162
(per 100 processed pixels), this is not significantly
slowing down the algorithm’s performance.


In [Moga95], the authors consider the first
detected pixel with the lowest altitude as the next
pixel to be processed. This produces erroneous
results as shown in Figure 3, where the framed
pixels are ev. misclassified. They may be as-


4The values are statistically determined with the data sets
discussed in Section 5.


signed to the basin with the regional minimum at
(3,6)or (6,3). With the presented strategy this sit-
uation is managed correctly.


3.5 Early path termination


In order to speed up the algorithm, the process
of rain falling simulation is terminated when-
ever a marked pixel is reached. A marked
pixel is a pixel, belonging to an already pro-
cessed path, which is labelled with a particu-
lar basin Id. In mathematical terms, let the se-
quence(p1; : : : ; pn) be a path withpn belong-
ing to a regional minimum or being an isolated
minimum. If (q1; : : : ; qm) is the path already
pushed on the stackSc, pi 2 NG(qm), and pi
is a pixel, chosen to be the successor ofqm,
then(q1; : : : ; qn; pi; : : : ; pn) is acomplete steep-
est slope path. Notice, thatpi needs not to be
the beginning of a steepest slope path, but can be
any arbitrary pixel lyingon a processed steepest
slope path. When this case occurs, the pixels in
Sc are labelled with the Id of the basin, to which
the pixelpi belongs. This technique we call the
early path termination. The correct result of the
rainfalling simulation for the grid depicted in Fig-
ure 2 is shown in Figure 3.


4 Performance Discussion


Requirements for our algorithm are: therandom
accessto all image pixelsp and adjacent pixels
q 2 NG(p). Since the pixelsq are accessed only
for reading, they are cached whenp is read out of
the memory.


4.1 Time Cost


The proposed algorithm runs in linear timeO(N)
with respect to the number of input pixelsN .







basin Bbasin A


1


6


5


4


3


2


1 5432 6


99 81012


15


1312


8


15 1212


14 8


11


899


12 8


11 5 9


12


12 810


610 8


14131314 13 12


Figure 3: Final catchment basins. Choosing an arbitrary pixel, when processingp=(3,3) causes erroneous
classification of the framed pixels.


During the data processing, each pixelp which is
not belonging to a plateau (8q 2 NG(p); f(p) 6=
f(q)) is processed only twice. This happens the
first time, when a raindrop following the steepest
path to a regional minimum attractsp, or whenp
is hit itself by a raindrop. When the regional min-
imum is reached, the pixel is processed again and
labelled5 with the regional minimum’s Id. On the
other hand, eachpi 2 P is processed not more
than three times. IfP is a minimum plateau, all
p 2 P are processed and the pixels adjacent to the
plateau are compared. Afterwards, ifP does not
have an outdoor, the pixels are labelled with the
corresponding basin Id. Otherwise, the plateau is
flooded, whereby every pixel is processed again
in order to assign the distance to the nearest out-
door. When a raindrop follows the steepest path
along the plateau, the pixels are processed once
again during the labelling phase. Merely the
sorting step, performed once per non-minimum
plateauP overP ’s outdoors, requires in general
O(n � log n) steps. To avoid this expensive step,
the outdoors can be visited first, in order to get the
frequence distribution of the outdoors’ altitudes.
During the second loop, the pixels can be directly
inserted in the right location in the heap. Since
all these steps require linear time, the entire algo-
rithm is running in linear time. This holds also for
the algorithm discussed in [Vince91]. Due to the
sorting step, the method proposed in [Meyer94]
requiresO(n � log n) time. Furthermore, while
our approach processes each pixel not more than
3 times6, these two algorithms require at least3
pixel accesses. In particular, the algorithm per-


5Hereby, the second access is much cheaper, as long as
arrowedpixels can be incrementally processed.


6The comparison with the adjacent pixelsq 2 NG(p) is
not considered as access ofq, since this is only a reading
access and the values are read and cached whenp is read.


forming the flooding out of predetermined re-
gional minima requires3 steps, one of which is
an expensive sorting step (thereforeO(n � log n)).
The first scan determines the regional minima in
the data set. Hereby, the regional minima are pro-
cessed a second time in order to label the pixels.
During the second phase of flooding the image,
the pixels are processed once again. Additionally,
when a pixelp is processed andq 2 NG(p) are
added to the pixel queue, they have to be inserted
on the right position, which requires one more ac-
cess. The second referenced approach [Vince91]
scans the whole data set two times to construct
the sorted array of pointers to pixels. During the
flooding step each pixel is scanned three times in
average (as described in [Vince91]).


4.2 Memory Requirements


Concerning the memory requirements, it is no-
ticeable, that our algorithm requires only61


4
N


bytes of memory, assuming that the input con-
sists ofN pixels. In contrast, the first reference
method [Meyer94] requires7N bytes of mem-
ory (4N bytes for the pixel pointer in the queue
and2N for the result andN bytes for additional
flags7). The approach presented in [Vince91] re-
quires even71


4
N bytes. In our approach the in-


put data consists of2 bytes (or 65K gray values).
For the output we provide31


2
bytes8. The first


bit marks always whether the pixel is already la-
belled or not. This defines how to treat the fol-
lowing 27 bits. If it is set, the catchment basin’s


7Actually the queue for the pixels at altitudeh requires
additional4N bytes, however, when summarized, the mem-
ory required for both queues does not exceed4N in total.


8Unfortunately, no time and memory requirements are
discussed in [Moga95], hence no comparison can be
performed.







Id follows. Otherwise,6 bits are used to code
thecoming fromdirection within a non-minimum
plateau as introduced above (Section 3.3). Two
bytes (or16 bits) are utilized to code the near-
est outdoor’s altitude in an adjacent plateau with
lower altitude (see Section 3.3). In addition,6
bits are used to code (the direction of) a lower
plateau with the lowest outdoor (described in Sec-
tion 3.4). This information is stored in the fi-
nal image and removed, when a label is assigned
to a pixel (totalling31


2
N bytes). Unfortunately,


there is information, which is required even if the
pixel is marked with a particular label: the dis-
tance to the nearest outdoor in a non-minimum
plateau. This is stored in two auxiliary bytes
(2N ). Since most of the discussed queues are re-
alized througharrowingwithin the presented data
structures, the additional memory required in our
approach is negligible. Only the step of flooding a
non-minimum plateau requires a sorted heap (for
the outdoor pixels) resp. queue structure (for the
further processing), which consumes in the worst
case less thanN bytes of memory for all outdoors
p 2 P .


5 Results


The result of the algorithm’s application is an im-
age with pixels, labelled with the Id of the catch-
ment basin they belong to. This result can be uti-
lized for further data processing in terms of the
specific application area. In order to extract wa-
tersheds lines, an incremental loop over the result
is performed and watershed lines along basin bor-
ders are extracted (as shown in Figure 4). Since
the results produced with both immersion based
methods and the presented algorithm differ only
in single pixels, in Figure 4 we present the origi-
nal Image (on the left) and the result of applying
the watershed transformation (the right image).
In Table 1, some running times for processing dif-
ferent data are depicted. They show, that the pre-
sented algorithm saves at least20% up to more
than50% processing time, achieving an average
speedup of1:75 compared to the Meyer’s algo-
rithm and1:3 compared to the Vincent-Soille’s
algorithm.


6 Conclusion


In this work we presented an algorithm for com-
puting the watershed transformation for a gray-
scale (gradient) image. As we have shown,
the approach presented in [Moga95] produces in
some cases incorrect results (pointed out in Sec-
tion 3.2). In contrast to this, the approach de-


scribed in this work produces the correct catch-
ment basins like the ones computed with the
classical immersion based watershed algorithms
[Meyer94, Vince91]. The first major difference
between the presented approach and the one de-
scribed in [Moga95] is defined by sorting the
outdoors, when flooding a non-minimum plateau.
This step is required to correctly compute the dis-
tance from every inner pixel to an outdoor of the
plateauP . In addition, for a path with currently
processed pixelp such that the successor cannot
be uniquely determined (there is more than one
lowest adjacent pixel), the authors in [Moga95]
select the first detected lowest pixels to be one
processed next. This is the main source of error,
since the distance to an outdoor9 plays an impor-
tant role in the flooding algorithms. Furthermore,
we introduce a third ordering relation for pix-
els with equal distance to an outdoor10: the alti-
tude of the lowest outdoor’s neighbour. This way,
every pixel is assigned to the correct catchment
basin. Finally, the presented algorithm does not
need any precomputed information, in contrast
to [Moga95], where the data set is prescanned in
order to locate the regional minima and prepro-
cess the non-minimum plateaus. Through skip-
ping this step, the presented algorithm can be uti-
lized to start at an arbitrary pixel in the data set
and extract only one catchment basin and a given
number of adjacent basins. This is of great im-
portance, when large (e.g. volume) data are pro-
cessed and one is interested only in a particular
data region. In this case the steepest path to a re-
gional minimum is followed and a modified local
flooding is performed.


The approach presented here is faster and
more efficient than the ones described in the liter-
ature. We verified this theoretically (in Section 4)
and through comparing the computation times of
all algorithms discussed in the introduction, while
processing the same data (in Section 5, Table 1).


REFERENCES


[Band86] L. E. Band. Topographic partition of wa-
tersheds with digital elevation models.Water
Recources Res., 22(1):15–24, 1986.


9In case this is not a lowerplateau, the distance is con-
sidered as1.


10Even though, there are pixels with completely equal val-
ues with respect to altitude, distance, and outdoor neigh-
bour’s altitude, e.g. crest pixels in the relief. In this case no
criteria can be defined to choose the correct one. The rule
first came first served is applied, like this is the case when
an image is flooded with other watershed algorithms.







Figure 4: Two of the images utilized for the performance comparison of the algorithms: body and legs
cross-sections.


Image Image Size num. regions [Meyer94] [Vince91] our approach
Lenna 200x200 2742 2.07 sec 1.4 sec 0.9 sec
body cross-section 519x454 15591 11.31 sec 7.2 sec 4.82 sec
legs cross-section 660x327 9085 8.42 sec 6.23 sec 5.88 sec
6 head CT slices 256x256x6 4097 25.76 sec 22.18 sec 18.93 sec
complete CT head 256x256x113 54110 492.74 sec 430.72 sec 377.61 sec


Table 1:Comparison of the algorithms’ runtimes for different input data on a SGI O2 machine.


[Beuch79] S. Beucher and C. Lantu´ejoul. Use of wa-
tersheds in contour detection. InInternational
Workshop on Image Processing, Rennes, Sep
1979. CCETT/IRISA.


[Beuch93] S. Beucher and F. Meyer. The morpho-
logical approach to segmentation: the water-
shed transformation. In E. R. Dougherty, edi-
tor, Mathematical Morphology in Image Pro-
cessing, chapter 12, pages 433–481. Marcel
Dekker, New York, 1993.


[Bilod94] M. Bilodeau and S. Beucher. Road seg-
mentation using a fast watershed algorithm.
In J. Serra and P. Soille, editors,ISMM’94:
Mathematical morphology and its applications
to image processing —Poster Contributions—
, pages 29–30. Ecole des Mines de Paris,
September 1994.


[Budd98] Timothy Budd. Data Structures in C++
Using the Standard Template Library. Addi-
son-Wesley, Reading, MA, USA, 1998.


[Higgi93] W. Higgins and E. Ojard. Interactive mor-
phological watershed analysis for 3D medical
images. Computerized Medical Imaging and
Graphics, 17(4/5):387–395, 1993.


[Meyer94] F. Meyer. Topographic distance and wa-
tershed lines.Signal Processing, 38(1):113–
125, July 1994.


[Moga95] Alina N. Moga, Bogdan Cramariuc, and
Moncef Gabbouj. A parallel watershed al-
gorithm based on rainfalling simulation. In
European Conference on Circuit Theory and
Design, volume 1, pages 339–342, Istanbul,
Turkey, August 1995.


[Musse96] D. R. Musser and A. Saini.STL Tutorial
and Reference Guide: C++ Programming with
the Standard Template Library. Addison-Wes-
ley, Reading (MA), USA, 1996.


[Vince91] Lee Vincent and Pierre Soille. Watersheds
in digital spaces: An efficient algorithm based
on immersion simulations.IEEE PAMI, 1991,
13(6):583–598, 1991.






