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ABSTRACT

This paper focuses on a new radiosity approach. Using a new geometrical model that describes
any surface with an atlas of \disk-like patches", i.e. a set of pieces covering the surface that can
overlap each other, we express the radiosity function in a new function base. This leads to a new
radiosity system where overlapping areas are taken into account. The classical radiosity approach
appears now as a particular limit case of this new \overlapping radiosity".
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1 INTRODUCTION

The main goal of rendering techniques is to sim-
ulate eÆciently and precisely illumination phe-
nomena. Researchers direct developments to-
wards global models that simulate geometric
optic [Whitt80], energetic behavior [Goral84]
or both, with for example two-pass algorithm-
s [Silli89] combining radiosity and ray-tracing.
More recently, other complex phenomena like par-
ticipating media [Rushm87], caustics [Nishi94]
or di�raction or other wave optic phenomena
[Lucen95] have also been studied.

In computer graphics, rendering techniques are
directly linked to geometrical object representa-
tions. For instance, polygonal or parametric rep-
resentations [Foley90] are well-adapted to calcu-
late the radiosity solution while implicit functions
[Blinn82] or C.S.G. model [Janse85] are more of-
ten used by ray-tracing algorithms [Glass89]. The
goal of any radiosity approach is to solve the ren-
dering equation [Kajiy86]. In general, �nite el-
ement analysis is used: the radiosity solution is
expressed in set (a base) of functions which are
linked to a geometrical support. We can classify
radiosity approaches in two categories:

{ �rst classical solutions [Goral84] consist in

meshing surfaces in a set of patches on which
the energy (radiosity) is supposed to be constant.
The energetic balance of each patch leads to the
classical form factor expression and to the reso-
lution of a linear system [Cohen88]. After reso-
lution, the radiosity function is reconstructed for
example by a Gouraud's shading. Considering
the �nite element point of view, we just approx-
imate the radiosity function in a set of constant
functions ("box" function) de�ned locally for each
patch. The main advantage of these methods is
the simplicity of the functions (a unique constant
function for each patch) and of the support (lo-
cal to the patch). A lot of terms maintain ge-
ometrical meaning: for example the form factor
still has a physical meaning and classical devel-
opments (Stokes's theorem. . . ) can be eÆciently
used. Moreover, complex variations of the radio-
sity function can be treated only by subdividing
the geometrical support. In the other hand, these
methods imply complex data structures to main-
tain the surface topology, especially if hierarchical
representations [Hanra91] or automatic adaptive
meshing algorithms [Campb90] are used.

{ in recent works, other function bases, easily in-
tegrable are used. H.R. Zatz in [Zatz93] proposes
to express the radiosity function in a set of poly-
nomial functions (Legendre polynomials), while
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Figure 1: Disk-like patches on a planar sur-
face (a) and a non plane surface (b).

Gorthler et al. apply wavelet analysis [Gortl93].
A parametric de�nition of the surfaces is used
to support each function of the base. Under
these assumptions we loose advantages of the lo-
cal support, because we work in a parametric s-
pace. Moreover, complex variations of the radio-
sity function impose unfortunately to increase the
number of functions in the base.

Here, we propose a new complete model which
avoids eÆciently some of these previous draw-
backs. The �rst part of this paper (section 2)
presents this new radiosity approach while sec-
tion 3 presents implementation aspects. Results
are discussed in section 4.

2 A NEW RADIOSITY APPROACH

2.1 A New Base of Functions with Local

Support

In a previous paper [Arque99], we propose a new
approach for the modeling and the rendering of
complex surfaces. In this model, any surface S
is de�ned by a covering atlas of disk-like patch-
es, i.e. a set of NS disk-like patches fDi; i =
1 : : :NSg verifying the following properties. Disk-
like patches:

{ are open surfaces (not necessary planar);

{ approximate locally as close as possible the
surface;

{ can overlap each other contrary to classical
polygonal patches;

{ cover entirely the surface.

Figure 1 shows two examples of surfaces repre-
sented by an atlas of disk-like patches.

As discussed in section 4.1 this model is an inter-
esting alternative to polygonal meshes because it
simpli�es the geometry complexity by decreasing
topological constraints. Problems of complex ge-
ometrical construction and storage disappear.

M

Figure 2: Only gray disk-like patches cover
the point M .

In this section we propose to use the atlas of disks
as the local geometrical support of a new set of
function bases. Then, for each point M of the
surface the luminance L(M) is decomposed in a
base of functions associated to the set of N disks
covering M (see �gure 2) according to:

L(M) =

NX
i=1

Li(M)�i(M) (1)

where the two following functions �i and Li are
associated to a disk Di:

{ �i(M) can be seen as the probability of the
presence at M of the disk-like patch Di a-
mong the NS disks of the atlas.

{ Li(M) are the coeÆcients associated to
each function.

The de�nition of the � functions implies that:
�

�i(M) > 0 if M 2 Di

�i(M) = 0 if M =2 Di

and that
NX
i=1

�i(M) = 1

In order to simplify the choice of the presence
functions �i(M), we associate to each patch Di a
function �i(M) that veri�es:

�
�i(M) > 0 if M 2 Di

�i(M) = 0 if M =2 Di

and we de�ne:

�i(M) =
�i(M)PN
j=1 �j(M)

Considering that �i(M) is null outside the disk
Di, equation (1) can also be written in:

L(M) =
X

i=M2Di

Li(M)�i(M) (2)

This approach allows us to take into account ad-
vantages of the two previous solution categories:



Figure 3: A simple example of reconstruc-
tion of L(M)

{ As a unique function �i(M) is associated to each
disk-like patch (its local support), no parametric
surface representation is needed. Moreover the
geometrical atlas model allows us to express in
the same way a very large variety of surfaces.

{ In a superposition area, i.e. in a point M cov-
ered by a set of disk-like patches, a variable num-
ber of functions is used to expressed the value
in F (M). This number depends here on the geo-
metrical disposition of the disk-like patches on the
surface, while it is �xed in a Galerkin approach.

Figure 3 represents two disks in the same plane
and admitting an overlapping area. We sup-
pose that the luminance (or color) of each disk is
known: constant, red for the �rst one and green
for the second one. We apply equation (2) to
reconstruct the luminance function over the two
disks. In �gure 3a we choose a very basic function
�i constant and equal to 1 for each point of the
disk and equal to 0 outside the disk. Then, the
application of equation (2) imply that the com-
mon area of the two disks is �lled by a uniform
average luminance (or color). If �i is a function
which varies continuously from 1 in the center of
the disk to 0 in the border, it is easy to verify
that L(M) varies continuously too from one color
to the other in the overlapping area (�gure 3b).

2.2 Developing the Radiosity Solution

In this section, we consider that each surface de-
scribing a scene is represented by an atlas of disk-
like patches and we present a complete radiosity
approach which takes into account this hypothe-
sis. The method we propose here is similar to the
classical radiosity approach: an energy balance
allows us to compute a radiosity value (supposed
constant) for each disk.

Even if we develop the radiosity solution in a
set of basis functions, this approach di�ers from
the Galerkin method for many reasons. In the
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Figure 4: Geometry of the energy ex-
changed between disk-like patches.

classical Galerkin approach, H.R. Zatz uses a set
of orthogonal functions that allows to simplify
the calculus of the coeÆcients by a classical in-
ner product. In our approach, the function basis
is not necessarily orthogonal. Moreover no dual
basis can be directly obtained because the func-
tion � is too complex, depending on the overlap-
ping areas between neighboring disks. As a con-
sequence, classical developments of the Galerkin
method can not be applied and a solution consists
in substituting equation 1 in both left and right
sides of the rendering equation.

2.2.1 Rewriting the Rendering Equation

If we consider a point M of a given surface S (cf.
�gure 4), the energy living this point is classically
expressed by the following energy balance equa-
tion [Silli94] expressed in term of radiosity:

B(M) = E(M) + �(M)H(M) (3)

where E(M) is the self radiosity (exitance), �(M)
the di�use reectance andH(M) the illumination
of M :

H(M) =
X
j

Z
Sj

B(Mj)F (M;Mj)dMj

where Mj is a point of the surface Sj and
F (M;Mj) is the classical elementary form factor
between the two elementary surfaces centered on
M and Mj . It includes the visibility term, i.e.
F (M;Mj) = 0 if there is another object between
M and Mj . Following the previous developments
(section 2.1), equation (2) is used to express the
radiosity, the reectance coeÆcient and the exi-
tance of M . We have:

B(M) =
X

i=M2Di

�i(M)Bi(M)

E(M) =
X

i=M2Di

�i(M)Ei(M)

�(M) =
X

i=M2Di

�i(M)�i(M)



where the index i identi�es the disk-like patches
Di of S that cover M (cf. �gure 4).

Substituting these relations in equation (3) gives:

X
i=M2Di

�i(M)Bi(M) =
X

i=M2Di

�i(M)Ei(M)

+H(M)
X

i=M2Di

�i(M)�i(M)

(4)
To simplify the development, the di�erent terms
of this equation are treated separately.

2.2.2 Development of H(M)

First, we consider H(M) and we substitute
B(Mj) by its expression. We obtain:

H(M) =X
j

Z
Sj

X
k=Mj2Dk

�k(Mj)Bk(Mj)F (M;Mj)dMj

where k identi�es disk-like patches covering the
point Mj . The presence function �k(Mj) being
null outside the disk Dk, we can write:

H(M) =X
j

X
k=DkofSj

Z
Dk

�k(Mj)Bk(Mj)F (M;Mj)dMj

Finally, if ND is the total disk number of the
scene, we can rewrite this expression by simpli-
fying the double sum:

H(M) =

NDX
k=1

Z
Dk

�k(N)Bk(N)F (M;N)dN (5)

where ND represents any point of any surface Sj
and where k now identi�es each disk-like patch of
the scene.

2.2.3 A New Radiosity Equation

The last step consists in integrating equation (4)
over the disk-like patch Dh of S (see �gure 4),
in order to obtain the radiosity of each disk-like
patch.

Z
Dh

X
i=M2Di

�i(M)Bi(M)dM =

Z
Dh

X
i=M2Di

�i(M)Ei(M)dM

+

Z
Dh

X
i=M2Di

�i(M)�i(M)H(M)dM

(6)

M
disk 1

disk 2
M1 M2

{overlapping area

Figure 5: Example of association of points
Mi that approximate M for each disk Di.

We �rst develop:

I1 =

Z
Dh

X
i=M2Di

�i(M)Bi(M)dM (7)

Considering homogeneous overlapped areas of the
disk Dh, equation (7) becomes:

I1 =
X

i=Di\Dh 6=;

Z
Dh

�i(M)Bi(M)dM (8)

This expression is exact for planar surfaces, but
has to be approximated in the case of non planar
surfaces. In a superposition area (cf. �gure 5)
each point M of S is associated to the points Mi

of the disks Di which overlap M . Simple algo-
rithms [Arque99] are used. Equation 8 becomes:

I1 �
X

i=Di\Dh 6=;

Z
Dh

�i(Mi)Bi(Mi)dM

In this case Di \Dh corresponds to the overlap-
ping area between Di and Dh.

We now develop:

I2 =

Z
Dh

X
i=M2Di

�i(M)�i(M)H(M)dM

By substituting �(M) by a similar expression of
equation (8) and H(M) by (5), we obtain:

I2 =
X

i=Di\Dh 6=;

Z
Dh

�i(M)�i(M) �

NDX
k=1

Z
Dk

�k(N)Bk(N)F (M;N)dNdM

If, as in a classical radiosity approach, we sup-
pose that the radiosity, the exitance and the re-
ectance are constant over each disk, (Bi(M) =
Bi, Ei(M) = Ei and �i(M) = �i), equation (6)
becomes:

X
i=Di\Dh 6=;

Bi

Z
Dh

�i(M)dM =

X
i=Di\Dh 6=;

Ei

Z
Dh

�i(M)dM +
X

i=Di\Dh 6=;

�i�

NDX
k=1

Bk

Z
Dh

Z
Dk

�i(M)�k(N)F (M;N)dNdM



If we de�ne: cih =
R
Dh

�i(M)dM and

Fihjk =

Z
Dh

Z
Dk

�i(M)�k(N)F (M;N)dNdM

a new form factor de�ned between the portion
Di \ Dh and another disk Dk, we �nally obtain
for each disk-like patch Dh:X

i=Di\Dh 6=;

Bicih =
X

i=Di\Dh 6=;

Eicih

+
X

i=Di\Dh 6=;

�i

NDX
k=1

BkFihjk

(9)

2.3 Matrix Representation

The expression of equation (9) for each disk-like
patch Dh leads to a linear system of equations.
We express it using a matrix form. Because cih
is null if Di \Dh = ; for any disk-like patch Dh,
we obtain:

NDX
i=1

0
@cih � X

j=Dj\Dh 6=;

�jFjhji

1
ABi =

NDX
i=1

cihEi

or �nally in matrix form M �B = C �E with

Mih = cih �
X

j=Dj\Dh 6=;

�jFjhji

2.4 Classical Radiosity Retrieval

It is interesting to see that this new energy bal-
ance (9) is a generalization of the classical radio-
sity. Equation (9) can be simpli�ed to retrieve
classical radiosity equation in the case of a classi-
cal mesh. If overlapping areas tend towards zero,
only Dh has a superposing area with itself. So,
equation (9) becomes:

Bhchh = Ehchh + �h

NDX
k=1

BkFhhjk

In the same time, the presence function �i(M) is
constant, equal to 1 for each point M of Dh, so:

chh =

Z
Dh

�h(M)dM = Ah

where Ah is the surface of the disk-like patch Dh.

For the same reason, the new form factor expres-
sion Fhhjk is simpli�ed in:

Fhhjk =

Z
Dh

Z
Dk

V
cos �h cos �k

�r2
dMdN

= AhFhk

where Fhk is the classical form factor, and V the
occlusion function.

We �nally retrieve the classical radiosity equa-
tion:

AhBh = AhEh +Ah�h

NDX
k=1

BkFhk

3 IMPLEMENTATION

In this section, we describe an implementation of
the overlapping radiosity method. As in classical
radiosity, we use a two-pass algorithm. The �rst
pass consists in resolving the radiosity system (9),
and the second pass uses a view-dependent al-
gorithm that computes the �nal image. An ap-
proach similar to the progressive re�nement al-
gorithm [Cohen88] can be developed for the �rst
pass. We express the contribution of the unshot
radiosity of Dk to the radiosity and the unshot
radiosity of any other disk Dh. But contrary to
classical radiosity, this energy has to be distribut-
ed to the disks that overlap Dh (including Dh).
The energy contribution (in Watt) of the unshot
radiosity �Bk of the disk Dk to the radiosity of
the disks overlapping Dh is de�ned by:

EC =
X

i=Di\Dh 6=;

�iFihjk�Bk

This energy must be distributed to the disks over-
lapping Dh in order to verify:

X
i=Di\Dh 6=;

�Bicih = EC

It can trivially be realized by adding the following
proportion

cihP
j=Dj\Dh 6=;

cjh
EC

to each disk Di. Using
P

j=Dj\Dh 6=;
cjh = Ah

the surface of the disk Dh, this energy variation
corresponds to the following radiosity variation:

�Bi =
cih
Ah

EC

Ai

This development leads to the following algo-
rithm:

// initialization

for each disk Dh do

DeltaBh = Eh

Bh = Eh

end do

// shooting process

repeat



Figure 6: Geometry of the disk-like patches.

// select the emitter Dk

Dk = disk of maximum Ckk*DeltaBk

// computing the total energy received by Dh

Ec = 0

for each disk Di overlapping Dh do

compute Fihk

Ec += Fihk*Rhoi*DeltaBk

end do

// dispatching energy

for each disk Di overlapping Dh do

Drad = Ec*Cih/(Ah*Ai)

Bi += Drad

DeltaBi += Drad

end do

end do

// put unshot radiosity of Dk to 0

DeltaBk = 0

until convergence

4 RESULTS AND DISCUSSION

4.1 Modeling Considerations

In image 6, we show the geometrical disposition
of the disk-like patches. This scene shows a room
containing a cubic box, lighted by a spotlight.
We use here two kinds of disk-like patches: disks
and squares. Squares allow us to de�ne precise-
ly the edges of the box, but other modeling ap-
proaches may be used (smaller disks on borders
for instance). Modeling objects with an atlas of
disk-like patches gives us a large choice of disk
shapes and positions. For example, the previous
regular disposition of the disks is not necessarily
the best choice and any random disposition does
not change the complexity of the treatments.

This new surface model eÆciently simpli�es the
geometry complexity by decreasing topological
constraints between disk-like patches. Problems

Figure 7: a sand heap.

Figure 8: a cave.

of complex geometrical construction and storage
disappear. Any object is described by just a
simple list of disk-like patches. As a consequence,
simple or complex surfaces are similarly de�ned,
and eÆciently treated by this method as shown in
�gure 7 (a sand heap), �gure 8 (a cave wall) and
�gure 9 (a tunnel). It also explains that some of
our actual works concern adaptive subdivision al-
gorithms that are plenty simpli�ed because we do
not have to store and update a complex geometry
representation.

4.2 Rendering Considerations

It is also interesting to point out that the di�erent
levels of rendering are obtained by the same algo-
rithm with di�erent � functions. Figure 10 shows
the previous scene rendered with a function con-
stant for any disk-like patch. This choice under-
lines overlapping areas between disk-like patches.
In the last image 11, we use a � function that is
varying continuously from 1 in the center of the



Figure 9: the interior of a tunnel.

Figure 10: Case of a function �i constant

disk to 0 in the border of each disk to obtain a
more realistic rendering.

In the classical radiosity approach, di�erent arti-
facts are due to the polygonal mesh and to the
preponderant directions used in Gouraud shad-
ing. These artifacts disappear with our method
because circular disks admit no preponderant di-
rections and because overlapping areas blur ef-
�ciently the limits of the disks. Computational
times are similar to those obtained with a classi-
cal radiosity approach.

The complexity of a step in the classical progres-
sive re�nement algorithm is O(patchnumber),
and the complexity of the same step in our al-
gorithm is obviously O(ND).

Considering the scene of �gure 9 described by
6400 disks, computational time due to one iter-
ation of the progressive re�nement algorithm is
about 15 seconds (on a Pentium II 450 personal
computer).

Figure 11: Case of a function �i that vary-
ing continuously from 1 to 0

5 CONCLUSION

In this paper we present a new radiosity approach
for the rendering of a large variety of surfaces.
A new geometrical model (an atlas of disk-like
patches) allows us to propose a new interesting
base of local functions for solving the rendering
equation. The resulting \overlapping radiosity"
generalizes previous radiosity approaches.
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