

QteVtk– a Multi-Platform, Object-Oriented Visualization Environment
Extending VTK

Stanislav L. Stoev and Wolfgang Strasser

Computer Science Department,
University of Tübingen,

WSI/GRIS, Auf der Morgenstelle 10, C9,
72076 Tübingen, Germany

fsstoev,strasserg@gris.uni-tuebingen.de

ABSTRACT

In this study, we present a new comprehensive visualization environment, based on theVTK-
library. We first introduce a window system independent graphical interface for theVTK-classes
and it’s object-oriented design, then we describe a set of viewer and editor classes for displaying
and editing different data types available in theVTK-library.

The described library (QteVtk) provides a graphical user interface (GUI) to ease creatingVTK-
visualization pipelines with graphical appearance. Furthermore, it implements saving, loading,
and adjusting of objects and object parameters, while supportingVTK-concepts like object ori-
ented design and “demand driven” update of the visualization pipeline for data-flow control.
QteVtkprovides for the first time an easy to use combination of a free object oriented visual-
ization with multi-platform GUI elements.

The presented work came into being, because in the authors’ opinion the visualization still lacks
a free, well designed, in terms of object oriented data structures and algorithms, but powerful and
easy to use visualization library for implementing visualization applications with the latter, as well
as adding new data structures and techniques to it.

Keywords: Computer graphics, data visualization, object oriented visualization, data flow, visual
programming, vtk.

1 Introduction and Related Work

When visualizing data, we are mostly interested
in a simple but vivid way to gain insight into
the data in order to get the best possible im-
pression of it’s content. Several data explor-
ing environments have been developed over the
past years, which claim to meet the requirements
of the users in this computer science area. To
the most popular systems count the visualiza-
tion environmentsAVS[Upson89],IBM Data Ex-
plorer (OpenDX)[Dat91], Iris Explorer [Iri91],
Khoros [Rasur91, Konst94], andVTK [Schro98,
Schro96]. These are very potent ones, which,
however, have various limitations.AVSand the
Iris Explorer are very large, multi-functional, but

commercial systems, hence not allowing for code
manipulation, optimization, and adaption. They
do not support system independent application
generation, thus the created “pseudo” applica-
tions can only be run in theAVS/Iris Explorer en-
vironment (e.g. AVS-Network Editor). This is
a consequence of the utilization of a powerful,
yet commercial underlying visualization library,
which one can only use as a black box, without
being able to optimize or adapt particular algo-
rithms or data structures. On the other hand, one
of the greatest advantages of these two systems,
is their portability, allowing their application on
different workstations, within different operating
systems with the same interface and environment.

Conversely,Khoros [Rasur91], is only avail-
able for systems supporting the X11 protocol.
Despite this limitation and the fact, that it only
supports the generation of C-code, it provides
a very useful visualization environment. Sim-
ilar to these products, theIBM Data Explorer,
supports visual programming. Another similar-
ity with Khoros is that theIBM Data Explorer
is based on X-Window and Motif, which nega-
tively influences its portability. This holds also
for the ImageLab, which only provides an inter-
face to the underlyingImageVision Libraryde-
veloped, optimized, and available only for IRIX-
based SGI-machines. Thus, besides its usefulness
when processing and visualizing image or volume
data, this environment cannot be ported and used
on other platforms.

2 Motivation

The main drawback of the introduced systems is
that, when a user tries to generate source code
for a constructed visualization pipeline, in order
to create a stand alone visualization application
with a special purpose, most of them will pro-
duce insufficient results. This may be either be-
cause the code is not object oriented, hence dif-
ficult to understand, manipulate, and re-use (e.g.
Khoros, IBM Data Explorer), or only part of it
can be utilized freely (due to license limitations),
or because the created visualization pipeline can
only be evaluated in the development environ-
ment (i.e.AVSor Iris Explorer, where the under-
lying structures, algorithms, and in general code
cannot be manipulated). Another limitation is the
graphical user interface provided by these sys-
tems. Often the integrated GUI-builder has to
be used, which may in turn restrict the portabil-
ity of a visualization application, even if the ba-
sic algorithms and techniques are portable. Keep-
ing in mind these disadvantages, we developed an
easy to use, while powerful multi platform envi-
ronment, disposing of an object oriented graphi-
cal user interface and based on the (in our opin-
ion) most promising visualization package:VTK.
Hereby we are addressing both visualization li-
brary users, utilizingVTK for creating problem
specific visualization applicationand scientists,
developing new data processing algorithms, new
problem specific data structures, and rendering
techniques.

Perhaps the most important feature of a vi-
sualization system, is its availability on a vari-

ety of common operating/windowing systems, as
long as this defines its popularity and acceptance.
Moreover, a visualization environment has to be
well structured in terms of code design, large
enough in terms of available algorithms, and sim-
ple enough (but not simpler1), to encourage the
developers from distinct areas of the computer
science to utilize it. This is in our opinion the only
way to overcome the tendency during the past
years, to develop promising algorithms, while
condemning their reasonable utilization to sole
academic existence. We see the main reason for
this trend in the commercialization of the visual-
ization libraries and toolkits, hence optimizations
and accelerations in such systems is not possible.
On the other hand, many users rather programme
their own visualization environments, than using
an expensive, commercial one.

To summarize: The success of a visualization
system, excluding applications for 2D-image pro-
cessing, becoming very popular in the past years,
depends on itsfunctionality, availability, porta-
bility, usability, and of coursestability. With the
term usability, we mean the time cost for (unex-
perienced) users to get acquainted with the uti-
lization of such a library and to be able to create
applications for the visualization of data (from an
area) of current interest. A (subjective) compar-
ison of the introduced packets concerning these
criteria is depicted in Table 1. The column with
the titledesigngives a brief idea of the underlying
concept of realization, implementation language,
and re-usability of the developed data structures
and algorithms. This is of importance for the sec-
ond addressed user group: the developer of new
visualization techniques.

We believe, that the most attractive toolkit
in this aspect is theVisualization Toolkit VTK
[Schro98]. VTK is a comprehensive, completely
object oriented library, providing an easy to use
API for data access, manipulation, processing,
visualization, and creation of visualization ap-
plications. One of the most valuable features
of this visualization library is its free availabil-
ity, which makes it widely used and supported.
Furthermore, theVTK-software is independent
of the windowing/operating system, henceVTK-
applications can be readily ported to machines
other than the one they are developed on. More-
over, VTK solves the performance-portability

1Things should be as simple as possible, but not simpler
(A. Einstein).

System functionality availability portability usability design

AVS very good commercial any OS average good
IBM Explorer/OpenDX average free Unix average average
Iris Explorer very good commercial any OS average good
Khoros very good commercial X11-based average average
ImageLab average free IRIX good poor
VTK very good free any OS poor very good

Table 1:A (subjective) comparison of visualization system’s features.

tradeoff providing hardware and operating sys-
tem independent classes for fast data access and
implementing proper algorithms exploiting these
data-structures. Another reason why we chose
VTK is, because the use of a well designed data
structures and algorithms library in the construc-
tion of visualization applications is the key to this,
since it provides the user and developer with a
high degree of confidence in the knowledge, that
the implementation of the algorithms has been ex-
tensively tested and used in a wide range of other
applications.

The main drawbacks of this toolkit are the
lack of a graphical user interface and the limited
number of data viewing classes. Therefore, cre-
ating a visualization pipeline, as well as chang-
ing parameters of former constructed ones ”on-
the-fly” is not possible. If a user intends to use
such functionality, the interpreted, Tcl/Tk-based
version has to be used, which, however, is much
slower, not object oriented, and does not solve
the data viewing problem addressed above. In
other words, despite of its great functionality, the
lack of a GUI, allowing visual adjustment and
programming of the existing and of user defined
VTK-classes and the limited choice of classes for
viewing data are the main disadvantages of the
toolkit.

The authors’ vision of the perfect visualiza-
tion environment is a freely available collection
of powerful visualization classes, combined with
an easy to use and programme graphical interface
to these classes. Such a toolkit will be used to
test and embed new algorithms and data struc-
tures from distinct areas of the computer science.
Moreover, if it is transparent enough, it will be-
come a standard visualization tool even for users,
who are not experienced in particular details of
a visualization process and do not want to be-
come experienced in it. This in turn will allow
to concentrate on the development of newtech-
niquesand not of new environments, in order to

solve given problems. Furthermore, such com-
mon platform will allow to readily compare ex-
isting with new algorithms utilizing common data
structures, hence creating an excellent reference
base for new approaches.

3 Concept and Realization

To overcome the restrictions described in the in-
troduction and in order to makeVTK more attrac-
tive through providing an operating systems inde-
pendent GUI, without affecting the functionality
and portability, we developed an extension of the
VTK-library (QteVtk). Based onQt [Dalhe99] –
a multi-platform C++ graphical user interface
toolkit – the presented work provides a flexible
and portable way for graphically displayingVTK-
object characteristics. Furthermore, the devel-
oped library is easy to use and to extend, since
VTK and Qt, thus QteVtk, are object oriented
tools (object oriented visualization concepts are
discussed in [Favre94]). This applies to the ad-
ditional classes we developed for viewingVTK-
data structures (discussed in Section 3.3) and vi-
sual editing (Section 3.4) of parameters, hence al-
lowing an easy and intuitive insight into different
data types.

3.1 Why Qt

For our implementation we chose theQt-library,
because it is a multi platform, object ori-
ented package, supporting the graphics standard
OpenGLand being very efficient and intuitive for
creating applications with a graphical user inter-
face. Thesignal/slot mechanism, provided by
this package, proved to be a vary useful feature
for elegantly connecting created interface compo-
nents with each other or with functions, activated
by with GUI-elements (similar to “callback-
functions”). Furthermore,Qt [Dalhe99] is
freely available for non-commercial use on any
Unix/Linux systems and is even commercially

VTK-Object

Field name: Dimensions

Field elements: Name

SetDataDimensions (int, int);
GetDataDimensions (int data[2]);Set/Get Functions

Stream Input/Output

Graphical Interface:

Intern Representation:

Value

Y 256

X 256

Dimensions:

Type

256X

QV_INT 256Y

QV_INT

Figure 1: Intern representation, stream input/output, and graphical appearance of a simple field.

available for Windows 9x/NT.

3.2 TheQteVtk-library

In order to simplify the access to theVTK-object’s
parameters and to provide a graphical appearance
for them, we implemented a set of C++-classes,
designed to contain arbitraryVTK-objects. More-
over, these classes allow the defined parameters
to be written to and read from a data stream, to
connect pairs of objects to create a visualization
pipeline, and to control it’s data flow and update.

3.2.1 Fields

We accomplished this concept through introduc-
ing fieldsto our library. Afield is an object, which
contains the name of an arbitrary parameter, it’s
type and value. In addition, afield implements
the graphical appearance of the stored parameters
and disposes of functions for setting/getting pa-
rameters’ values in/from the object it is connected
with. Hereby, every field is connected with ex-
actly two functions for getting respectively set-
ting its values from/in the connectedVTK-object
(as shown in Figure 1). Another feature of afield
is its ability to write and read its values to and
from a data stream, which makes thefield con-
cept very powerful and allows its utilization even
in a scripting visualization language.

Next, we implemented field classes, derived
from the QVBaseField-class for every parame-
ter needed for the description of the associated
VTK-object (as depicted in Figure 2). Any of
these classes can use the functionality of the base
class, as well as add auxiliary features (e.g. the
file selection button for file browsing in Fig-
ure 3). Through this philosophy we defined a set
of classes, which behave similar and can be used
in a similar way.

3.2.2 Field Container

To cover all the parameters of aVTK-object, it’s
fieldshave to be pooled together in a single ob-

ject. Thus, we introduced aQVFieldContainer-
class, containing any number of fields necessary
for the complete description of theVTK-object’s
parameters one is interested in. In addition, a con-
tainer object includes the following items:

� definition of the data input (predecessor ob-
jects in the visualization pipeline);

� definition of theupdate-function, utilized to
update the object’s input(s): its predeces-
sors in the visualization pipeline (depicted
in Figures 2 and 3);

� functions for reading and parsing the val-
ues of its field elements when read from a
stream;

� functions for invoking the associated fields
to write their name and parameter values to
a stream.

Theoutputof an object is not listed here, because
only the outputtypeof an objectA is important
for an objectB, which receives its data fromA.
Furthermore,A does not know the number of ob-
jects with connected input toA’s output.

QVFieldContainer

QVFileField

QVField

QVRangeFFieldQVDimensionsIField

Figure 2: The class hierarchy of theQteVtk-library.

When added to a field container, the single
fields, derived from the classQVField, can be
displayed in a dialog allowing graphical adjust-
ment and manipulation of theVTK-class’ param-
eters (see Figure 3). Moreover, theVTK-object
functions introduced above are displayed and ac-
tivated. Such a field container is also able to visu-
alize the input of the associatedVTK-object, al-
lowing to track the data flow in the visualization
pipeline. In the normal case, the input of an object

consists of only one predecessor, however, there
are VTK-objects providing more than one slots
for data input, which has to be declared when the
object is defined. Field containers also allow for
the embedded object to support input slots for dif-
ferent data types. For instance, an image filter can
accept as input structured grids, as well as image
data, which also has to be defined in the object’s
constructor.

The appearance of a field container can also
be adapted to the user preferences. If desired,
it can be declared to not appear as a dialog box
(as depicted in the right of Figure 3), but to be
permanently accessible as a part of a particular
application’s window, as shown in the example
application in Section 4. Furthermore, the field
container, due to its derivation from theQWid-
get-class, can have an arbitrary parent window,
thus can appear in arbitrary other windows. This
imparts the field container additional flexibility,
when utilized in a particular application.

3.2.3 QteVtk

In this way we designed and developed a library
on the top ofVTK, which can be utilized to create
visualization applications with a graphical user
interface (an example is shown in Section 4). In
order to create a visualization pipeline inVTK-
manner, the programmer has to create for ev-
ery VTK-object a field container, pass a pointer
to this VTK-object, define the number of inputs
and the corresponding functions, and the type of
the object’s output. These are the functions con-
trolling the data flow and update in a visualiza-
tion pipeline. Afterwards, an arbitrary number
of fields can be added to the field container, de-
pending on the number of parameters one intends
to adjust and display (as depicted in Figure 3).
When this is completed, either aQt-based ap-
plication can be implemented and the data pro-
cessing can be adjusted through point-and-click
mechanism, or the normalVTK-visualization can
be applied. This allows even to create applica-
tions, which can be used with, as well as without
a graphical user interface, without changing ma-
jor parts of the application’s code. Such a feature
is very useful, when a particular data processing
pipeline is applied to different data sets (e.g. for
noise reduction after data acquisition in a medical
context), which require unique interactive param-
eter adjustment, followed by multiple applying of
the defined transformations and their ascertained
parameters on many other data sets.

3.3 DataViewers

One of the most important issues, defining the ac-
ceptance and attractiveness of a visualization li-
brary and, of course, of the applications utilizing
it, is the way the data is visualized. Therefore, the
next major task is to develop and implement a set
of objects for viewing data (viewers), in order to
discover some invisible or hidden data features.
Due to the fact, thatVTK includes only a simple
image viewer and a renderer class2, caused by the
aim to maintain the toolkit’s portability, the users
do not have a wide choice of viewers for gain-
ing an insight into the processed data. Through
its multi platform design,Qt helps to overcome
this obstacle. It allows to developviewerobjects
for the different data types available in theVTK-
library, while keeping the basic features of the
toolkit like portability and object-oriented design
unaffected.

The most basic viewer we implemented is an
image data viewer (QVvtkImageViewer), allow-
ing to interactively browse through the slices of
a volume data set, zoom in/out selected image
regions and view one or all channels of a multi
channel data set.

The slice viewerQVvtkSliceViewerallows an
intuitive viewing of volume data, while provid-
ing OpenGL [Woo98] based displaying of a data-
cube and three cutting planes orthogonal to the
x,y,z-axes respectively. Hereby, on every plane
we mapped a semi transparent texture with the
appropriate image extracted from the volume data
(see Figure 4).

Figure 4: ThePolyviewer (on the left) and the
Sliceviewer (on the right).

The QVvtkPolyViewer is an Inven-
tor [Strau93]-like viewer, implementing most of
theSceneViewer’s functionality in aQt/OpenGL-
based window, while significantly extending
the functionality of the standardVTK-renderer.

2These classes display structured points, point sets,
structured grids, and polygonal data in a very simple way.

Y_DIM 128

FILENAME: /home/stan/VOLs/kopf128.vol

X_DIM 128
Dimensions:

OBJECT 4711 # object’s name: "Volume File Reader"

INPUT_ID:
INPUTS: 0

Y_DIM 1.0
Z_DIM 1.0

Header_size: 30
Data_mask: 0

X_DIM 1.0

Z_MIN 0
Image_Range:

Z_MAX 127
Spacing:

SetDataDimensions
GetDataDimensions);

vfrCont->Display();

vfrCont->WriteToFile();

Code

VISTO_NOINPUT,
VISTO_STRUCTUREDPTS, GetOutput);

Appearance

vfrCont->addField(QVDim2IField(vfr, "Dimensions",

(short) 4711, "Volume File Reader",

QVFieldContainer *vfrCont

= vtkVolumeFileReader::New();

= new QVFieldContainer(vfr, Update,

vtkVolumeFileReader *vfr

Figure 3: Appearance and functionality of the field classes.

These two viewers are conceived and realized
similar to theQVvtkImageViewerpresented next
and are depicted in Figure 4.

3.3.1 The Image Viewer

The QVvtkImageVieweris derived from the
vtkReferenceCount-class, since it is a special
VTK-object and from theQWidget-class on the
other hand to facilitate graphical appearance (see
Figure 5). Furthermore, like any otherVTK-

Fields

QVFieldContainer
QWidget

QVvtkImageViewer

vtkReferenceCount

Figure 5: A viewer for displaying images and
browsing through the slices of a volume data
set and its parameter fields.

object, theQVvtkImageVieweris associated with
a field container, hence it has its own parameter
appearance. These parameters, however, can be
immediately applied to the object, which is nec-
essary, for instance for the real-time “browsing
through the slices” feature (see Figure 5) or ap-
plying the camera transformations, when a scene
is viewed. For the realization of this feature, we
applied thesignal/slot-mechanism provided by
theQt-library [Dalhe99], which allows to connect
two arbitrary objects together in order to notify
the first, when the value of the second is changed.

3.4 Editors for VTK-Data

When processing real-world data, another set of
classes turned out to be of great importance. This
was the motivation for us to develop a second set
of auxiliary objects: theeditor-object set. The ed-
itor class hierarchy is designed similar to this of
the viewer-objects. The difference is, that the edi-
tor objects are not only able to display data, hence
they are not pipeline terminating objects, but have
a data output. This illustrates the two possible
applications of these objects: as source objects
at the beginning of a visualization pipeline, or as
helper objects for particular algorithms, when ad-
ditional user interaction is needful. In fact, the
editor classes are derived from the viewer classes,
thus providing their features and the additional
ability to generate outputs like points, 2D poly-
gons, color values picked in a color editor or
displayed image, and simple 3D primitives like
spheres and cubes. Moreover, there are more than
one editors for a specific input type. For instance,
there are two line editors, derived from the im-
age and the slice viewer. In both cases, the output
has the same type, however, different presentation
and interaction with the data is applied. The line
editor, for example, is utilized in the intelligent
scissors algorithm [Morte95], where mouse inter-
action in the plane is used to define the current
lines. On the other hand, when one is defining
3D polygons, the slice viewer based editor is the
more appropriate and intuitive one. Both, viewer
and editor classes are grouped together in the aux-
iliary library QteVtkAux.

4 An Example Application

In this section, the introduced librariesQteVtk
andQteVtkAuxare utilized to create a very simple
sample application (depicted in Figure 6). On the
top right of Figure 6, the general architecture of

an application, based onQteVtkandQteVtkAuxis
shown, which holds for the sample application as
well.

The visualization pipeline in our example
consists of four objects: a data readerVolume-
FileReaderresponsible for the data input, a re-
gion growth algorithmRegionGrow, which takes
a volume data set and a set of seed-points as input,
and two image viewers (see thedata flow diagram
in Figure 6). A fifth object is tentatively created
for editing seed points for the region growth algo-
rithm (Figure 6edit pointsbutton). The firstIm-
ageVieweris utilized for viewing the data before
applying the algorithm (its interface is visible in
the middle left row), the second views the result
of the data processing algorithm (its interface is
turned off in the application).

For each of these objects the parameters we
are interested in and the functions for setting their
values in the associatedVTK-object, are utilized
to define the fields (as discussed in Section 3.2),
which are able to display themselves in the appli-
cation’s interface. In the next step, the input of
every object is connected with the object it gets
the data from (through the field-container), like
this has to be done in a regularVTK visualization
application.

The GUI-frame, including the file-menu and
its items, is also part of the library we devel-
oped. It allows to show and hide the properties of
any created object. The data-flow control can be
permanently turned on in this application (menu-
bar“Options”) to enable automatic update of the
viewed data (when necessary), since the visual-
ization pipeline and the loaded data are rather
small in the example. Another way to control the
data-flow is to activate the pop-up menu, associ-
ated with each object, which appears on each ob-
ject’s label and activates the declared object’sup-
datefunction (as depicted in Figure 6). This func-
tion causes a backward check for modifications of
the object’s predecessors in the pipeline and their
update if necessary. Data flow concepts in visu-
alization applications are discussed in [Dyer90]
and [Schro98].

5 Work in Progress

The libraries we introduced above are in this form
ready to use, however, work on several important
issues is still in progress. Currently new viewer
and editor classes including a volume-previewer
for real time displaying of a scaled down volume

data set, a viewer, combining volume and surface
rendering for more powerful data viewing, and a
color/color-map editor are in development.

In order to simplify the manual binding of na-
tive VTK-classes withQVFieldContainers we are
developing a tool for the automatization of this
task. This will in turn allow the simple generation
of fields and field container for newVTK classes.
Another valuable feature will be thecomposed
object concept, allowing for an object to con-
tain several other objects connected in a pipeline.
This helps to hide dispensable complexity from
the user, thus simplifying the interface.

6 Summary

In this paper, we present an extension of the visu-
alization toolkitVTK, which is not just “another
visualization library”, but provides a portable ob-
ject oriented, graphical user interface toVTK,
hence imparting reusable design to existing and
newly developed classes.

Furthermore, we introduced a valuable set of
visualization classes for viewing and editing dif-
ferent VTK-data types. By utilizing the GUI-
toolkit Qt for the realization, we avoid affecting
the portability, while maintaining the object ori-
ented concept ofVTK. This overcomes the two
main drawbacks of the toolkit: the lack of a
graphical user interface and the lack of classes for
more vivid data viewing.

The libraries QteVtk and QteVtkAux, pre-
sented here are an excellent companion for the de-
velopment ofVTK-based applications (as shown
in Section 4). They provide an attractive develop-
ment environment for testing and embedding of
new algorithms and data visualization techniques,
and offers an excellent reference base for bench-
marks with the many ones available in theVTK-
library. Therefore, addressing both people utilis-
ing VTK as a visualization library, as well as de-
velopers of new techniques. Concerning the cri-
teria introduced in Table 1, the presented libraries
improve the usability ofVTK in terms of graph-
ical appearance and pipeline parameter adjust-
ment, while maintainingVTK’s features likefunc-
tionality, availability, portability, anddesign.

In our opinion, the visualization nowadays
lacks an easy to use non-commercial system.
This will, in turn, encourage not only researchers
from the computer graphics area to programme
their own visualization techniques with the pre-
sented environment, but also users not necessarily

Dim2DIField

FileField

Dim3DFField

StringField

RangeField

Dim2DIField

FieldContName
FieldArray

VolumeFileReadCont

Data Flow Diagram

Vtk-Editors, Viewers
QteVtkAux

Volume Reader

Region Grow

Image Viewer

QteVtk

Application System

Fields and Container

Vtk OwnVtk
own Vtk-classesnative Vtk-library

Image Viewer

Figure 6: An application created with the introduced librariesQteVtkandQteVtkAux.

knowledgeable of computer graphics and visual-
ization to use one common free environment. The
presented work provides a solution to this prob-
lem. The most prominent example for the suc-
cess of such systems isLinux, which is freely dis-
tributed, thus it has a vary large user community
utilizing and further developing it.

Unfortunately, despite its great functionality,
VTK is a complex toolkit, which is not suitable for
visualizations with a portable graphical user inter-
face, allowing on-the-fly adjustment of pipeline
parameters. This, however, defines to a great de-
gree the acceptance and popularity of a visual-
ization environment. WithQteVtkand the pre-
sented additional libraries, we claim to provide a
valuable visualization companion with a simple
(graphical) interface to the features ofVTK, im-
parting additional attractiveness to theVTK-class
hierarchy, while maintaining its great functional-
ity and object oriented design.

REFERENCES
[Dalhe99] Matthias K. Dalheimer.Programming with Qt.

O’REILLY, B., first edition, 1999.

[Dat91] Data Explorer Reference Manual. IBM Corp., Ar-
monk, NY, USA, 1991.

[Dyer90] D. Scott Dyer. A dataflow toolkit for visualiza-
tion. IEEE Computer Graphics and Applications,
10(4):60–69, July 1990.

[Favre94] J. M. Favre and J. Hahn. An object oriented de-
sign for the visualization of multi-variate data ob-
jects. InProceedings. Visualization ’94. Los Alami-
tos, CA, pages 319–325. IEEE Computer Society
Press, 1994.

[Iri91] Iris Explorer User’s Guide. Silicon Graphics Inc.,
Mountain View, CA, USA, 1991.

[Konst94] K. Konstantinides and J. R. Rasure. The Khoros
software development environment for image and
signal processing.Ieee Transactions on Image Pro-
cessing, 3(3):243–52, 1994.

[Morte95] Eric N. Mortensen and William A. Barrett. In-
telligent scissors for image composition. In Robert
Cook, editor,SIGGRAPH 95 Conference Proceed-
ings, Annual Conference Series, pages 191–198.
ACM SIGGRAPH, Addison Wesley, August 1995.
held in Los Angeles, California, 06-11 August 1995.

[Rasur91] Rasure and Williams. An integrated visual lan-
guage and software development environment.J. Vi-
sual Languages and Computing, 2:217–246, 1991.

[Schro96] W. J. Schroeder, K. M. Martin, and W. E.
Lorensen. The design and implementation of an
object-oriented toolkit for 3D graphics and visu-
alization. In Proceedings. Visualization ’96. San
Francisco, CA, USA. 27 October–1 November 1996,
pages 93–100, New York, NY 10036, USA, 1996.
ACM Press.

[Schro98] William J. Schroeder, Kenneth M. Martin, and
William E. Lorensen. The Visualization Toolkit.
Prentice-Hall, Englewood Cliffs, NJ 07632, USA,
second edition, 1998.

[Strau93] Paul S. Strauss. IRIS inventor, A 3D graphics
toolkit. In Andreas Paepcke, editor,Proceedings of
the 8th Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications,
pages 192–200, Washington, DC, USA, Septem-
ber 26October –1 1993. ACM Press.

[Upson89] Craig Upson, Thomas A. Faulhaber, Jr., David
Kamins, David Laidlaw, David Schlegel, Jeffrey
Vroom, Robert Gurwitz, and Andries van Dam. The
Application Visualization System: a computational
environment for scientific visualization.IEEE Com-
puter Graphics and Applications, 9(4):30–42, July
1989.

[Woo98] Mason Woo, Jackie Neider, and Tom Davis.
OpenGL Programming Guide. Addison-Wesley,
Reading, Massachusetts, U.S.A., 1998.

