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ABSTRACT


This paper compares the traditional digitization method as used in Computer Graphics with the
arithmetical geometry approach. Digitizations are interpreted as the set of grid points contained in
the dilation of a continuous object and a reected basic domain. We investigate the supercover and
derive its analytical description for analytical objects. We prove that the supercover of a convex
linear object is a discrete analytical object and provide methods to determine the inequalities
de�ning the supercover.
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1 Introduction


In Computer Graphics, recently many issues have
been raised concerning the operations needed by
passing between the continuous real world, repre-
sentable as Rn, and the discrete world of com-
puter raster devices, such as scanners, tomo-
graphs, printers and raster screens. There are
two ways of doing this passage: reconstruction
and digitization.


The digitization of a continuous object is its ap-
proximation by a discrete object. Ideally, this
approximation should represent important geo-
metric and topological properties of the contin-
uous object. Many digitization algorithms are
restricted to a class of objects and a speci�ed
mapping of continuous features onto properties
of discrete objects. For example, Bresenham's
well-known algorithm [Brese65] maps continuous
line segments in 2D onto discrete 8-connected
arcs. Among many others, algorithms for circular
arcs in 2D [Brese77], or line segments, polygons
and quadratic objects in 3D [Cohen91] have been
published. Since most of these algorithms have
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been reaching a quite high eÆciency, improve-
ments are usually restricted to special cases, e.g.
[Linck99], or they are based on special hardware,
e.g. [Chen97].


However, the study of topological or geometri-
cal aspects of digitizations is getting more at-
tention. Klette investigated grid point digitiza-
tions [Klett85], in particular the nearest neigh-
bor and grid intersection digitization. Stojmen-
ovi�c and To�si�c improved Klette's grid intersection
scheme and developed digitization algorithms for
lines, hyperplanes and ats in arbitrary dimen-
sions [Stojm91]. The nearest neighbor digitiza-
tion is also known as the supercover digitization
or, simply, supercover [Cohen95, Cohen96].


The study of discrete objects as digitization of
general Euclidean objects is complex. Reveill�es
[Revei92] introduced the arithmetical geometry
approach. He de�ned discrete analytical objects
as discrete objects which are the integer solu-
tion of a �nite set of inequalities. Because of
the global description, discrete analytical objects
are relatively easy to handle. Reveill�es's 2D line
de�nition [Revei92] has been extended to other
primitives including discrete analytical hyper-







planes [Andre97a] and hyperspheres [Andre97b].
These analytical de�nitions serve as the theoreti-
cal background of image analysis and reconstruc-
tion algorithms. For example, Braquelaire and
Brun's image segmentation algorithm [Braqu98]
is based on the 2D discrete analytical de�nition
line and Fran�con and Papier's polyhedrization of
discrete 3D objects relies on the 3D discrete ana-
lytical plane de�nition [Fran�c98].


Recently, Andres studied m-at supercover in the
context of discrete analytical objects [Andre98].
Obviously, the supercover of any continuous ob-
ject and its properties do not depend on the par-
ticular approach chosen. In this article we relate
the digitization approach to the arithmetical ge-
ometry approach.


This paper is structured as follows: section 2 re-
calls the basic notions and section 3 deals with
digitizations in general. Then in section 4 we dis-
cuss properties of the supercover and compare it
to other digitization schemes. In section 5 an an-
alytical description of convex linear objects, in-
cluding simplices is developed. We conclude with
some remarks on further research.


2 Basic de�nitions


An n-dimensional digital image is an n-
dimensional array of integer values. Mathemati-
cally, it can be viewed as a function f of a �nite
subset ofZn onto a �nite subset ofZ. In this pa-
per we consider only binary digital images. These
are functions f with the values 0 and 1 only. Con-
sequently, an object A is a subset of Zn, that is
A = fz 2Zn : f(z) = 1g.


In many applications a digital image is the dis-
crete representation of some continuous data.
Hence, Zn is thought of as being embedded in
the n-dimensional Euclidean space Rn. An ele-
ment z 2 Zn is called a grid point. Its Voronoi
set V(z) is the set of all points of Rn which are
at least as close to z as to any other grid point.
V(z) is a closed axes-aligned n-dimensional unit
cube with center z. The Voronoi sets of a 2D and
3D grid point are known as pixel and voxel, re-
spectively. Neighboring Voronoi sets can share a
point, a straight line segment, up to an (n � 1)-
dimensional cube.


We continue with some general geometrical no-
tions in Rn [Webst94].


De�nition 1. Let Rn be the Euclidean space
and let x0; : : : ; xm 2 Rn be m + 1 (0 � m �
n) linearly independent points. Then the set


Figure 1: Erosion A	S and dilation A�S


of a set A by a structuring Element S


f�0x0 + : : : + �mxm : �0 + : : : + �m = 1g is
called m-at and the set f�0x0 + : : : + �mxm :
�0 + : : : + �m = 1 ^ �0; : : : ; �m � 0g is an m-
simplex in Rn.


An m-at is an m-dimensional aÆne subspace of
the Euclidean space Rn and an m-simplex is the
convex hull of m+ 1 linearly independent points.
A 0-at, as well as a 0-simplex, is a point, 1-ats
are straight lines, 1-simplices are a straight line
segments and (n�1)-ats are hyperplanes in Rn.


De�nition 2. For point sets A;B � Rn the
Minkowski addition A � B, the Minkowski sub-
traction A	 B are given by


A �B = fa+ b : a 2 A; b 2 Bg and


A	 B = fp : b+ p 2 A for all b 2 Bg :


The Minkowski addition is associative and com-
mutative and it distributes the union, i.e. (A �
B) � C = A � (B � C), A � B = B � A and
(A [ B) � C = (A [ C) � (B [ C). In case of
the intersection we have only the set inequality
(A \B) �C � (A \C)� (B \C).


In mathematical morphology [Serra82, Heijm95],
the Minkowski addition and subtractions of an
arbitrary set A � Rn and a �xed set S � Rn,







the structuring element, are called dilation and
erosion of A by S, respectively, see Fig. 1. We
denote �A = f�a : a 2 Ag and Az = A � fzg the
reected set of A and the translate of A by z,
and recall two simple, but important properties
of dilations [Serra82, Heijm95]:


A � �S = fx : A \ Sx 6= ;g (1)


and A� �S =
[
s2�S


As (2)


De�nition 3. A set A � Rn is said to be convex
if whenever it contains two points, it also contains
the line segment joining them. The convex hull
conv(A) of a set A � Rn is the smallest convex
set in Rn containing A.


We conclude this section with two results for con-
vex sets [Webst94]. The Minkowski addition of
A�B of two convex sets A and B is convex and
every linear transformation of a convex set is con-
vex.


3 Digitizations


Formally, digitization is mapping subsets of Rn


onto subsets of Zn. To digitize a continuous ob-
ject A � Rn, a �xed set D � Rn, the so-called ba-
sic domain, is translated to every point z 2Zn. A
grid point z belongs to the discrete object Dig(A),
i� some speci�ed condition on the intersection
A\Dz of the object and the translated basic do-
main is ful�lled.


For example, let us consider binary images pro-
duced by hardware devices. On every point of
the grid the device obtains a value based on a
device-speci�c domain D and a weighting func-
tion. The user can choose a threshold for these
values to de�ne which points belong to the dis-
crete object. In our investigations we consider
the less general notion of digitization as de�ned
in [Klett85, W�ut98].


De�nition 4. A digitization DigD : }(Rn) !
}(Zn) with the basic domain D � Rn is de�ned
as


DigD(A) = fz 2Zn : A \Dz 6= ;g


for every continuous object A � Rn.


The digitization of an object is the set of grid
points whose translated basic domain hits the ob-
ject, see Fig. 2. Obviously, these digitizations are


Figure 2: The set of translated basic do-
mains Dz hit by A (shaded)


Figure 3: The set of grid points contained
in A � �D


invariant under translations by vectors with in-
teger coordinates, i.e. (DigD(A))z = DigD(Az)
for every A � Rn and z 2 Zn. It is simi-
larly easy to see that for a �xed basic domain
D, the digitization DigD(A [ B) of the union
of two sets A;B � Rn is equal to the union
DigD(A) [ DigD(B) of the digitization of these
sets. The following property is also fairly simple
to prove. Since it is a crucial result for the further
investigations, it is emphasized as a theorem.


Theorem 1. Let DigD be a digitization with ba-
sic domain D. Then DigD(A) = (A � �D) \Zn


for every A � Rn.


Proof. The digitization can be written as
DigD(A) = fx 2 Rn : A \Dx 6= ;g \Zn. Using
(1) we obtain DigD(A) = (A� �D) \Zn.


As a consequence the digitization DigD(A) can be
interpreted as the set of grid points contained in
the dilation ofA by �D, the reected basic domain,
see Fig. 3.


4 The supercover and its relation to other


digitizations


De�nition 5. A supercover S is a digitization
DigD with basic domain D =V(0).







The supercover is also called nearest neighbor dig-
itization [W�ut98], because it maps every point of
the continuous object onto the closest grid point.
A non-empty continuous object A 6= ; has a non-
empty supercover, i.e. S(A) 6= ;, because the
union of all translated basic domains covers the
Euclidean space:


[
z2Zn


Dz =
[
z2Zn


V(z) = Rn:


As mentioned in section 2, the Voronoi sets of two
neighboring grid points are not disjoint. Hence,
in case a point belongs to two (or more) Voronoi
sets, the supercover of this point consists of two
(or more) grid points. The ambiguity of curve
digitizations in 2D has been studied by Mon-
tanari [Monta70]. He investigated the conver-
gence of curves sequences and proved that there
is no digitization scheme possible which avoids
ambiguity for general curves. However, for prac-
tical purposes digitizations are considered for
certain classes of objects. In these cases half-
open basic domains, in 3D called reduced voxels
[Cohen95, Cohen96], are chosen depending on the
class of objects to be digitized.


Properties of digitized objects are determined by
the choice of the basic domain. Suppose DigD
and DigE are two digitizations with basic do-
mains D � E. Then DigD(A) � DigE(A) for
every A � Rn. Informally speaking, to obtain
\thinner" discrete objects, digitization schemes
with \smaller" basic domain have to be chosen.


Stojmenovi�c and To�si�c developed a digitization
scheme for m-ats, including straight lines and
hyperplanes, in arbitrary dimensions [Stojm91].
The basic domain of the digitization of an m-at
is the intersection of a coordinate (n�m)-at and
the Voronoi set of the origin. A coordinate k-at
is a k-at that contains k coordinate axes. This
scheme is not independent from the object to be
digitized. The choice of the particular (n�m)-at
as the basic domain is determined by the orienta-
tion of them-at. As a consequence, a generaliza-
tion to arbitrary objects is not a digitization with
one �xed basic domain as de�ned in section 3.


Grid intersection [Klett85] is an appropriate
scheme to digitize hyperplanes. The basic domain
of these digitizations is the set of all coordinate
axes intersected with V(0). It has been proven
that in this case grid intersection and the Stoj-
menovi�c and To�si�c digitization lead to the same
discrete set [Stojm91]. For both digitizations the
union of all translated basic domains does not
cover the Euclidean space. So, the grid intersec-


Figure 4: Construction of the supercover of
a circle


tion, as well as a Stojmenovi�c and To�si�c digitiza-
tion, of an arbitrary non-empty set can be empty.


The next theorem is an important property of the
supercover. It is the theoretical background for
the following section.


Theorem 2. Let Li (1 � i � n) be the straight
line segment obtained by intersecting the i-th co-
ordinate axis with V(0). The supercover S(A) of
a set A � Rn is the set of grid points contained
in the successive dilation of A by these line seg-
ments:


S(A) =Zn\ (A� L1 � : : :� Ln):


Proof. The straight line segments are de�ned as
Li = f(x1; : : : ; xn) 2 Rn : xi 2 [�1


2
; 1
2
] and xj =


0 for j 6= ig. In particular


L1 =


�
�
1


2
;
1


2


�
� f0gn�1 :


Using the de�nition of the Minkowski addition we
obtain inductively


L1 � L2 =


�
�
1


2
;
1


2


�2
� f0gn�2


...


L1 � : : :� Ln =


�
�
1


2
;
1


2


�n
:


Hence, the basic domain of the supercover can
also be written as D = L1 � : : :� Ln. To com-
plete the proof theorem 1 is used for the initial
condition.







The importance of this theorem will be illustrated
on the example of a circle C in R2, see Fig. 4.
First C is dilated by the line segment L1. The
result (the darker shaded area) is then dilated by
L2. Finally, the supercover S(C) is the set of all
integer points in C � L1 � L2 (the whole shaded
area).


If an object A � Rn is given analytically, i.e. as
the solution of a system of analytical inequalities,
it can be written as A = A(x1; : : : ; xn). By (2)
we obtain


A � L1 =
[


� 1


2
�t1�


1


2


A(x1 � t1; x2; : : : ; xn):


and consequently


A�V(0) =[
� 1


2
�t1;::: ;tn�


1


2


A(x1 � t1; : : : ; xn � tn):


As a result, the supercover of a continuous ana-
lytical object A = A(x1; : : : ; xn) is


S(A) =


Z
n\


[
� 1


2
�t1;::: ;tn�


1


2


A(x1 � t1; : : : ; xn � tn):


5 The supercover of convex linear objects


The importance of convex linear objects in Com-
puter Graphics does not need to be stressed. It
is common to approximate continuous objects by
linear objects and it is well-known that linear ob-
jects can be decomposed into convex linear ob-
jects.


De�nition 6. A halfspace of Rn is the solution
of a linear inequality


a1x1 + : : :+ anxn � a0


for some a0; : : : ; an 2 R, where not all a1; : : : ; an
are zero. A convex linear object is the intersection
of a �nite family of closed halfspaces.


In geometry, convex linear objects are also called
polyhedral sets [Webst94]. The intersection ofZn


and a polyhedral set can be seen as the integer
solution of a �nite family of linear inequalities.
Hence, it is a special discrete analytical object
[Andre98], that is the integer solution of a set
of analytical inequalities in Rn.


De�nition 7. The i-th extrusion �i(A) of a set
A � Rn is de�ned as


�i(A) = f(x1; : : : ; xn) 2 R
n : 9x�i 2 R such


that (x1; : : : ; xi�1; x
�
i ; xi+1; : : : ; xn) 2 Ag:


The i-th extrusion of A � Rn is the union
of all translates of A along the i-th coordinate
axis. It is the composition of the i-th pro-
jection �i and the inverse of the i-th projec-
tion. The i-th projection, a mapping of ev-
ery point (x1; : : : ; xn) 2 A onto an (n � 1)-
dimensional point (x1; : : : ; xi�1; xi+1 : : : ; xn) 2
Rn�1, is clearly a linear transformation. The in-
verse of a set B 2 Rn�1 is the subset of Rn. It is
de�ned as


��1i (B) = f(x1; : : : ; xn) 2 R
n :


(x1; : : : ; xi�1; xi+1; : : : ; xn) 2 Bg:


Consequently, the i-th extrusion �i(A) of a convex
set is convex, and �i(A) of a polyhedral set is a
polyhedral set.


As a consequence of theorem 2 the investigation
of the supercover is actually a study of dilations
by line segments Li.


Theorem 3. Let A be a convex linear object de-
termined by m linear inequalities


Pn


j=1 a1;jxj � a1;0
...Pn


j=1 am;jxj � am;0


The dilation A�Li is a convex linear object and
it holds A � L1 = �i(A) \ �i(A), where �i(A) is
de�ned as the solution of the inequalities


Pn


j=1 a1;jxj � a1;0 +
ja1;jj
2


...Pn


j=1 am;jxj � am;0 +
jam;jj
2


Proof. Without loss of generality we choose i = 1
and L1 = [�1


2
; 1
2
] � f0gn�1. By (2) the dilation


A�L1 is the union of all translates At for t 2 L1.
Since A and L1 are both convex, A�L1 is convex.


A is the intersection of m halfspaces H1; : : : ;Hm,
each of them is one of the solutions of the inequal-
ities that de�ne A. Let us consider one of the
halfspaces. Without loss of generality, we choose
H1, given by


nX
j=1


a1;jxj � a1;0


H1 � L1 is H1(x1 � t1; : : : ; xn) for �
1


2
� t1 �


1


2
.


Hence,


nX
j=1


a1;jxj � a1;0 + a1;1t1







Figure 5: A�L1 is the intersection of �1(A)
and �1(A)


for all t1 with jt1j �
1


2
and �nally


nX
j=1


a1;jxj � a1;0 +
ja1;jj


2
:


Therefore �i(A) = H1 � L1 \ : : :\Hm � L1 and
A � �i(A) It is obvious by the de�nition of the
extrusion, that A� L1 is a subset of �i(A). Con-
sequently, we have A� L1 � �i(A) \ �i(A).


Finally, we prove �1(A) \ �1(A) � A � L1. Sup-
pose that x 2 Rn is a point with x 2 �1(A).
Then x is contained in one translate At along
the �rst coordinate axis. If we further suppose
x 2 �1(A), it remains to show that there ex-
ists a translation vector t� = (t�1; 0; : : : ; 0) with
�1


2
� t�1 �


1


2
such that At� � A � L1. The cases


x 2 A � (�1


2
; 0; : : : ; 0) and x 2 A � (1


2
; 0; : : : ; 0)


are trivial. Otherwise �1(x), the line through
x parallel to the �rst coordinate axis must hit
x 2 A � (�1


2
; 0; : : : ; 0) and x 2 A � (1


2
; 0; : : : ; 0)


in some points x� and x+, respectively. Since
x 2 �i(A), we have x� � x � x+. Thus, there
exists a t� which satis�es the assumptions.


Now, we have proven A � L1 = �i(A) \ �i(A),
which is, as being the intersection of two polyhe-
dral sets, a polyhedral set and can be written as
the intersections of the halfspaces de�ning �1(A)
and the halfspaces de�ning �1(A).


It is easy to see that A�L1 is the convex hull of
A � (�1


2
; 0; : : : ; 0) [ A � (1


2
; 0; : : : ; 0). The con-


struction of A � L1 is illustrated in Fig. 5. To
determine A�V(0), one has to determine A�L1 ,
A� L1 � L2, : : : , A� L1 � : : :� Ln inductively.


Our result includes m-ats (0 � m < n) as a
special case. As an example we consider the su-
percover of a hyperplane H, i.e. an (n � 1)-at,


given by the equation


a1x1 + : : :+ anxn = a0:


Since all the extrusions of H are the set Rn, we
derive H �L1 = �1(H), H �L1 �L2 = �2(�1(H)
and so on. The supercover of a hyperplane is
S(H) =Zn\�n Æ : : :Æ�1(H), which is the discrete
solution of


a0 �
nX


j=1


jajj


2
�


nX
j=1


ajxj � a0 +
nX


j=1


jajj


2
:


We want to remark that our approach is di�er-
ent from the approach by Andres [Andre98], who
studied m-ats only. He de�ned the set of multi-
indices


J
n
m = fj = (j1; : : : ; jm) 2Z


n :


1 � j1 < j2 < : : : < jm � ng


and a more general notion of projection and ex-
trusion as


�j(A) = (�j1 Æ �j2 Æ : : : Æ �jm)(A)


and �j(A) = ��1j (�j(A))


for A � Rn and j 2 Jnm. The supercover of an
m-at A with 0 � m � n� 2 is determined by


S(A) =
\


j2Jnn�1�m


S(�j(A)):


The supercover of an extrusion S(�j(A)) is given
by the supercover of the according projection
S(�j(A)). Based on this, Andres developed a re-
cursive method.


Our computation of the supercover of a general
polyhedral set A in n-dimensional space requires
n steps. The result of the i-th step will be denoted
by Ai and A0 = A. In each step, we compute


Ai = �i(Ai�1) \ �1(Ai�1):


The number of inequalities in �i(Ai�1) is clearly
the same as that of Ai�1. The number of inequal-
ities in �1(Ai�1) depends on Ai�1. For example,
the i-th extrusion of a tetrahedron can be de�ned
by three or four inequalities, depending on the
number of vertices in the i-th projection.


Fig. 6 shows the construction of the supercover
of a triangle in 3D. The supercover of a trian-
gle in general location, that is a triangle which
is not parallel to a coordinate plane and whose
edges are not axis aligned, is given by 17 discrete
inequalities.







Figure 6: The construction of the supercover of a triangle in 3D


Alternatively to the inductive approach, the fact
that A�V(0) is the convex hull of the dilation of
A by the set of vertices of V(0)


conv(A� [


�
(x1; : : : ; xn) : jxjj =


1


2


�
)


can be incorporated to compute the supercover.
A bounded polyhedral set is a convex polyhedron.
Its supercover is the convex hull of the dilation of
its vertices and the vertices in V(0).


6 Conclusions and future work


In this article we have investigated the digiti-
zation approach to discrete geometry and re-
lated it to the arithmetical geometry approach.
We pointed out that digitization as de�ned in
[Klett85] can be interpreted as the set of grid
points contained in the dilation of the continu-
ous object and the reected basic domain. This
relationship serves as the theoretical background
for the study of the supercover.


One important property of the supercover digiti-
zation is the decomposability of its basic domain
into Minkowski sums of axis aligned straight line
segments. As a consequence, the study of the
supercover is reduced to the investigation of dila-
tions by these line segments.


We have shown that the supercover of a continu-
ous analytical object A = A(x1; : : : ; xn) is


S(A) =


Z
n\


[
� 1


2
�t1;::: ;tn�


1


2


A(x1 � t1; : : : ; xn � tn)


However, it is far from being trivial to derive an
analytical description of the supercover of general
analytical objects A = A(x1; : : : ; xn) as a set of
inequalities whose solution is S(A). The paper
makes a �rst step into the right direction.


In the previous section the supercover of poly-
hedral sets, i.e. convex linear objects, is consid-
ered. It has been proven that the supercover of


these objects is a discrete analytical object. This
proof relies on convexity. Since concave linear ob-
jects can be partitioned into polyhedral sets and
the digitization of the union of two objects is the
union of the digitization of each object, an exten-
sion to concave linear objects is straight forward.


This paper is a small move towards a uni�cation
between the digitization approach and the dis-
crete analytical approach. Consequently, there
are many aspects open for further research. It
is worthwhile to consider also other classes of
continuous objects, in particular objects de�ned
by polynomial inequalities. On a more abstract
level, other digitization scheme can be studied
similarly.


Here, we began to study how discretization can
be viewed in the context of arithmetical geometry.
Conversely, we want to consider discrete analyti-
cal objects and investigate their relation to digi-
tization schemes. Moreover, these considerations
can also be made with the axiomatic approach to
digital geometry. The idea behind this is to �nd
common properties as a foundation of a uni�ed
approach.


Acknowledgements: The authors would like
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ing supercover and discrete analytical objects.


REFERENCES


[Andre97a] E. Andres, R. Acharya, and
C. Sibata. Discrete analytical hyper-
planes. Graphical models and image
processing: GMIP, 59(5):302{309, 1997.


[Andre97b] E. Andres and M.-A. Jacob. The
Discrete Analytical Hyperspheres. IEEE
Transactions on Visualization and Com-
puter Graphics, 3(1):75{86, March 1997.


[Andre98] E. Andres. An m-at supercover
is a discrete analytical object. Inter-
nal Research Report 1998-07, Laboratory







IRCOM-SIC, University of Poitiers, 1998.
submitted to Theoretical Computer Sci-
ence.


[Braqu98] J. P. Braquelaire and L. Brun. Image
segmentation with topological maps and
inter-pixel representation. Journal of Vi-
sual Communication and Image represen-
tation, 9(1):62{79, 1998.


[Brese65] J. E. Bresenham. Algorithm for com-
puter control of a digital plotter. IBM Sys-
tem Journal, 4(1):25{30, 1965.


[Brese77] J. E. Bresenham. A linear algorithm for
incremental digital display of circular arcs.
Communications of the ACM, 20(2):100{
106, 1977.


[Chen97] J. X. Chen. Multiple segment line scan-
conversion. Computer Graphics Forum,
16(5):257{268, 1997.


[Cohen91] D. Cohen and A. Kaufman. Scan con-
version algorithms for linear and quadratic
objects. In A. Kaufman, editor, Volume
Visualization, pages 280{300. IEEE Com-
puter Science Press, 1991.


[Cohen95] D. Cohen-Or and A. Kaufman. Fun-
damentals of surface voxelization. GMIP,
57(6):453{461, November 1995.


[Cohen96] D. Cohen-Or, A. Kaufman, and T. Y.
Kong. On the soundness of surface vox-
elization. In T. Y. Kong and A. Rosenfeld,
editors, Topological Algorithms For Image
Processing, pages 181{204, 1996.


[Fran�c98] J. Fran�con and L. Papier. Polyhedriza-
tion of the boundary of a voxel. In Discrete
Geometry for Computer Imagery (Proceed-
ings of the 8th DCGI), volume 1568 of
Lecture Notes in Computer Science, pages
425{434. Springer-Verlag, 1998.


[Heijm95] H. J. A. M. Heijmans. Mathematical
morphology: basic principles. In Proceed-
ings of Summer School on \Morphological
Image and Signal Processing", Zakopane,
Poland, 1995.


[Klett85] R. Klette. The m-dimensional grid
point space. Computer Vision, Graphics,
and Image Processing, 30:1{12, 1985.


[Linck99] C. Lincke, C. A. W�uthrich, and P. Gui-
tton. An exact weaving rasterization algo-
rithm for digital planes. In V. Skala, editor,
Proceedings of the WSGG '99, pages 395{
402, Plzen, Czech Republic, 1999. Univer-
sity of West Bohemia.


[Monta70] G. U. Montanari. On limit proper-
ties in digitization schemes. Journal of the
ACM, 17(2):348{360, April 1970.


[Revei92] J.-P. Reveill�es. Geometrie Discr�ete,
Calcul en Nobres Entiers et Algorithmique.
Th�ese d'Etat. Universit�e Louis Pasteur,
Strasbourg, F, 1992.


[Serra82] J. Serra. Image Analysis and Mathe-
matical Morphology. Academic Press, Lon-
don, 1982.


[Stojm91] I. Stojmenovi�c and R. To�si�c. Digiti-
zation Schemes and Recognition of Digital
Straight Lines, Hyperplanes and Flats in
Arbitrary Dimensions, volume 119 of Con-
temporary Math. Series, pages 197{212.
American Mathematical Society, Provi-
dence, RI, 1991.


[Webst94] R. Webster. Convexity. Oxfort Uni-
versity Press, 1994.


[W�ut98] Ch. A. W�uthrich. A model for curve
rasterization in n-dimensional space. Com-
puter & Graphics, 22(2{3):153{160, 1998.






