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ABSTRACT


Many engineering disciplines can profitably use large high-resolution geometric models whose computa-
tional requirements exceed current computer hardware capacities. This paper presents an adaptive visual-
ization solution for interactively building such models. Whereas adaptive visualization techniques have
conventionally been applied to existing complete models, our work permits adaptive visualization of mod-
els while under construction. To achieve this, we use a multiresolution surface representation for both geo-
metric computation and visualization. The paper develops techniques that dynamically and adaptively
decimate models, adjusting to changing camera positions. The decimation algorithm preserves intersection
curves between surfaces, and applies to models whose surface triangulation is either globally coherent or
incoherent. We have embedded the technology presented in this paper into a 3D geoscience geometric
modeling application framework that supports many applications.
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1. INTRODUCTION


A geoscience geometric model represents the struc-
ture of the subsurface and material properties within.
Figure 1 shows examples of cross-sections of 3D
subsurface structures. Geometric models represent-
ing such structures are usually non-manifold and are


typically built interactively from surfaces generated
from measured data. A large geoscience model may
contain many millions of triangles, which cannot be
rendered interactively by most graphics hardware.
This paper presents an adaptive visualization solu-
tion for interactively building large geoscience geo-
metric models.


We apply adaptive visualization in novel ways to
interactive geometric modeling. This paper describes


the visualization aspect of SIGMA: a Scalable Inter-
active Geometric Modeling Architecture [8]. The
essence of SIGMA is a multiresolution surface repre-
sentation, which supports geometric modeling and
visualization. Reference [8] details the representation
and geometric modeling aspect of SIGMA. This
paper details the visualization aspect. 


The literature on multiresolution surface representa-
tions and adaptive visualization is growing rapidly
[3],[5],[9],[15]. However the previous work focuses
on pre-built geometric models. A user builds a com-
plete geometric model using a geometric modeler. To
interactively visualize the model, the user converts
the model to a multiresolution surface representation.
Figure 2 shows this conventional approach. The pre-
vious work has not shown how the multiresolution
representation can be updated and how the visualiza-
tion is affected when the model is changed topologi-
cally. This presents problems for interactive
geometric modeling where the geometric model goes
through topological and geometrical changes. Recon-
structing the multiresolution representation is often
too expensive.
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Figure 1: Cross-sections of some 3D subsurface 







Figure 3 shows our approach. SIGMA builds its sur-
face representation and uses this representation for
both geometric modeling and visualization. When
the model changes (for example, a new surface is
inserted), SIGMA incrementally updates the repre-
sentation, rather than reconstructing it. 


The main contributions of this paper include the fol-
lowing. (1) Adaptive visualization is applied to inter-
active geometric modeling and, in particular, during
model construction. (2) Visualization uses the same
multiresolution surface representation as used for
geometric computations. (3) Visualization is incre-
mentally updated as the model changes. (4) Adaptive
visualization applies to coherent and incoherent geo-
metric models, which maybe non-manifold.


1.1. Related Work


Major categories of multiresolution surface represen-
tations include: subdivision-based, wavelet-based,
and mesh-based. Subdivision surface representations
[2],[19],[20] start from a coarser mesh and subdivide
elements in the mesh with a fixed scheme to refine
the surface. Many wavelet-based multiresolution sur-
face representations have been developed [3],[10],
[11],[18]. Subdivision and wavelet techniques can
represent surfaces to desired resolutions or smooth-
ness with analytical error analysis. However, they
have not been shown to represent and construct non-
manifold geometric models, which we need for mod-
eling subsurface structures. see Figure 1. Mesh-based
multiresolution and simplification techniques [15],
[9], [5] are based on point removal or edge contrac-
tion. These representations are flexible and able to
represent non-manifold geometries.


The previous work focuses on existing geometric
models. Multiresolution editing is possible. But such
editing is limited to deforming a surface. We are


interested in interactively building geometric models,
which are non-manifold.


The following sections provide some background
information, describe algorithms for applying adap-
tive visualization to interactive geoscience geometric
modeling, and demonstrate an application.


2. BACKGROUND


A geometric model for geoscience is built from sur-
faces, such as faults and horizons, which are con-
structed from acquisition data. The geometric model
is built using an Irregular Space Partition [1]. An
Irregular Space Partitioning is a boundary represen-
tation model that consists of connected manifold
components called cells. A 3-cell is a volume
bounded by 2-cells or surfaces, which are bounded
by 1-cells or curves, which are bounded by 0-cells or
vertices. The macro-topology of a geometric model
is the graph of boundary relationships between cells.
This paper assumes a piece-wise linear geometric
modeling kernel that computes the boundary repre-
sentation of a model. We use SHAPES geometric
modeling kernel from XOX [17] in our work.


The geometric model is built incrementally by insert-
ing surfaces into a volume of interest. The surfaces
intersect each other creating new 2-cells and new 3-
cells which split the volume of interest into many
subvolumes. Figure 4 illustrates an example.
Figure 4-(a) shows the volume of interest (VOI).
Figure 4-(b) brings in the first surface. We insert the
first surface into the VOI. The operation trims the
first surface by the boundary of the VOI (Figure 4-
(c)) and splits the VOI into two subvolumes
(Figure 4-(d)). The second surface is then loaded in
(Figure 4-(e)) and inserted into the VOI. This action
splits the first and second surface (Figure 4-(g)) and
inserts cracks into the two subvolumes (Figure 4-
(h)). A typical geoscience geometric model may be
built from dozens or hundreds of surfaces. During
model building it is important that a user can visual-
ize and interactively edit the model.
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Figure 2: Conventional data flow for adaptive 
visualization.


Figure 3: Data flow in SIGMA approach.
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Figure 4: Interactively inserting two surfaces.
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3. SIGMA SURFACE REPRESENTATION


The SIGMA surface representation [8] is novel as it
extends traditional multiresolution surface tech-
niques to geometric model building. In particular,
data structures, typically used in computer graphics,
are extended to support Irregular Space Partitioning,
and, as shall be shown in this paper, for interactive
visualization and building of geometric models.


The SIGMA surface representation is a multiresolu-
tion hierarchy implemented as a quadtree [14]. The
quadtree is built in the parameter space of structured
grid data. The leaves of the quadtree contain a collec-
tion of triangles which are the triangulation of the
grid cells the quadtree leaf node covered. In this way
each triangle of the surface is assigned to a unique
quadtree leaf node and a node of the quadtree inherits
the triangles and vertices of its descendants. Figure 5
shows an example of a surface, its parameter space,
and its quadtree.


The quadtree aids in model building as it supports tri-
angle refinement. In particular, if a triangle is refined
the refining triangles are assigned to the quadtree
nodes of the original triangle. The quadtree also aids
in computing maximal connected components as
many of the quadtree nodes are connected.


Definition: A collection of nodes, C, of the tree T is a
node front if every leaf node of T has at most one
ancestor in C (a node is an ancestor of itself). A node
front is a complete node front if every leaf node of T
has exactly one ancestor in C.


Figure 6 shows an example of a complete node front.
For a complete node front each triangle of the surface


belongs to a unique node in the node front, on the
other hand, a vertex of the surface maybe shared by
several nodes. Given a complete node front, the ver-
tices that are shared by three or more nodes, or are on
the boundary of the surface and shared by two or


more nodes, are called critical vertices. Figure 7
shows how the critical vertices approximate the orig-
inal surface and how they are represented in a
quadtree with irregular boundaries. It can be shown,
a constrained triangulation in parameter space of the
critical vertices of a complete node front describes a
decimated non-cracked view of the surface [8].


Terrain visualization has used the quadtree to
achieve interactive rendering performance [6], [13].
However, these techniques have not been applied to
visualizing a non-manifold geometric model. We use
the quadtree to build and visualize a non-manifold
geometric model.


4. ADAPTIVE VISUALIZATION FOR INTER-
ACTIVE GEOMETRIC MODELING


As mentioned earlier, SIGMA is designed for inter-
active geometric modeling of large geoscience mod-
els. We apply adaptive visualization to each step of
the modeling process. This section describes our
technique and the supporting algorithms. First we
introduce the concept of model coherence.


4.1. Model Coherence


A model is coherent if the geometry of the cells
agrees at all dimensions [17]. With piecewise linear
geometry, a coherent model means the 0-cell 0-sim-
plices and 1-cell 1-simplices are faces of the 2-cell 2-
simplices.


A model is built by surface insertions (Section 2).
Insertion includes two major steps, classification and
making coherent. Classification is the topological
operation that subdivides the point sets of operand
geometries and determines the cells. Making coher-
ent is the geometric operation that re-tessellates the
mesh in the neighborhood of the intersection curve
so 1-simplices of the curve are faces of 2-simplices
of the mesh. Figure 8 shows an example of classifi-
cation followed by making coherent. The classifica-
tion results in two 2-cells A and B. We cannot
geometrically separate A and B since triangles strad-
dle both cells. After making coherent, each triangle
belongs to a unique 2-cell. Making coherent is
expensive, it is advantageous to visualize cells of an
incoherent model as this permits viewing after classi-
fication.
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Figure 5: Parameter space and quadtree.
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Figure 6: Views of a complete node front.
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Figure 7: Critical vertices at depths 1 and 2.
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4.2. The Role of Adaptive Visualization


SIGMA enables adaptive visualization during geo-
metric modeling process. Both the model and indi-
vidual surfaces can be visualized. To achieve
performance, we decimate the surface and the model
dynamically according to the viewing parameters.
The decimation ensures no cracks are generated and
preserves the intersection curves between surfaces in
the model. For this purpose, critical vertices (Section
3) are used and the intersection curves are constraints
during the model decimation. Figure 9 illustrates the
role of adaptive visualization during interactive geo-
metric modeling using SIGMA.


When a user loads a surface, SIGMA builds its sur-
face representation. At this time, the surface is not
part of the geometric model. Adaptive visualization
algorithm applies to this individual surface. Inserting
the surface into the volume of interest makes the sur-
face part of the model. The intersection curves
between the surface and the volume of interest con-
strains the decimation. The geometric computation of
the insertion may be time consuming. The visualiza-
tion algorithm can be applied before the computation
completes, that is, visualizing incoherent model.


When the user loads in the next surface, adaptive
visualization can apply to the surface and the model
independently. In other words, for adaptive visual-
ization, the new surface is not subject to the con-
straints that surfaces in the model are. After
insertion, the independent rendering behavior of this
new surface is removed.


SIGMA can render physical material properties
together with adaptive visualization of the geometry.
Properties are rendered via per vertex coloring or via
texture mapping. 


4.3. Top Level Algorithm


Adaptive visualization refers to mechanisms that
modify the visualization of objects according to
given criteria. In this work, we dynamically decimate
the geometric model according to camera position to
achieve visualization performance.


A geometric model contains many surfaces (2-cells)
and their intersections (1-cells). The decimation
should be able to respect the macro-topology of the
model. If each surface is decimated independently,
there may be cracks between intersecting surfaces.
To prevent cracking, the decimations are constrained
with the same set of 1-cell edges for all the 2-cells
intersecting at this 1-cell.


SIGMA adaptive visualization includes three major
steps: vertex and edge selection, triangulation, and
rendering. The technique applies to individual sur-
faces, coherent models, and incoherent models. An
individual surface can be considered as a model with
only one surface.


Selection: The module traverses each quadtree to
select vertices and selects edges from each 1-cell in
the model.


Triangulation: The module generates a triangle
mesh for each surface (2-cell) from selected vertices
and edges. The edges are constraints of triangulation.


The vertex and edge selection and the triangulation
together are referred to as decimation. Reference [8]
describes a general decimation algorithm. This sec-
tion presents a specific vertex selection algorithm for
adaptive visualization. The decimation method in [8]
is also extended for incoherent models.


Rendering: The module renders the triangle meshes.
The physical material properties assigned to compo-
nents of the geometric model can also be rendered.


Let M be a model, C be a set of criteria for vertex and
edge selection, V be set of selected vertices, and E be
set of selected edges. The following pseudocode
sketches a top level algorithm for this technique.


while ((CameraMoved() == TRUE) and 
((Projnew(M) - Projold(M) > t)) {


(V,E) := SelectVertexEdge(M, C);
TM := Triangulate(M, V, E);
UpdateGraphics(TM);}


where the CameraMoved function reports when cam-
era has changed position; Proj function projects the
model to the screen. When the change from the cur-
rent projection to the previous projection is larger
then a pre-specified threshold t, the model is re-deci-


Original cell Classified but not coherent Coherent


A


B


Figure 8: Classification and making coherent.
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Figure 9: The role of adaptive visualization.







mated and graphics is updated. The Triangulate
function may execute incremental and decremental
algorithms instead of re-triangulating [7].


4.4. Vertex and Edge Selection


Vertex selection is performed for each quadtree in a
model. The selection algorithm finds a node front of
a quadtree via traversing the tree. Critical vertices of
the node front form the subset of vertices to be ren-
dered. Two major operations involved during the tra-
versal are: view frustum culling and projection. View
frustum culling determines those parts of the surface
that are outside of the view frustum and need not be
rendered. Projection determines the decimation reso-
lutions of the surface.


Each quadtree node has a bounding object that
bounds the triangles of the node. The algorithm
traverses the quadtree from its root node. If the
bounding object of a node is outside the view frus-
tum, the node need not be visualized; and traversal
continues to the next node. Otherwise, the bounding
object of the node is projected to the screen. If the
projected area is smaller than a pre-specified mini-
mum resolution, the node is in the node front. Other-
wise, the traversal needs to resolve the children of the
node.


Due to perspective viewing, critical vertices from the
node front results in a mesh with varying resolution.
The portion of the surface closest to the camera has
finer resolution. Further from the camera, the surface
has coarser resolution.


For an incoherent model, more than one 2-cell might
share the same quadtree. In this case, each quadtree
is still traversed once for vertex selection. To sim-
plify edge selection and triangulation, 1-cells in an
incoherent model are made coherent. This is not
expensive and needs to be done only once.


There are following cases for edge selection:
1. Visualizing an individual surface.


1.1 The surface has a convex boundary in
its parameter space and has no holes.


1.2 The surface has a non-convex bound-
ary in its parameter space or has holes. The
boundary, including the holes, is represented
by 1-cells.


2. Visualizing a geometric model that contains
1-cells and 2-cells. Some of the 1-cells represent
intersections between 2-cells.


For case 1.1, edge selection is not required. For other
cases, edge selection is done by decimating 1-cells. 


The vertex and edge selection algorithm can be writ-
ten in the following pseudocode,


SelectVertexEdge(M, C):
for each quadtree T in M


V += Traverse(T, C);
E := DecimateOneCells(M, C);
return (V,E);


where the Traverse function traverses quadtree T as
described earlier. The camera parameters and pre-
specified screen resolution are encoded in parameter
C. The result of Traverse is a set of selected vertices.
The DecimateOneCells function finds all the 1-cells
in model M and decimates them to obtain edges.


4.5. Triangulation


We use Delaunay triangulation [4],[16] to triangu-
late selected vertices in the parameter space of a sur-
face. When edges are present, constrained Delaunay
triangulation is applied to the vertices with edges as
constraints. The resulting triangle mesh is mapped to
the image space to approximate the original surface.
During interaction, the camera moves and many ver-
tices selected are repeated from one position to the
next. Incremental and decremental Delaunay triangu-
lation [7] can be used to update the mesh.


The triangulation applies progressively more con-
straints to the three cases listed in the previous sec-
tion. For case 1.1 where a surface has a convex
boundary and no holes, Delaunay triangulation
applies to the selected vertices. For case 1.2 where a
surface has non-convex boundary or has holes, con-
strained Delaunay triangulation is used.


For case 2 where a model is visualized, to preserve
intersection curves, constrained Delaunay triangula-
tion is used for each 2-cell in the model. Given a 2-
cell, edges from all its 1-cells are constraints to the
triangulation. To prevent cracking, for each 1-cell,
the same set of edges from the 1-cell constrains all
the 2-cells intersecting at this 1-cell. Figure 10 shows
an example. Surfaces A and B intersect. The inter-


section curve C is a 1-cell. Surface A is split into two
2-cells, A1 and A2. Surface B is still one 2-cell, but
has a crack resulting from the intersection. The 1-cell
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Figure 10: Parameter spaces for two surfaces.







C is shared by three 2-cells, A1, A2, and B.
Figure 10 shows the parameter spaces of A, B, A1,
and A2. During the edge selection (Section 4.4), C is
decimated. In this example, the decimated version of
C has four edges. During triangulation, for each 2-
cell, B, A1, and A2, we find edges of C in the 2-cell’s
parameter space, respectively (Figure 10). The edges
are part of the triangulation constraints in 2-cells’
parameter spaces.


The triangulation algorithm is sketched in the follow-
ing pseudocode,


Triangulate(M, V, E):
for each 2-cell S in M {


VP := V.getVerticesInParamSpace(S);
B := S.getBoundaryCells();
EB := E.getEdges(B);
EP := EB.getEdgesInParamSpace(S);
TM += ConstrainedDelaunay(VP, EP);}


return (TM);


where getEdgesInParamSpace function maps the
boundary edges EB of S to the parameter space of S.
The ConstrainedDelaunay function executes in
parameter space of S. This algorithm is straightfor-
ward for a coherent model since each 2-cell has its
own quadtree and a set of selected vertices from the
quadtree. The algorithm also works for an incoherent
model as explained below.


In an incoherent model, a quadtree may be shared by
multiple 2-cells. Therefore, given a 2-cell, some of
the selected vertices from the quadtree may not be
part of the 2-cell. Figure 11 shows an example. A


surface is classified into grey cell and white cell, but
has not been made coherent. Both the grey cell and
the white cell share the same quadtree of the original
surface. Figure 11-(a) shows selected vertices from
the quadtree and selected edges from 1-cells. Verti-
ces on the white cell are not part of the grey cell, and
vice versa. Constrained Delaunay triangulation is
applied to each 2-cell separately. Figure 11-(b) and
(c) shows the constrained Delaunay triangulations
for the grey cell and white cell, respectively. Since
each 2-cell has a closed boundary of 1-cells, the ver-
tices outside of the boundary are removed during tri-
angulation. With this approach, one traversal for
vertex selection is done for each quadtree. The trian-


gulation runs as many times as the number of 2-cells
sharing this quadtree.


4.6. Performance versus Quality


SIGMA is deployed on a wide-range of visualization
hardware. It is important a user is given a broad
range of rendering options to maintain interactive
performance. As has been described in previous sec-
tions, SIGMA can reduce triangle counts by using
decimation and culling. However, SIGMA permits
another group of trade-offs which are based around
the visualization of the geometric model. In particu-
lar, it is possible to trade-off topological quality for
performance, see Figure 12. 


For optimum quality, the model is rendered at full
resolution. To improve rendering performance the
model can be decimated. However, decimating the
model may introduce topological artifacts such as
cracking and bubbling. Preventing these topological
artifacts, especially bubbling, is costly and a user
may decide such topological quality is unnecessary.
The surfaces can be decimated even further until they
have no interior points and are only defined by their
boundaries. One can even drop the surfaces alto-
gether and just draw the 1-cell wireframe of the
model. Finally, a crude approximation of the model
can be given by rendering bounding boxes of the sur-
faces. These trade-offs can be chosen by users at the
application level.


5. APPLICATION


To support interactive geometric modeling in geo-
science, we developed the Common Model Builder
[12],[1], which is an application-neutral framework.
SIGMA is embedded in the Common Model Builder.


Figure 13 shows the adaptive visualization of a syn-
thetic surface, the z value of which is defined by sine
functions of x and y values. The surface is adaptively
decimated and is rendered with a space varying prop-
erty. Figure 14 shows a bird’s eye view of the sur-
face, the red outlined polyhedron is the view frustum.


Figure 11: Triangulation of incoherent 2-cells.
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Figure 12: SIGMA provides a range of selections 
for performance and quality.
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Figure 15 to Figure 18 show snapshots from a geo-
science geometric modeling process using SIGMA.
Surfaces in these figures are rendered with adaptive
visualization technique. There are two model display
modes: surface mode and volume mode. 


In Figure 15, a unconformity surface is inserted into
the volume of interest (VOI). This operation split
VOI into two volumes. Figure 16 is an explored view
of the two volumes. In Figure 17, another unconfor-
mity, a horizon surface, and two faults are inserted to
the model. Figure 18 shows an explored view of the
volumes in the model. In this view, the model is
rotated to see some smaller volumes in the back.


6. CONCLUSION


This paper presents an adaptive visualization solu-
tion for interactively building large high resolution
geometric models. Distinct from existing
approaches, adaptive visualization applies during
model construction. The same multiresolution sur-
face representation is used for visualization and
geometry computations. The representation is incre-
mentally updated, rather than reconstructed, when
the model changes. We have developed techniques
that adaptively decimate models (coherent and inco-
herent), according to camera position. The decima-
tion algorithm preserves intersection curves between
surfaces in the model. The technology is embedded
into a 3D geoscience geometric modeling application
framework. Disciplines other than geoscience face
similar problems when building large geometric
models; SIGMA technology may be applicable.
Many optimizations remain to be developed to
improve SIGMA, which is the main focus of our
future work.
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Figure 14: A bird’s eye view of the surface in 
Figure 13.


Figure 15: A surface is inserted into the volume 
of interest.


Figure 16: Explored volume view of the model 
in Figure 15.


Figure 17: Five surfaces are inserted into the model. Figure 18: Explored volume view of the model in 
Figure 17.


Figure 13: Adaptive Visualization of a surface.






