

ABSTRACT

The Internet now provides access to a number of
repositories from which large data volumes can be
available. Due to the huge amount of memory needed
to store the data and hardware requirements to visual-
ize them, there is a need for interactive visualization
services for online data exploration and analysis.
Therefore, we have investigated the requirements for
a user-friendly access to information. Based on the
resulting WWWW model, we have developed the
system PROSECO, an open scalable framework
architecture to easily provide and access any services
needed for a distributed visualization of abstract data.
We demonstrate the capabilities of our concepts by
integrationg services in-to PROSECO to provide the
workflow of an economist.

Keywords: User-friendliness, distributed visualiza-
tion, economic data.

1 INTRODUCTION

Nowadays, the Internet has become one of the most
important means of communication. Every user -con-
sumers, enterprises, even the government- benefits
from this new medium and from the possibility of
being independent of location and time for all appli-
cations. The Internet can be regarded as the virtual
global market-place. This changed status of the Inter-
net calls for an adaptation of all components relating
to it. The problems to overcome in finding relevant
information have shifted, the difficulty previously
being that information was not easily accessible or
searchable. In order to make full use of the Internet's
potential, a user-friendly access to information needs
to be developed, in particular for the limitation of the
enormous amount of data and for the optimal distri-
bution of information and knowledge.

A representative set of data where a user-friendly
access is necessary can be seen in economic data
[Lux00]. In general, economic data is built of a com-
plex network interconnecting arbitrary data types.
Besides the different data types, these interconnec-
tions are fundamental for the overall understanding
of the domain. During the visualization process, not
only the huge amount of data, but also its’ multidi-

mensionality create various problems. The same
holds for the users of a visualization tool for this kind
of data. No assumptions can be made concerning
their background knowledge or their analysis goals,
even the available infrastructure, especially the
graphics hardware is not known in advance. These
preconditions require a system to be built as a set of
independent sub- systems, each targeting one or a
few possible combinations. Given these require-
ments, the resulting system must not be a monolithi-
cally organized system based on a main central
component. Instead, it should be a set of peripherally
organized components interconnected in a loose
manner.

This work defines an open, scalable framework to
visualize economic data in a distributed environment.
By defining a general model for a service, it is possi-
ble to distribute application or data sources in an
abstract way. This level of abstraction enables their
uniform integration in-to new systems. Available
resources can be integrated at any time to enhance the
performance of the whole system. This framework is
the basis for enabling any user to analyze any infor-
mation in an intuitive and effective way at any place
or time.

2 RELATED WORK

The Visualization Web Server system [WoBrWr96]
introduces a judicious compromise between the hard-
ware requirements on the client side and the possibil-
ities for interaction. The server allows client
interactions with the filtering and mapping level and
yields a VRML file. With this constellation the appli-
cation on the client side can be realized as an HTML
document including the VRML scene. Here, possibil-
ities for load balancing through the server are miss-
ing. Consequently, the requests for visualization can
not be distributed to different servers. Also the distri-
bution of the visualization pipeline is fixed on varia-
tion. The security of such a system is another
important aspect. Absent mechanisms for an access
restriction reduce this system to work only with non-
critical data.

The viscWeb system [LePi99] has some common

PROSECO - A Framework Architecture to Provide Services for Eco-
nomic Data

Miriam Lux, Ralf Stuckert, Stefan Müller

Fraunhofer Institute for Computer Graphics
Rundeturmstr.6, D-64283 Darmstadt, Germany

{mlux, stefanm}@igd.fhg.de

ideas regarding the above described system. Here, the
user can submit HTML forms and receives images or
VRML descriptions, that are visualized by the
browser itself or an external application. The distribu-
tion of the servers among the machines is managed by
a special program called General Manager. In addi-
tion, on every machine a Local Manager is running,
that provides services. Communication is done
directly between the CGI scripts executed on the
machine supporting the Web service, and the visual-
ization servers executed on remote machines. This
architecture supportes the use of a pool of visualiza-
tion servers, that is transparent to the user. The Gen-
eral Manager chooses a machine available for the
requested services as a function of various parame-
ters, including the machine charge and the number of
users that are currently logged on. Therewith, the sys-
tem is scalable, however, if the General Manager -as
an exclusive resource- fails, the whole system fails.
The system is able to perform user sessions, where at
least one visualization server is dedicated to the user.
However, this features is not sufficient to fulfill the
requirements from various users. Possibilities to
choose the distribution of the visualization pipeline
are missing. Besides, there is no simple method to
integrate the resources that are already available.
Even an access restriction is not considered.

Weather on demand (WxoD) [BoHa99] is a sys-
tem for Web- based meteorological products. Here,
distributed visualization is used to deliver a variety of
meteorological information to many recipients with
various client platforms across the Internet. This
requires a range of different solutions utilizing
HTML, VRML, CGI, and Java technology. The sys-
tem provides several variants to distribute the visual-
ization process. Therewith, a range of distribution
schemes for different tasks are available, e.g., low or
medium bandwidth connection, computation on
server or client. On the client side, depending on the
requirements, HTML/JavaScript- and Java-Front-
Ends are used for controlling and presentation. By
using Java-Applets the necessary work according to
the distribution of the visualization pipeline can be
done by the client. On the server side, CGI scripts
control the visualization system. Like the Visualiza-
tion Web Server, this a client/-server application with-
out the possibilities for load balancing, which restricts
the scalability of such a system. WxoD is a collection
of separate solutions for special applications and
tasks, without a common framework. Thus, the con-
sideration of all requirements concerning the visual-
ization of economic data is not feasible.

3 USER-FRIENDLY ACCESS TO
INFORMATION

The contemporary situation in the age of information
can be described as a huge data universe containing

information that the user wants to access. To describe
this situation, theWWWW modelhas been developed
[Lux00].

The WWWW Model

On the one side, you have suppliers providing infor-
mation, on the other side, there are users demanding
information. To characterize this situation we have
developed the WWWW model (where, how, who,
what for). This model includes all questions concern-
ing information (preparing, obtaining, understanding
it).

Figure 1: The WWWW model

The first question will bewhereto find data and infor-
mation. In order to gain information, the supplier
needs to knowhowdata is structured. The preparation
of information depends also on the userwho is look-
ing for it and on the purpose he/she is having in mind
(whatfor).

In this situation, in order to establish a user-
friendly access to information, access per se has to be
analyzed. For the supplier as well as for the user, this
access can be seen from two different points of view:
on the one hand, the technical aspect and on the other
hand, the aspect regarding the content. In view of the
WWWW model, the technical side is influenced by
the where and who, the content side by the how, who
and what for.

Technical aspects

The assumptions made above can be transferred to a
simple model used in economics. On a particular
market (the data universe), there is supply (by suppli-
ers) and demand (by users) for certain goods (infor-
mation). Following this analogy, mechanisms for
coordinating supply and demand in the information
market will have to be developed, i.e., methods and
procedures for an easy provision and distribution of
information will have to be explored. In doing so, the
following aspects have to be considered in particular.

Use of resources that are already available
Suppliers of information will only accept the market
model mentioned above if they also get user-friendly
access. In other words, in this model it has to be pos-
sible to provide information fast and easily. It is indis-
pensable that all resources already available for
obtaining information can easily be integrated. How-
ever, it has to be considered that not every informa-
tion is provided free of charge.

data universe

information

user supplier
WHO

WHO

WHERE

WHAT FOR

HOW

Minimal hardware requirements
From the user’s point of view, the available power of his/
her own technical equipment should not be relevant when
searching for information. If, for example, information is
provided by knowledge tools or data mining tools, this
software should absolutely be platform-independent. In
the case of visual representation of information, local or
distributed visualization must be considered depending on
the user's hardware configuration.

Utilization of information obtained
The spreading of gained insights can be regarded as the
final aspect of the technical user-friendliness. Assuming
that a specialist has processed the information necessary
for a particular objective and, while doing so, has gener-
ated new knowledge, he/she wants to make it available
within this model. This means that we have to consider
the case that a user becomes a supplier of information.

Technical access can be summarized in the following
chart (see fig. 2).

Figure 2: Technical user-friendly access to information

In order to realize this technical access, a service model
satisfying all these requirements has been developed and
implemented in a framework architecture.

Access to information contained in data

This aspect is more complex. In order to arrive at a user-
friendly access to information, the problem has first to be
regarded from the supplier's point of view. First of all, the
question arises how information can be obtained in the
data universe. As soon as the supplier has generated the
information from the data universe, the question is how to
present it to the user. This can be in the form of a simple
text or visual representations. After all, the user receives
the information in that format. This leads to the question,
what kind of representation of information the user needs
for his/her own use or for further spreading. The access
described above can be summarized in the following chart
(see fig. 3).

Figure 3: User-friendly access to the information con-
tained in data

Obtaining knowledge
A more detailed presentation of the question of discover-
ing knowledge related to the problems concerning
abstract data is offered in [CaShEi99]. Theknowledge

crystallization taskCard developed describes the process
of obtaining knowledge with a predefined goal. The
course of obtaining knowledge that is described there
makes it clear, that the way to the goal plays an important
role and can be significantly assisted by the information
supplier. But even if the exploration of data is not aimed at
a particular goal, the user should be aided in obtaining
knowledge. The formation of knowledge has to be viewed
in the context of user-friendly access.

Looking at the entire interaction between supplier
(obtaining and presenting information) and user (obtain-
ing and presenting knowledge) shows the following tem-
poral sequence (see fig. 4).

Figure 4: Knowledge crystallization for abstract data

Classifying abstract data is a basic prerequisite. The data-
inherent structures and contexts have to be known, other-
wise it is not possible to get useful visualization that
assists the user in his/her analysis. Then the information
obtained can be mapped in visual structures in view of the
user, his/her knowledge and goals of analysis. Only
through interaction with the information presented, the
user can arrive at knowledge crystallization.

Obtaining information
At first data has to be analyzed and classified in order to
obtain information from it. A detailed discusson can be
found in [Lux98]. The relevant data for obtaining infor-
mation has to be filtered out of the huge amount of data.
In this process pieces of information from different data
sources have to be combined. In preparing data, common
data bases have to be found in order to represent various
data at the same time. Thus, any values derived from data
can either be regarded in relationships or be compared. It
has to be taken into consideration that the data may be
irregular in time and space.

The preprocessing of data will possibly have to be
executed several times, for example, if new data is loaded
into the system. This can be the case when the user starts
off with a particular aim and, in the course of his analysis,
finds out that he/she needs additional information, or
changes the aim of analysis altogether. Thus, data prepro-
cessing has to be very flexible and to support user require-

data universe

information

User Supplier

min. HW requirements

Utilization resources
reuse of available

data universe

information

User Supplier

Obtaining knowledge
Representation of info.

Obtaining info
Presentation of info.

classification
filtering

gaining
information

mapping of
information

presentation of
information interaction

knowledge crystallizaion

ments.

Presentation of information
Now, we have to discuss the way of graphically pre-
senting the information. The data is mapped to visual
structures that augment a spatial substrate with marks
and graphical properties to encode information.
Visual representation has to be found for the diverse
user community, so that they are easily and intuitively
comprehensible and can provide decision finding.
Information visualization is clearly dependent upon
the properties of human perception. In order to make
full and correct use of everything that display, graph-
ics and visualization technologies have to offer us, we
have to take these aspects into account. In the follow-
ing, we will shortly discuss the different kinds of
visual structures, especially visual metaphors.

Various analysis tasks require different visual
metaphors and visualization techniques. In some
cases, it can be necessary to use more than one tech-
nique for the same data representation, because this
offers different views on the data. A good overview of
existing visualization techniques can be found in
[CaShEi99]. A visual metaphor describes an idea of a
graphical representation in such a way that the visual
representation contains an association to the data. A
visual metaphor is a symbolical and analogous
description of contents, and not a representation of
the reality. However, often realistic elements are used.
The wide range of visual metaphors varies from sim-
ple graphical primitives to complex scenes.

We have introduced a detailed analysis of the
information contained in data. In the following, we
will be concentrating on the technical aspects.

4 THE SERVICE MODEL

It was defined in the requirements that the user can
request data from several sources, use various output
media, and manipulate or process them with the assis-
tance of different applications. As these resources
may be distributed over a number of machines, the
client has to know where a server is to be found or
how it can be accessed. This approach has a few dis-
advantages:

Should the server have to be migrated to another
machine, e.g., for performance reasons, then all
potential clients would have to be informed (if this
was possible at all). Often there are duplicates or
counterparts of a server in order to enhance availabil-
ity. If the server fails, the client can switch to the
duplicate, but he/she has to know where it is and how
it can be accessed in order to switch over explicitly.
Should the server fail altogether or should a new
server be added, all clients have to be informed of
that. In order to avoid these difficulties, another level,
acting as a mediator, has to be inserted between client

and server:the broker.

To be able to integrate all resources into the sys-
tem and to avoid the discussed problems we have
developed theservice modelwith which applications,
data sources, etc. can generally be described as
abstract service.

Integration of arbitrary resources

In this model, one or several services are offered by a
service provider. The service provider does not offer
them directly but via a broker. Just as an agent repre-
sents artists, a broker arranges services for a client
while the client is not aware of the location and the
number of available instances of the service provid-
ers. The client requests a service from the broker and
receives it. This way, the client only has to know the
broker's "address", and a service provider's migration
becomes transparent to him/her. If several instances
of a service provider exist, the broker can -in case of
the service provider’s failure- switch to a duplicate
without the client becoming aware of this. Further-
more, the broker is in a position to spread the load out
to various instances. During operation, new services
can be added or existing ones withdrawn. Service
providers register with the broker under the name of
the service they are offering. Then, the broker is able
to connect the server to interested clients (see fig. 5).
It has to be noted that as soon as a client has chosen a
service, all communication takes place between client
and server only.

Figure 5: The service model

As explained above, the system allows for services to
be added or withdrawn during operation. Such
changes in services offered can be of interest not only
for many clients, but also for service providers, as
they in turn can make use of services. Continually
requesting the list of currently available services is
neither useful nor efficient, so an event system has
been integrated which informs interested parties of
added or withdrawn services.

By the type of data, the broker is also a service
provider. This has the advantage that a broker can
offer "his/her services" to other brokers as well. This
way, several brokers can be cascaded, which again is
completely transparent to the client (see fig. 5). Thus,
hierarchies of brokers can be established which may
correspond to existing hierarchies. Within a large

client

 (broker I)

Service ’A’
Service ’B’
Service ’C’
Service ’D’
Service ’E’
...

Service Provider
 (broker II)

Service ’A’
Service ’B’
Service ’C’

Service Provider

Service ’B’

Service Provider

Service ’A’

Service Provider

Service ’C’

Service ProviderService ’D’

Service Provider

Service ’E’

Service Provider

company, for example, each department could have its
own broker. These department brokers could offer their
services wholly or partly to the subsidiary broker, so that
this selection of services is available to all departments.
The services offered by the various subsidiary brokers is
then represented by a central company broker.

The service's interface has deliberately been kept very
simple in order not to restrict its functionality right at the
start. By definition, a service has only one method to start
a dialogue with the user. What this dialogue looks like or
of what kind it is, is not predefined. However, a service
should additionally offer an interface allowing the pro-
grammable use of a service.

Distributed visualization

A further important issue besides the integration of any
given resource is the possibility of an arbitrary distribu-
tion of the visualization pipeline. The exclusive visualiza-
tion on the server makes a lot of things easier, but it also
severely restricts the possibilities of interaction. If visual-
ization is completely transferred to the client, this allows
for a high degree of interaction, but places high demands
on the client's system as well. In order to meet all these
requirements, the system supports the arbitrary distribu-
tion of the visualization pipeline. To make this possible, a
service is realized by using smart proxies (see fig. 6). A
smart proxy is defined as a local object running on the cli-
ent side that encapsulates the access to the remote object
on the server [Sun98]. The smart proxy can delegate a
user's request to the remote object or process it itself, i.e.,
locally. This allows, for example, the caching of requests.
This means, that the service is split into a remote and a
smart proxy part, which makes it possible to realize an
arbitrary distribution of the visualization pipeline.

Figure 6: A service with a remote and a smart proxy

5 ARCHITECTURE

The described service model was realized by developing
the system PROSECO (PROviding Services for ECO-
nomic data). In the following, we will introduce the archi-
tecture.

Figure 7: Architecture

PROSECO is designed as a kind of net which can be
adapted to an existing infrastructure of hardware and soft-
ware. Any resources, e.g. knowledge, documents, pictures
or printer can be described as a service in an abstract way.
These services are offered to one or more brokers. Every
client can choose any service from a broker, independent
of their physical location in the Internet and Intranet
(I*net).

Platform independence

For a distributed system, the Internet would be the obvi-
ous choice as global infrastructure. However, it is not pos-
sible to predefine the architecture on the client, which
means that the system has to be realized independently of
the platform. Java [Lea97] would offer itself here, which
at the beginning was often smiled at as only fooling about,
but which has since developed into an established plat-
form that has to be taken seriously. With the assistance of
Java Native Interface, even applications developed in
other languages (e.g. C/C++) can be integrated in Java, so
that already existing systems can be reused as service with
little effort.

Fail safety

In a distributed system, as opposed to a centralist one,
separate components can fail. In such a case, however, the
system should at least to some extent remain functional or
keep its consistency. This is safeguarded by a time-based
leasing. The client asks a server for a particular resource.
The server allows the client the use of the resource for a
certain amount of time. Should the client request the
resource for more than the time agreed upon, he has to
explicitly ask the server for an extension. If he fails to do
so or is prevented from doing so because of network prob-
lems or computer failure, the leasing contract expires. As
from this moment, the client no longer has access to the
resource, i.e., it is again at the server's disposal. This is
controlled by a leasing contract of which both parties have
a copy. These copies run independently from each other
on the client and on the server, so that failure of one does
not affect the functionality of the other.

The following figure depicts the successful extension
of a leasing contract (see fig. 8a) as well as the turning
down of a request for renewal (see fig. 8b).

Figure 8: Process of a leasing request

Additionally, an event system has been integrated inform-

 client
 Service ‘A’

Appl. Skel.Stub

Service’A’

Service ‘A’ Provider

 Proxy
 Remote
Service ‘A’

broker

providing services

available services

use of a service

I*net

Service

Lease

Appl. RemoteService
Request

Answer

1

6

is
V

a
lid

()
2

ye
s

3

Request4

Answer5

client
ServiceProvider

a)

Service

Lease

Appl. RemoteService
Request

Exception

1

4

is
V

a
lid

()
2

n
o

3

client ServiceProvider

b)

Lease

Lease

ing about any changes in a leasing contract, so that
the extension of a contract can be automated, for
example. This has been realized by using a class that
takes over the control of changes in leasing contracts
(see fig. 9). Within this class, a thread runs that func-
tions as a timer [Oaks97]. In order for this to work
efficiently, the thread is sleeping for the period up to
the next change in the leasing contract. This means, it
only uses CPU time for the creation and distribution
of the event. Since the timer has to control any num-
ber of contracts simultaneously, these are sorted in
order of urgency, i.e., the time up to the next change.

Figure 9: Leasing event system

Security

In a distributed system, security is an important fac-
tor. Sensitive data has to be protected against
improper access. This system has been supplied with
a possibility for general access restriction based on
the concept of accounts that is well-known from
many operating systems. The user logs in with an ID
and a password -transparent to him/her- and an
account is assigned to the user. This account contains
his/her access rights which can be checked by the ser-
vice providers. Thus, access can be restricted in as
much detail as desired.

Most certainly there are situations in which a
user's preferences need to be changeable during run-
ning time, e.g. in order to add new rights. Should a
service request these rights only a single time, say at
the start of a dialogue with the user, then these
changes might not be carried through. So, this infor-
mation needs to be kept centrally and requested con-
tinually. Permanent access, however, would put
(unnecessarily) heavy pressure on the network. A
solution to this problem, again, would be presented
by a split into a remote object and a smart proxy (see
fig. 10).

Figure 10: Account

The remote account would be kept on a central server,
while the services would be provided with the smart
proxy enabling them to gain access. The proxies can
cache requests, so that the remote object does not
have to be accessed every time. To propagate the

changes, the contents of the cache will have to be
declared invalid regularly. This presents a good com-
promise and is completely transparent.

Terminals
After the login, the client does not receive his account
but aterminal that has internal access to the account.
The terminal is a level that encapsulates direct access
to the broker. There are several reasons for this mid-
dle level. On the one hand, it facilitates the introduc-
tion of a leasing contract regulating the use of the
broker's resources. On the other hand it serves to hide
the account from the user, or to make it transparent.
Since the client has no direct access to the account, he
cannot manipulate it. The terminal has basically the
same interface as the broker, but without the account
as parameter. The terminal propagates the user's
requests to the broker and adds the account to the
parameters. As the user can allocate the broker's
resources, measures have to be taken for these
resources to be freed again in case of failure. If the
terminal is split into a remote and a smart proxy part
and furnished with a leasing contract, the remote part
can release the resources still reserved upon expiry of
the contract (see fig. 11). Thus, the system remains in
a consistent state.

Figure 11: Terminal

The accounts are a means to save user preferences
and, thus, to realize sessions tailor-made for the user's
requirements and needs. Furthermore, the billing of
the services can be integrated with them.

Load balancing

To avoid a central broker as exclusive resource and,
thus, as a bottleneck, a service provider can put his
services at the disposal of several brokers. Using a
number of brokers offering the same services means,
that the failure of one of them does not lead to total
failure of the system. But it also entails that the broker
himself cannot keep a record of the load balancing to
the individual service providers, as he does not know
to what extent other brokers use them. For this reason,
service providers remember the use of their capacity
and inform all relevant brokers when their charge
changes by an adjustable limit. Since a broker is also
a service provider, he offers the same mechanisms for
"his" services. If there are several instances of the
same service, he forms the mean of their load and
chooses the one least used.

6 RESULTS

At the beginning, we explained that economic data is
to be seen as a representative example of the prob-

Service

 Lease Remote
 Lease

 Remote
 Service

Lease Event
 Generator

 Lease
 Listener

Lease Event
 Generator

 Lease
 Listener

client server

 client

Arguments

Function-Value
Appl. Skel.Stub

 Service
 Proxy Remote

Service

Stub

Account
 Remote
 Account

Proxy

Service Provider

 client

Appl.

Stub

 Service
 broker
 Terminal

Service
broker

 Remote
 Service
 broker
Terminal

 Request
Request +
Account

 server

Service
Provider

Request +
Account

Service
 Proxy

Service
 Proxy

Service
 Proxy

lems concerning user-friendly access to information. Con-
sidering an economist's workflow, the demands to the
WWWW model can be shown. Therefore, we will now
take a short look at an economist's workflow (see fig. 12).

Figure 12: Workflow of an economist

Typically an economist gathers data from different
sources according to his/her analysis aim. During the
exploration of the data, he/she uses analysis and statistics
tools to receive a set of data that is ’meaningful’ informa-
tion from his/her point of view. The next step will be to
propagate the gained results to other people. Now, two
questions are appearing: to whom and how to present the
results. On the one hand, an architecture is necessary to
distribute the results to clients via I*net, to send it to a fax
or printer, etc. On the other hand, the graphical coding of
the information has to been chosen, i.e., a visual meta-
phor.

The system we have developed can be seen as a frame-
work in which all these requirements can be easily ful-
filled. We will demonstrate the integration of services into
this architecture by using the system ShareVis [Lux98].
ShareVis is a system for the interactive visualization and
analysis of share prices and stock indices. Its purpose is to
visualize a large number of share prices or data derived
from the stock market, like share indices, in a highly inter-
active manner. ShareVis enables the viewer to estimate
the situation of stock exchange activities in a global con-
text. Additionally, the tool supports the user in detecting
connections and interdependencies among shares. Using
innovative 3D techniques, the system helps users to ana-
lyze the data more efficiently. With the integrated virtual
trackball, the navigation in the 3D world is possible and
the three-dimensional data is perceptible. The user can
optimally customize his/her view on the data. He/she can
choose interactively the visual metaphor used to represent
the information. ShareVis provides data imported from
different on-line databases, so that share prices as well as
additional information, such as business reports or news,
can be linked to the system.

The following example shows the use of ShareVis as a
service. At first a client registers with a broker, to receive
events, so that he is informed of services added or with-
drawn. As a next step, a service is registered with the bro-

ker who informs the client of this event. The client now
displays the available service (see fig. 13).

Figure 13: Available service

With a click, the client requests a service from the broker
and the service's user dialogue is started. In this case, the
dialogue consists of three windows that make the service's
functionality available. The user can choose the date, i.e.,
the trading day, and the type of visualization. To demon-
strate the distribution of the visualization pipeline, this
service offers the possibility to render on the server or on
the client. First, we will discuss rendering on the server.
The client part of the service, i.e., the smart proxy, for-
wards the parameters adjusted by the user to the server,
requests a rendered image, and displays this image locally
(see fig. 14).

Figure 14: Remote rendering

This being a static image, the user has no possibility of
interaction. It has to be noted that communication now
only happens between smart proxy and server, i.e., the
broker is no longer needed.

The next example deals with rendering on the client
(see fig. 15). To begin with, the rendering system has to be
started on the client. The resources needed for this will
only be requested when they are actually needed. This has
the advantage of offering the client several possibilities
which he/she can use depending on his/her hard- and soft-
ware. Once the rendering system has been started success-
fully, the smart proxy again sends the parameter to the
server, but now requests a description of the scene that is
rendered locally rather than a static image. The user is
now in a position to manipulate camera position and ori-
entation and, thus, gain more insight into the data by per-

data source 1 data source n analysis- &
statistics-

tools

Economist

meaningful information

graphical representation

visual metaphors

2D charts
3D graphics

text, tables

Economist anybody

client / server
I*net
fax
documents

architecture

client broker

client-Host broker-Host

client broker
Service
Provider

ShareVisShareVis

client-Host broker-Host Provider-Host

client

broker

Service
Provider

ShareVis

ShareVis

Remote
 Service

Service
(SmartProxy)

client-Host Provider-Host

broker-Host

ceiving the three-dimensional space.

Figure 15: Local rendering

7 CONCLUSION

This work defines an open, scalable framework to
visualize economic data in a distributed environment.
The concept itself meets all demands on simple tech-
nical access and offers concrete solutions to the var-
ied problems. To achieve the required platform
independence, the example implementation covering
financial data sets is based on Java. Java's RMI inter-
face was chosen to distribute the objects forming the
visualization pipeline. By defining a general model of
a service, it is possible to distribute application or
data sources in an abstract way. This level of abstrac-
tion facilitates their uniform integration into new sys-
tems. The services are provided by a broker rather
than directly. This middle level is used to implement
load balancing strategies or to move the actual loca-
tion of the service in a transparent way. Security
within the proposed framework is handled at an
access restriction level. To minimize the time if ser-
vices are unavailable because the client using them is
failed, a time-based leasing scheduler was integrated.
This scheduler assures that resources are freed after a
fixed amount of time. Overall, the design developed
in this work offers an open and flexible framework for
the distributed visualization of economic data. Avail-
able resources can be integrated at any time to
enhance the performance of the whole system. We
have implemented an example for a service where an
existing application has been integrated into the sys-
tem. Using this example, we have been able to
demonstrate the fulfillment of all requirements, in
particular the distribution of the visualization pipe-
line.

Future work will be to integrate some methods for
the security. This concerns the coding of the password
and account files on the one hand, and the general
coding of communication with SSL on the other
hand. Java, however, offers cryptography APIs that
makes the coding of files relatively easy, since it pro-
vides the necessary mechanisms on a high level of
abstraction.

Furthermore, this system should be used to inte-
grate all possible applications into the system as a ser-
vice. This does not only mean new applications, since
existing systems can also be adapted to the service
model with little effort. Using appropriate drivers,
even hardware can be made available as a service, so
that a complex distributed infrastructure can be built.

ACKNOWLEDGMENTS

Special thanks go to A. Wilde and M. Unbescheiden
for stimulating discussion and presentation sugges-
tions. Additionally, we would like to thank B. Mueller
and S. Wurster for proof-reading this paper.

REFERENCES

[BoHa99] Bock, M.; Haase, H.; Herber-Pflüger, A.; Kop-
pert, H.J.: Weather on Demand, Individual Interactive
Weather Visualization in the World Wide Web,
ECAM’99, Sweden, 1999.

[CaShEi99] Card, S.K.; Shneiderman, B.: Eick, S.: Read-
ings in Information Visualization - Using Vision to
Think, Morgan Kaufmann Publishers, Inc., 1999.

[Lea97] Lea, D.: Concurrent Programming in Java,
O’Reilly & Associates, Inc., 1997.

[LePi99] Lefer, W.; Pierson, J.-M.: A Thin Client Architec-
ture for Data Visualization on the World Wide Web,
Proceedings of the International Conference on Visual
Computing (ICVC’99), India, 1999.

[Lux97] Lux, M.: Visualization of financial information,
Proceedings of the Workshop on New Paradigms on
Information Visualization and Manipulation
(NPIVM’97), 1997.

[Lux98] Lux, M.: Level of data - a concept for knowledge
discovery in information spaces,Proceedings of the
International Conference on Information Visualisa-
tion, London, 1998.

[Lux00] Lux, M.: A framework for user-friendly access to
economic information,submitted to VisSym’00.

[Oaks97] ,Oaks, S.; Wong, H.: Java Threads, O’Reilly &
Associates, Inc., 1997.

Sun98] Sun Microsystems: Java Remote Method Invocation
Specification, Revision 1.50, JDK1.2, 1998.

[WoBroWr96] Wood, J.; Brodlie, K.; Wright, H.: Visualiza-
tion over the WWW and its application to environmen-
tal data,Proceedings of Visualization ’96, 1996.

client
Service
Provider

ShareVis

Remote
 Service

Service
(SmartProxy)

broker

ShareVis

client-Host Provider-Host

broker-Host

