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ABSTRACT

Parametric spline surfaces represent an important surface type in the process of reverse engineering. Var-
ious surface fitting techniques are available for fitting of splines to sets of data points, here we consider a least
squares fitting technique. A user input to this algorithm is the number of control points to be used for the fitting in
the two parametric directions. Using a larger number of points, gives a more accurate fitted surface but also results
in a surface with a number of undulations or surface wiggles which may not be desired. This paper is concerned
with the optimal selection of the number of control points to be used for the least squares surface fitting of B spline
surface patches. An optimal method based on multicriteria optimization is presented to decide on the number of

control points to be used in the fitting.
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INTRODUCTION

Reverse engineering is an important and
emerging process which deals with the generation of
solid models from point data from objects. This
methodology is used in applications such as manu-
facturing parts designed from model testing or by ar-
tistic designers, replicating antiques, redesign of
existing components without existing drawings, etc.
typically in fields like automobile, ship building,
aerospace and manufacturing industry. Point data on
the surfaces of the objects is first obtained using mea-
suring equipment such as CMM'’s, laser scanners,
etc. which is then processed to generate a model of
the object. A widely used approach for model gener-
ation is to identify faces/regions on the surface of the
object and then fit surfaces to the points representing
the same. These fitted surfaces can then be intersect-
ed or patched together in the proper topological order
to generate the solid model [Punta94] which can then
be used for a variety of applications in a computer
aided design and manufacturing system.

An important step in this reverse engineer-
ing procedure is the fitting of surfaces to the data
points. The surfaces can be algebraic or parametric
depending on the underlying surface. Parametric sur-
face fitting using B-spline or NURBS surfaces repre-
sents a versatile method of representing the face/
region of a free form surface. Least squares algo-
rithms are available for the fitting of B-spline/
NURBS surfaces to a set of data points of rectangular
topology [Piegl91]. A user input for these algorithms
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is the degree of the basis spline functions and the
number of control points to be used for the surface.
Splines of degree three are most commonly used for
efficient computation [Roger90] and so the number
of control points to be used is an important parameter
affecting the final fitted surface.

Using a large number of control points
(equal to the number of data points in the limit)
makes the surface approach an interpolating surface
(passing through all the data points, hence would
have a zero error). Such a surface would be wiggly
(not fair) as it is forced to interpolate the data points.
On the other hand, using a fewer number of control
points would produce a flatter(fairer) surface but
would have a larger error associated with it. This is il-
lustrated in Figure A.

surfac data point
a
[ ] . [ ]

Interpolating Surface ~ Approximating Surface
- low error - high error
- more undulations - fewer undulations

- more control points - less control points

Figure A: Interpolating Vs. Approximating Sur-
face

Hence, proper selection of the same, results
in a surface with a low error and having a smooth and
aesthetic appearance (fair surface). This paper is con-



cerned with the issue of the selection of the number
of control points to be used in the fitting of B-spline/
NURBS surfaces to a set of data points. A scheme for
the optimal selection of the same is presented.

SURFACE APPROXIMATION

Given a set of data points, there are two
ways one can obtain a surface which represents the
given set of points - interpolation and approximation.
In interpolation, a surface which passes through each
of the data points is obtained whereas in approxima-
tion, a surface which need not pass through any of the
data points but best represents the given data set in an
average sense is desired. A variety of error norms can
be minimized in the approximation, the most com-
mon being the least squares approximation in which
the sum of the squares of the errors (between a data
point and the corresponding point on the surface) is
minimized. We shall be using a least squares algo-
rithm for the fitting of the surfaces.

Piegl [Piegl91] describes an algorithm for
the fitting of a tensor product B-spline surface patch
to a gridded set of data using a least squares technique
for the approximation. Consider a given set of

(ny+1)x(m; +1) weighted data points Qr’s,
where r =0,..., n; and s =0,..., my. It is desired to
find adegree (p, q) surface that agrees as far as pos-
sible with Q s That is,

n m

Qr,s = S(ur’ vs) = Z Z Pi,]'Ni»P(u’)Nj»q(vs)
i=0j=0
(1)

where P; . are the unknown control points
for the patch and N(u) and N(v) are the standard
B-spline blending functions in the two parametric di-
rections, # and v . The above equation can be evalu-
ated for each of the data points and this gives us a set
of equations which can be assembled in matrix form
as

Q = NP (2)

where,

N = N; (u)N; (v)) (3)

Here Q isa (n;+1)(m; +1)X3 matrix
of datapoints, P isthe (n+1)(m+1)X3 matrix
of  control points and N is a

(ny+ D)(m;+1)X(n+1)(m+1) matrix of
blending functions. Equation 2 represents an overde-
termined system in surface approximation as there
are more data points than control points. To solve this
equation, one needs the parameter values at which the
data points are assumed and the appropriate knot vec-
tors. The weights are assumed to be unity for simplic-
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ity. The parameter values in each of the parametric
directions are computed using the centripetal method
[Lee89] and the knot vectors are obtained from these
using an averaging scheme [Piegl91]

The degree of the surface and the number of
control points to be used for the patch in the two para-
metric directions is an user input for this fitting algo-
rithm and therefore needs to be specified beforehand.
Equation 2 can be solved for the unknown control
points P by taking the generalized pseudo-inverse as

P =N 'NTQ (4)

The control points along with the knot vec-
tors define the B-spline patch which has been fitted to
the given set of data points in a least squares sense.

SURFACE CHARACTERISTICS

The fitted parametric surface obtained from
the above least squares approximation algorithm will
be a surface which represents the given data points in
an average sense. There are two important character-
istics which will determine the quality of this surface
- the error of fitting in the surface and the fairness of
the surface. Both of these are dependant on the num-
ber of control points used for the fitting. These factors
are now discussed below.

Error: Since we are using data approxima-
tion, the fitted surface may not pass through any of
the data points and there is always an error associated
with the surface. This error for the surface can be
measured as the sum of the errors between each of the
data points and the corresponding point on the sur-
face which is nearest to the data point (the surface
evaluated at the parameter values assigned to that
data point during the approximation). Thus the error
norm can be specified as

e= Y, dist(Pyu,~Py,p (5)
datapoints

where P, ., is a data points and Pswf is a
point on the surface closest to the data point.

This error in the surface is dependant on the
number of control points used for the fitting and it is
observed that it reduces as we utilize a higher number
of control points for the surface. In the limit when we
choose the number of control points equal to the
number of data points, the surface will interpolate all
the data points resulting in a zero error of fitting.

Fairness: Fairness or smoothness of the
surface is a characteristic which measures the aes-
thetic nature of the surface. Thus, the fairer the sur-
face, the lesser the number of undulations or wiggles
it has, making it more pleasing in appearance. Fair-
ness is often a criteria used by surface designers to



evaluate whether the objects they are designing are
artful as well as functional. To give a physical analo-
gy, a curve can be considered fair if it can be drawn
using a small number of french curves [Farin87].
Curvature is a quantity which is intrinsically linked to
the faimess of the curve/surface. Mathematically,
faimess implies that the curve/surface has a smooth
curvature variation without any discontinuities or
sign changes.

A number of schemes have been used by re-
searchers to measure the fairness of surfaces. Munch-
meyer [Munch78] proposes a network of lines of
curvature as a tool to analyze the fairness of a surface
which is subsequently used in the smooth outer sur-
face design of high performance ships and aircraft.
Izumida [Izumi79] uses an interactive technique
based on equi-gaussian curvature lines on the surface
to device a system for ship hull form definition and
design. Farin [Farin89] makes use of curvature plots
in a curve fairing algorithm for improving the fair-
ness of designed curves/surfaces. Points on the cur-
vature plot having the greatest slope discontinuity are
recognized and the curve is locally adjusted and
faired in that region. Another technique of interrogat-
ing the faimess is the method using reflection lines
[Klass80] which are the patterns formed on the sur-
face by the mirror images of a number of parallel flu-
orescent light strips.

Most of the above techniques are interactive
in the sense that the user decides on the fairess after
visually evaluating the plots on the screen. For our
purposes, we will be using a non-interactive global
measure of faimess based on the gaussian curvature
evaluated at different points which will give us an es-
timate of the fairess associated with the surface.

At any point on a surface, there exist two
mutually orthogonal directions along the surface
such that the curvature values along these directions
are extreme values. The curvature evaluated along
any other direction at that point will always lie in-be-
tween these two values. These two curvature values
are known as the principal curvatures, x, , and
K, and the two directions are referred to as the
principal directions. The product of the two curva-
tures is known as the Gaussian curvature at that point.

K, =x_.% (6)

g min “max

This gaussian curvature serves to character-
ize the local shape of the surface [Roger90], a nega-
tive value implies a hyperbolic region whereas a
positive value implies an elliptic region. If the Gaus-
sian curvature value is zero at all points on a surface,
it implies that the surface is developable can be un-
folded into a plane without any stretching or tearing.
Thus, changes in this local behaviour from elliptical
to hyperbolic correspond to undulations in the sur-
face, serving as a measure of fairness.
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We introduce a new coefficient called the
wiggle coefficient, which will measure the global
faimess value for a surface. The gaussian curvature is
evaluated at a number of equispaced points (paramet-
rically) on the surface, more specifically at equis-
paced points along the curves obtained by keeping
one of the parameters constant and varying the other.
This is repeated for all the curves along the surface.
The wiggle coefficient, W is then defined as the num-
ber of times the value of gaussian curvature changes
in sign over the surface.

W = Z signchanges(Kg) (7)

surface

This coefficient will be used as an estimate
of the fairness of the surface. Thus lower the value of
the wiggle coefficient, fairer or smoother will be the
fitted surface.With regards to parametric surface fit-
ting, the fairness of the resulting surface is a function
of the number of control points used. Higher the num-
ber of control points less fair would the surface be,
with a number of undulations on the surface.

MULTICRITERIA OPTIMIZATION.

This is a technique used for the constrained
optimization of a number of objective functions. The
aim of this multicriteria optimization is to try to find
the best compromise solution to all the given objec-
tive functions. A number of techniques are available
for the same and we will be using the Global Criteria
Method [Jendo85]. The general multicriteria optimi-
zation problem can be stated as follows.

Minimize the objective functions

fi(x) , j=12 .,k (8)

subject to the constrainits

gl(x)so ’

Here x is the vector of design variables, giv-
en by

xT = {x, x5 ..., x,} (10)

The solution to this problem is obtained by
formulating a global criteria based on the objective
functions subject to the constraints as,

k 1/p
F@) = ( |},-(x)|P) (11)
j=1



where fj(x) are the normalized objective
functions which have the form

fi(x) —min(f(x))
max(f;(x)) —min(f(x))

and p is a parameter whose value can be
from 1 < p <o, usually taken as 2 [Jendo85]

Thus the multicriteria optimization problem
is transformed into a standard constrained optimiza-
tion problem involving a single objective function
(Equation 11). This problem can be solved by a num-
ber of standard techniques available such as the sim-
plex method, box algorithm, golden search method
(one dimensional problems), etc. [Haftk92].

filx) =

(12)

APPROACH

As noted in the above section the two pa-
rameters characterizing the fitted surface are the error
and the fairness. In surface fitting, both of these are
functions of the number of control points used. The
two parameters, the error using the error norm de-
fined by Equation 5 and the fairness using the wiggle
coefficient given by Equation 7 will be evaluated for
a given surface using different values of the number
of control points during fitting. Second degree func-
tions are then obtained representing these two sets of
data values using a least squares technique. These
two functions will then be simultaneously minimized
with the number of control points in the two direc-
tions as the variables, using the multi criteria optimi-
zation method. Thus the optimum values for the
number of control points in the two directions can be
obtained which minimizes both the error and wiggle
coefficient (maximizes the faimess) for the surface.
This procedure can be summarized as

1. Obtain error(Equation 5) and fairness
(Equation 7) values after least squares fitting of
surface (using Equation 4) with different number
of control points.

2. Obtain error and fairness functions (least
squares) (f1 and f2 in Equation 8) which best rep-
resents each of these criteria as a function of the
number of control points.

3. Optimize these individual criteria using multicri-
teria optimization (Equation 11) to obtain the
value of the optimum number of control points to
be used in the surface fitting.

We now illustrate the above methodology
with the help of a few examples. The first example is
that of a rectangular planar patch obtained by fitting
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a B-spline surface to a set of gridded data points with
random perturbations (maximum amplitude 0.1) add-
ed to the coordinates to simulate the errors introduced
by measuring equipments. Equal number of control
points are used in the two parametric directions for
the fitting. The error and the wiggle coefficient are
plotted against the number of control points as shown
in Figure 1. It is seen that as the number of control
points used increase, the error in the surface reduces
whereas the value of the wiggle coefficient increases
(implying a reduction in the fairness for the surface).
Polynomial functions are fitted to each of these data
sets and the global function F is then formulated as
given by Equation 11 which is then minimized with
respect to the number of control points. The plot of
this cost function is as shown in Figure 1.

Similar analysis is performed for a curved
patch (Figure 2) and a circular sector patch with un-
even spacing of the data points (Figure 3) and the re-
sults are as shown below.

It is seen that the optimum value of the num-
ber of control points to be used for the fitting, which
minimizes the error and maximizes the fairness for
all of the above three cases is close to 6.0 (The nearest
integer value). In order to further verify this, a similar
analysis was performed for the surfaces shown in
Figure 4 and the optimum values are computed for
the number of control points, tabulated as shown in
Table 1.

Optimum no. of Cont.
Surface Pts.
Hat 6.12
Mobius Strip 6.16
Monkey Saddle 6.65
Doubly Curved Sur- 6.28
face

TABLE 1. Optimum Values for other surfaces

To test the effect of the input data point den-
sity on the selection of the number of control points,
various point grids of different densities were gener-
ated for the doubly curved surface. The optimizing
procedure was carried out for each of the different
sets of data points generated. The optimum values for
the number of control points are as listed in Table 2.
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Optimum No. of
Grid Density Control Pts
15x 15 6.184
21x21 6.282
31x31 5913
41 x 41 6.399
45x 45 6.474

TABLE 2. Effect of grid density on the control
point selection

Unequal Number of Control Points: The above
procedure can be extended for the case of unequal
number of control points in the two parametric direc-
tions. In this case we have two variables for the opti-
mization, m and n, which are the number of control
points in the two parametric directions. The error in
the surface and the fairness values can be calculated
for different values of m and »n and quadric polyno-
mial surfaces can be fitted to these data sets. These
fitted surfaces will be quadratic in m and n and these
can be used to formulate the global objective function
given by Equation 11. This objective function can be
minimized for m and n using standard multivariable
optimization. The values obtained represent the opti-
mal combination of the control points which when
used in the surface fitting will result in a surface with
optimal error and fairness characteristics.

DISCUSSION AND CONCLUSIONS

Parametric spline surfaces are an important
surface type in the reverse engineering process for
the reconstruction of free form and nonuniform sur-
faces.This paper has presented a method to optimally
select the number of control points to be used for the
least squares fitting of spline surfaces to a given set
of data points. Two criteria were considered - the er-
ror in the fitting and the faimess of the surface. It is
seen that using 6 control points in the two directions
results in a fitted surface patch which is optimal with
regards to the surface error and the fairness. The same
procedure can also be expanded for use with unequal
number of control points in the two parametric direc-
tions for the patch. The procedure presented will be
useful in the development of a reverse engineering
system which generates solid models of digitized ob-
jects which incorporates parametric spline surfaces.
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