An efficient, high quality method for rendering
irregular, quadratic, volume data

T. Simpson

Department of Computer Science, University of Wales Swansea
Singleton Park, Swansea. SA2 8PP, United Kingdom.

email: T.Simpson@swan.ac.uk

Abstract

We introduce here an extension of the work done by Jones [1] on the direct surface
rendering (DSR) algorithm for volume data. The original D.S.R. algorithm operates over
linear, voxel based data giving high-resolution ray-traced images of iso-surfaces within a
volume. The work presented here extends the rendering algorithm to work with data based
on quadratic shape functions over a mesh constructed of tetrahedral cells. We demonstrate
the method applied to Computational Fluid Dynamics simulations of fluid flow, to render
high quality isosurface images of scalar datafields.

Keywords: Direct Surface Rendering, Volume Rendering, Ray Tracing, Finite Element
Analysis, Irregular Data.

1 Introduction

Providing for fast interaction with volume data is technically difficult, largely due to the amount
of data processed (commonly upwards of 10Mb), and the complexity of the rendering method.
However, a relatively fast and efficient technique for volume rendering is provided by the
direct-surface rendering (DSR) method [1]. In essence a ray-tracing technique for iso-surfaces,
it brings together the technique of volume rendering and surface ray-tracing. It achieves
this by computing ray/surface intersections direct from the volume data, bypassing a surface
extraction/polygonisation stage. Ordinarily, in volume rendering, rays are sampled at discrete
points along their path within the volume, and the intensity of the data at each sample along
the ray is accumulated to give a final value for each pixel, e.g. [2]. In contrast, direct surface
rendering ray-traces a specified iso-surface within the volume. This is akin to the method
for ray-tracing voxel data described by R. Webber [4], who uses a bi-quadratic function over
neighbouring voxels. Similarly, Durkin and Hughes describe a direct method based on pre-
computed tables [3] to render large datasets. The DSR algorithm refines Webber’s method,
in particular, by using a tri-linear, rather than a biquadratic interpolation function, therefore
ensuring surface continuity over voxel boundaries, the lack of which being the main drawback
of the biquadratic scheme.

1.1 Objectives

For the regular data implementation, rays are cast into the volume using a fast voxel traversal
algorithm until a transverse voxel is located. Tri-linear interpolation is then employed to
isolate the exact position of the isosurface intersection, if one exists. The linear, voxel based

514

nature of the original algorithm is illustrated in Figure (1). Here, the values of the datafield
at the intersection points, P and R are determined via bi-linear interpolation from the voxel
vertices, illustrated as open circles. The iso-surface is then located at point q using a third linear
interpolation step from the values at P and R.

Figure 1: Direct surface rendering for regular data.

In this paper we extend this method to cover more complex data, that is, irregular, tetrahedral
based, using a quadratic interpolation scheme. The motivation for this work comes from the
field of Computational Fluid Dynamics, and in particular a finite element algorithm [5] built
around a higher order (quadratic) mesh structure of 6-noded triangles in two dimensions, and 10-
noded tetrahedrons in three [6]. The use of a domain based on quadratic shape functions being
essential in this context to obtain acceptable solutions. When dealing with 3D CFD datasets,
high-quality images of scalar parameters within the field are desirable to fully assimilate the
results. It should be emphasised, that the data we are considering is by nature quadratic, hence
a visualisation based on linear interpolation functions will often produce incomplete results.
Typically, such domains, based upon higher order functions are not catered for in off-the-
shelf visualisation packages, and this has been noted in the visualisation community.! This
algorithm addresses this problem, allowing high-quality images of quadratic, scalar functions
to be produced. Furthermore, by avoiding many of the interpolation overheads of standard
volume rendering, a significant reduction in processing time is achieved.

2 Algorithm overview

2.1 Notation : Irregular domains

The domain under consideration is constructed as a mesh (more precisely, this data form is
termed a Finite Element Mesh), and may be regarded as a structure M, containing two fields,
the geometry field and the topology field; M., =< N, E >. The geometry is defined as a set
N of points termed nodes, where each node n; has associated with it the following properties :

e n?°°: A position vector in a world co-ordinate system.

° n,{d""’d"} : A set of data, typically the results of some simulation.

The set of individual data components d over all the nodes for a fixed f we term a datafield.

i.e. for afixed f between 1 and g, the datafield = {nf’ o n?f }. Each datafield will represent
all the results for a particular physical property, e.g. pressure, viscosity, stress etc. The topology
is a set E of geometric objects termed elements or cells, which describe the connectivity of the

IDiscussion in 3D Visualisation in Engineering Research, Visualisation Community Club, R.A.L March 93.

515

nodes. Triangles and tetrahedra are the most common geometric form. Each elemente; € E
may be regarded as a tuple, e; =< ny,..,n; > where each n; is a node of V.

2.2 The 10-noded tetrahedron cell

The cells used in the data being considered are irregular (i.e. are of no uniform aspect ratio or
size) and are constructed via 4 vertex and 6 mid-side nodes at which the data is given (Figure
2). The ordering of the nodes is of importance since the element shape functions, given in
section 2.3 assume this sequence. In the implementation, this, plus the orientation (clockwise
or anticlockwise) is verified by the sign of T, given by (1). It should be noted that the
orientation of the elements within a domain must be consistent, checked by a preprocessing
step when the data is loaded. This is important for two reasons. Firstly, if the sign of Ty
changes for differing elements within the domain, the surface normal will also differ by 180°
giving a patchwork effect when the surface is shaded. Secondly, given a consistent element
orientation over the domain allows the edge equation (Section 2.4.1), to tell us whether a ray
has intersected an entry or exit face, simplifying the implementation of the algorithm.

n® n?

z
D 1 n; 1

1
n%., n’,, n? 1
_ 1 1 1
Tvol = det ;+ §+ ;+

Ny Niya Mo 1
x Y z
Niy3 Mips Tiys 1

(M

Figure 2: The 10-noded tetrahedron used for quadratic-based finite element datasets.

2.3 Quadratic interpolation

Scalar variables, such as velocity components, v(z, y, z), are represented within elements using
the following interpolation scheme [6]:

10
'U(:IJ, y7z) = Z ¢;(.’l¢, y,z) n:'iq 2
i=1
where n; is node ¢ of element e;, d, is the dataset being interpolated and ¢; is :
¢,‘ = (2L1 - I)L, for: = 1,2,3,4
¢z’ = 4(L1 Lz) fort =15

¢ =4L L) fori=6
¢ =4(Li1 Ly fori=7

516

¢ =4y L) fori=38
¢ =4(LsLy) fori=9
¢; =4(LyLy) fori=10

Pz Py P 1 ps Py Pz 1
n?., n¥, n?, 1. n® n?Y nF 1
L, =det| 1 il i+l [Tou La=det| . : [Toor
n n; n 1 n? n; n? 1
i+2 §+2 42 142 +2 142
Yy z
N3 Mgz Miys 1 niy; Ny nis 1
P Py P 1 ps pPy Pz 1
n® nY nF 1 n* nY nF 1
L; = det g : ' [Toot L4 = det ¢ : ¢ [Toot
n%, nl, ni, 1 n%, n’, n? 1 °
41 L_H i+1 i+1 +1 i+1
y
Nty Miys g3 1 nia My Nl 1

2.4 Location of the intersection
2.4.1 Element intersection

The difference in this implementation from the voxel based version lies in the form of data
being used, and the underlying interpolation scheme. Figure (3) illustrates the state of affairs.
The current ray being traced enters the tetrahedron at point P, exiting at point R. Internally
it may intersect the iso-surface twice, though only the first intersection point, g, interests us.
We approach the problem in three stages. Firstly, a set of transverse elements are traversed via
an octree giving a set of possible elements that are intersected by the ray, and therefore may
contain a surface intersection. Each element intersected is then tested in turn until a surface
intersection is found. Once an intersection has been located, the surface normal is calculated,
and a lighting model applied.

Figure 3: Intersection points on a tetrahedron.

Determination of element intersection is performed in two steps for each face. Location of
the intersection with the plane on which the facet lies, and point inclusion of the intersection
with the triangular facet. Thus, given the plane for the face, and assuming the ray is not parallel
to the plane (verified by the dot product), we have,

Az+By+Cz+D =0, 3)

defining the plane, and a ray which starts at a point (z,, Y, 2), terminating at (e, Ye, Ze)s
the intersection is given by:

z; = T, + t(ze —), Yi = yr +H(ye — yr)7 zi = 2z +t(ze — 2r), 4)

517

where

Az.+ By, +Cz2+ D 5
AAz + BAy + CAz)
A detailed derivation of these equations is provided in [7], however, this is beyond the scope

of this paper, and we merely give them in the form used in the code. Projecting the facet into
two dimensions, point inclusion is then performed using the edge equation [8], given as :

t =

E(z,y) = (z — X)0Y — (y - Y)éX (6)

where < z,y > is the position of the ray, and §—§ is the gradient of a line passing through
a point < X,Y >. This tells us on which side of a line a point lies; left for a negative sign,
right for positive. Thus, if the sign of E(x,y) is constant for each line of a triangular face, a ray
intersection occurs.

2.4.2 Surface intersection

Once the element entry/exit points of the ray have been calculated, the next step is to determine
whether the ray intersects the desired isosurface. Since the element was in the list of transverse
elements extracted from the octree structure, we know it contains the surface. To determine
whether a ray then intersects this surface, we start by calculating 7, and ¢, from equation (4)
above, as being the entry and exit points of the ray with the element respectively. Midway along
the line {i,,1,} we create a new point 7,, and from equation (2), interpolate the values P, @), B
associated with the points {4,,4,, ¢~ } respectively. The points {7,,1,,%,} determine a quadratic
along the ray, passing through values P, @, and R. We therefore solve the following system of
linear equations for a, b and c:

aii+bi,+c = P,)
aig +bi,+c = Q,
aiz +bi,+¢c = R.

The position of the intersection in z is then given by the roots of:

az +bz+c=1, (8)

where ¢ is the iso-value of the surface being rendered. Note that this does not tell us whether
the intersection of 3 and the quadratic lies within the bounds of the element being checked,
thus we define two further variables:

4ac — b b
€= ' T g ©

This now gives us the extrema, e, of +, and where it occurs, z.. We can now say that a
surface intersection exists if:

min(P,Q, R,{e}) < ¢ < maz(P,Q, R,{e}), (10

where e is only taken into consideration if and only if ¢, < z, < i,.

518

2.4.3 Implementation details

In the implementation, most of the computational expense for locating the surface intersection
lies in two routines. Firstly, taking around 50% of the runtime is the element intersection test
(see section 2.4.1), which although simple, must be called many millions of times, hence the
expense. Secondly, though in theory more computationally complex, solving the system of
linear equations (7) takes only 20% of the time, due to being required less. In the code, this
equation system is solved via Gaussian elimination with partial pivoting [9], providing a system
for solving for a, b and ¢ which gives few problems with numerical accuracy. In any isolated
cases where partial pivoting fails, the ray is flagged with an error, and an intensity value is later
interpolated from neighbouring pixels. Typically, the number of failures is less than five pixels.

2.5 Computing the surface normal

Given an intersection with the surface at z, y, z, applying a lighting function, and hence calcu-
lating an intensity for the pixel requires us to determine the surface normal, N, at that point.
We can achieve this through three basic methods; central differences at the surface, normal in-
terpolation from the nodes, and Z-buffer shading. We describe the two most relevant methods,
that is central differences and nodal interpolation, and give timings against Z-buffer shading.

2.5.1 Central differences

For central difference approximation, the normal is calculated from six interpolated points
above, below and to the sides, thus :

gz = v(z+8,y,2)—v(z—46y,2),
9y = ’U(IL‘,y+6,Z)—’U(IL',y—5,Z),
g = v(xayaz+5)_v(x’yaz_5)a

Iy

N = |<gxagy,gz>‘- (11)

where §é is a sampling distance from the surface, and v(z,y, 2) is the interpolated value
(from Equation 2) of the datafield at z, y, z. The exact value for 6 needs to be chosen to sample
the datafield close to the surface. Cases arises however when one or more of the sample points
being interpolated falls outside the current element. To account for this, each sampled point
must be checked to determine the element in which it resides. This need to verify the position
of the sampling points inherently slows down this technique, as can be seen in Table 1.

2.5.2 Nodal interpolation

As can be seen from Table (1), Z-buffer shading achieves a large reduction in complexity. This
is due partly to the reduction in interpolation overheads, but mostly from the avoidance of point
inclusion tests. We can achieve a similar reduction in overheads if we interpolate the normal
from the element nodes, rather than calculating it at the intersection with central differences. In
this way, interpolation requirements are reduced to three steps for the vector, and, since we are
no longer sampling around the surface, we ensure that interpolation remains within the element,
removing the requirement for the point inclusion test.

This method obviously requires that the normal of the surface is known at the nodes, and
this requires a pre-processing step using central differences at the nodes when the data is loaded.

519

This pre-processing stage results in a ‘smoothing-out’ of the interpolated normals within each
element, due to the effective size of the interpolation ‘stencil’. Given a reasonably regularly
designed mesh, upwards of 100 nodes affect the resultant interpolation, as illustrated in Figure
(4). The diagram is for a triangular two-dimensional domain, but for 3D the effect is the same.
Consider if we interpolate the normal at the point P, from the nodes of the bounding element
(black circles). It would seem this would give us a similar result to the central difference
method described in (2.5.1) since the same gradient field is being interpolated. However, the
preprocessing step to calculate the gradient at the nodes means the calculated field at each
element is influenced by other neighbouring nodes (white circles), giving rise to the smoothing
effect seen in Figure (5b).

Figure 4: Effective interpolation ‘stencil’ for nodal interpolation of the normals. The x symbols
denote where central differences are applied to calculate the normals at the nodes.

Scheme | Time (secs.)

C. Diff. (6) 65.61
Nodal (3) 42.14
Z-Buff. (0) 40.46

Table 1: Timings for similar renderings using various surface interpolation schemes. The
numbers in brackets denote the interpolation steps required by each method.

2.6 Finding transverse cells

To reduce the search times for locating transverse cells, an octree structure is employed to
spatially organise the data. Of particular note however for quadratic domains is the definition of
a transverse cell. During octree construction, or later when searching for ray/cell intersections,
a test must be performed to determine whether a given cell is intersected by the desired iso-
surface. In the case of linear data, the test for an intersecting cell is trivial. Simply, given a cell
C, if there exists a node n;, and n; of C such that v(n;) < ¥ < v(n;), for some iso-value ¢,
the cell is said to be transverse, and hence contains the surface. For quadratic cells, this test is
insufficient. Near cell boundaries, the iso-surface may intersect the cell, without transverse data
being present at the nodes. The effect of this is illustrated in Figure (5a). The hole, visible to the
bottom right of the surface in the left image is caused by this shortcoming in the transverse test.
To resolve this situation, we increase the recorded minimum and maximum of the data at each
element by some factor f. For the right hand image the element min/max has been increased

520

by 25%, hence the element/surface intersection test succeeds. The side-effect of this, is simply
that some cells may be inserted into the octree that are genuinely non-transverse. However, the
number of these cells is minimal, and this is preferable to holes in the surface.

3 Results

In this section we give two illustrations of iso-surfaces rendered using the quadratic, direct-
surface rendering method, and compare them for image quality against a standard, linear
surface-tiling and quadratic volume rendering. All direct-surface renderings are illuminated
using a mixture of ambient light and one point-light source, using the Phong lighting model.

In the first example we consider a Newtonian expansion flow.? The fluid flows from right to
left, into the larger area of the domain, Figure (5c) . Note that many of the cells are again only
transverse when the quadratic information is taken into account, giving rise to a much smaller
surface area in the linear image (left).

The second example illustrates the algorithm over a simple test domain of 6 tetrahedral
cells (constructed with 27 nodes). The dataset ranges from a 3 value of 0.0 at the centre of the
domain to 1.732 at the corners. By the nature of the dataset, none of the cells are considered to
be transverse in the linear sense, hence is unrenderable by a linear method. The image is shown
in Figure (6¢), compared against similar volume renderings.

Itis noted in [1] that direct-surface rendering gives a significant speed increase over standard
volume rendering, due to the reduction in interpolation overheads. For this implementation,
the increase in complexity of the quadratic interpolation scheme (Equation 2) over tri-linear
interpolation makes this difference more acute. Typically, benchmark tests put direct surface
rendering at least twice the speed of volume rendering. For example, with the dataset shown
in figure (6), direct surface rendering gives timings roughly six times faster than the equivalent
volume rendering (Table 2; 75 samples, also see Figure 6). All timings are for optimised C
code running on a DEC AlphaServer 2100 4/275.

Rendering Method | Time (secs.)
DSR 12.132
VR (25) 26.365
VR (50) 50.581
VR (75) 73.997

Table 2: Timings for similar renderings via Direct Surface, and Volume Rendering. The numbers
in brackets denote the number of samples per ray for volume rendering.

4 Conclusions

The algorithm described here illustrates a natural extension of the regular data algorithm to
include higher-order, irregular data, and represents an improvement over the volume rendering
capabilities of commonly used, off-the-shelf visualisation packages. The images produced are
of a high-quality and allow for real-time cutting operations, as outlined in [1]. The simple

2Simulation by A. Baloch, CFD research group, Dept. of Computer Science, U.W. Swansea.

521

Figure 5: (Top) Effect of the limitation of the transverse test, (Middle) Central difference
and nodal interpolation shading, (Bottom) Similar isosurface renderings with AVS ISOsurface
module and Direct Surface Rendering.

522

() (b) (©)

Figure 6: Visual comparison of volume rendering against direct surface rendering: (a) Volume
rendering, 25 Samples (b) Volume rendering, 75 Samples (c) Direct Surface Rendering.

ray-tracing model used allows for non-restrictive rendering times, particularly in comparison to
standard volume rendering, and by the nature of ray-tracing produces high-quality images.

Acknowledgments The author gratefully acknowledges the help of Dr. G. J. Manogg.

References

(1]

[2]

3]

[4]

(5]

(6]

[7]

[8]

(9]

M. W. Jones. The visualisation of regular three dimensional data. PhD thesis, University
of Wales, Swansea, UK, 1995.

A. Kaufman et al. VolVis: A diversified volume visualisation system. IEEE Computer
graphics and applications, pages 31-38, 1994.

J. W. Durkin and J. F. Hughes. Nonpolygonal isosurface rendering for large volume datasets.
IEEE Computer graphics and applications, pages 293-300, 1994.

Robert E. Webber. Ray tracing voxel data via biquadratic local surface interpolation. The
Visual Computer, pages 8-15, 1990.

P. Townsend and M. F. Webster. An algorithm for the three dimensional transient simulation
of non-newtonian fluid flows. In Proceedings NUMETA ’87, volume 2, 1987.

0.C.Zienkiewicz. The Finite Element Method. McGraw-Hill Book Company (UK) Limited,
London, 1977.

Foley, Van Dam, Feiner, and Hughes. Computer Graphics: Principles and practice (second
ed.). Addison Wesley, 1990.

J. Pineda. A parallel algorithm for polygon rasterization. In Computer Graphics (SIG-
GRAPH ’88 Proceedings), volume 22(4), pages 17-20. ACM SIGGRAPH, August 1988.

B. H. Press et al. Numerical Recipes in C, the Art of Scientific Computing. Cambridge
University Press, Cambridge, 1992.

523

