Automatically Generated 3D Virtual Environments
for Multimedia Communication

Dorée Duncan Seligmann John T. Edmark

Bell Laboratories
Lucent Technologies
Room 4F-605
101 Crawfords Corner Road
Holmdel, NJ 07733
U.S.A.
908-949-4290

doree@bell-labs.com
ABSTRACT
We describe how we use 3D graphics in order to enhance multimedia communication. We have
developed a system which automatically generates a virtual environment consisting of a
dynamic visualization of, and control mechanisms for, multimedia interaction. Our system
automatically generates customized displays of the environment for each user, presenting to
the user visual cues that are created explicitly to convey information about herself, others,
services, and devices. We have developed a suite of self-modifying intelligent objects,
constrained viewers, context-sensitive annotation objects, and intelligent animated objects.
The approach described is suitable for a wide variety of applications, including conferencing,
long-term collaboration, chat groups, Web browsing, live performance, and on-line help; the
architecture accommodates users with hybrid configurations of platforms, services, and
peripherals.

INTRODUCTION

We have developed a system which automatically generates a virtual environment consisting
of both a dynamic visualization of, and control mechanisms for, multimedia interaction. Our
system automatically generates customized displays of the environment for each user. In
addition, every user is presented with cues that are created explicitly to convey information
about themselves, others, and the activities in virtual and real places. Our system automatically
generates and positions 3D representations of both real and virtual places, the objects and
people in them, as well as conceptual relationships, thus creating the environment itself. The
objects appearing in the visualization are not simply representational, they are dynamic
objects; some are managed media-specific objects (e.g. the displays of a shared application
program); some show connectivity; others are the interface objects that afford users control
over the system. The graphical objects include methods, constraints, and information that are
used to automate their display, geometries, and rendering parameters; these objects also
automatically reconfigure to reflect changes in the environment. The viewers are also
constrained by the information they are designed to show, and dynamically modify themselves
as situations change.

We also have developed libraries of 1) intelligent objects that are self-modifying, reacting to
changes in the environment, user actions, and viewing parameters; 2) viewers that are
constrained by the information they are designed to show; 3) annotation objects that convey
concepts about objects in the environment; and 4) intelligent animated objects. These objects
convey the events and state of the communication system.

494

THE PROBLEM

Heretofore, complex multimedia systems have been unwieldy and difficult to comprehend
and, as a result, of questionable value. Natural conversation and interaction have been difficult
to accomplish in multimedia systems, and the systems themselves are typically difficult to use.
Users’ experiences with such systems contrast sharply with that provided by the telephone
which has become a transparent instrument by which we can engage in natural conversation.

For several years, we have been exploring ways in which we can render complex multimedia
systems as intuitive as the phone has become. Using 3D graphic interfaces, we have developed
methods for providing users the same type of information conveyed during the course of a
simple telephone call. Our use of graphics enables us to view all communication and
interaction occurring within the context of a place. Our model allows for both persistence and
a concept of groups. The virtual environment exists even when no one is using it; the places
within it have a history and will persist over time, thereby providing electronic rendezvous
locales. Places are occupied by people and objects. The people who enter and leave a given
place become members of the same group. Thus, in our environment, all the people who have
visited a specific Web page are members of a group associated with that page.

TYPE OF INFORMATION CONVEYED

Our virtual environment consists of objects designed to convey a rich representation of the
services and their current state information to each user, thus enhancing ease-of-use by
providing users with information which will liberate them from continuously having to check
on their system[SE95]. For example, people engaged in multimedia conferencing using
existing technology often interrupt their conversation to verify the status of the video
connections, (asking “can you see me?”) or to find out what someone is doing (asking “are you
typing?”). Yet by using video and audio cues our system automatically provides each user with
the type of information she needs thus, enabling more natural interactions. This is only
possible through the infrastructure we have built that consists of sets of protocols, and
cooperating media services| AH95].

[Note: All the examples in this paper are taken from our meeting room service (MR). MR is a
network-based service for multimedia conferencing. MR manages several other media
services within the context of a virtual meeting room: a service that enables application
program sharing; a 3D sound service that provides spatial audio for 3D audio cues and 3D
realtime conversation [GA91, SH91]; a service that manages both talking head video, shared
video, and surveillance video; a service that manages phone calls using regular phones and
ISDN phones with RS-232 communication ports; and a service for messaging.]

COMMUNICATION OBJECTS

Our visualization of the virtual environment depicts the real world augmented with virtual
places (the visualization of the real world is, of course, incomplete). We provide our system
with a simple description of real places: the floor plan and devices used in multimedia
communication (such as telephones and computers). Structure objects define the contours of
a place: its floor and walls and are configured automatically: for real places, the system follows
the floor plan; for virtual places the system selects a location. Our system creates support
objects for the devices and people.

People objects are color-coded, and the representation of each person reflects his current

context in the virtual environment; ghosting is used to indicate temporary absence -- (a person
engaged in a phone call is ghosted in the real world). Currently, we use a set of full-body

495

photographs of each person that are image processed. Originally, we experimented with 3D
texture-mapped 3D human models and have since opted for stylized 2D images. We found that
the more realistic the representation, the more disappointing it was in its shortcomings. A
photograph was disappointing because it was not live video; live video was disappointing
because it was only from one vantage point.

All the objects in the environment are derived from a common base object definition. There
are several versions for each object: one for the server and one for each of the clients (used for
rendering and controlling media services). They all have identifiers, placement methods, and
reconfiguration methods.

Identifiers

Every object is assigned a unique identifier that is global to the entire system. These names
allow the server to send messages to update objects even though their geometric
representations may be different. For example, a person has the same identity across media
services. At the same time, any object may have multiple counterparts in different virtual
contexts. The identifier is augmented to reflect membership and role in a virtual context.

Using a consistent naming scheme across all media services enables our system to identify
parts of the same whole. This is important because each media service represents only one
aspect of each object: hence, a phone service handles Karen's voice, the video service handles
Karen’s talking head; an application sharing service handles Karen’s keyclicks into a shared
program, and so on. This way, our system is able to represent Karen as a whole entity, using
information about each part reported by each media service.

Some objects are associated with locations, people, and things. For example, the phone that
John is sitting next to, in the real world, is associated with John, reflected in the augmented
identifier. This affords us the flexibility to disassociate and associate objects with people as
circumstances change and people move. Object associations are important because they allow
users to dynamically change configurations of hardware, transport mechanisms, services, in
addition to their actual location. Thus, wherever Karen travels to in the virtual spaces, so do
the objects considered to be in her immediate environment.

Placement Methods

Each object is embedded with object-specific knowledge that specifies how its translation,
rotation, and scale are calculated relative to other objects. When a new object is created, the
server assigns it a location by calling the object’s placelt method with objects—not explicit
coordinates—as parameters. For example, a table is placed relative to the floor and walls, a
cable is placed between two objects, and a pointer is positioned relative to a person and an
object of interest. Objects are moved only by calling their own placelt methods. Thus, all
object-specific knowledge is provided by the object itself, enabling new libraries of objects to
be introduced at any time. This allows for extensibility: a new service can be linked in along
with several new objects.

Automatically Triggered Reconfiguration Methods

When an object is positioned, it becomes “attached” to those objects that were passed as
parameters to its placelt routine. When those objects move, the reconfiguration methods are
triggered. So, for example, when either of two objects connected by a cable moves, the length
and path of that cable is reconfigured accordingly.

496

MEDIA-SPECIFIC FEEDBACK

Here we will describe how we are using 3D graphics to show the state of (i.e. answer questions
about) a particular media service. The examples below are based on the scenario in Figure 1.
The application sharing service is associated with the virtual room shown and a Netscape
browser is being shared.

Figure 1 Three people in a virtual meeting room with the application sharing service. The absence of a key-
board and mouse indicates that the “yellow” person cannot share applications. The hand holding the word
“Netscape” identifies the shared program. The red input cables connecting the keyboards to the windows
indicate both persons can provide input to the program. The last keyboard to provide input is highlighted.

WHAT SERVICES ARE ACTIVE? A new object was created to indicate that the application
program sharing service has been associated with the room. The blue area on the table
represents the shared display. It contains the shared application windows (reflecting the exact
configuration of the real windows on that user’s monitor).

WHO CAN USE THIS SERVICE? Note that not all participants may have access to a given
service. When the application service was associated with the room, objects representing the
devices used to interact with this service were generated and placed on the table. In this case,
keyboards and mice were generated and placed in front of each of the participants that are
using the shared application service.

WHAT OBJECTS ARE BEING SHARED? Application icons were generated to indicate the
applications brought into the room. In this case, the hand holding the word “Netscape”
indicates that it is the only application program currently being shared.

WHO MAY CONTROL THIS OBJECT? Shared objects can be managed so that only specific
people can control them. Input cables were generated, connecting keyboards to the windows,
to show which users may type into the program.

WHAT IS HAPPENING? Visual feedback (coupled with 3D audio cues) is triggered by media-
specific events. Certain device objects have methods for media-specific events. For instance,
as the user types, the appropriate keys on the modeled keyboard move up and down (coupled
with audio sampled keyclicks in the 3D space), and letters travel through the cable to the
window.

WHO OR WHAT HAS INPUT FOCUS? Window managers use highlighting to indicate the

current input focus of the local keyboard. Here, the last device used is highlighted, making it
clear who was the last person to provide input in the shared object.

- 497

WHAT ARE YOU REFERRING TO? Interaction objects are generated to represent service-
specific reference objects. In this case, the application sharing service allows us to place
pointers on shared windows. Therefore, a pointer object is generated, color-coded, and
positioned to show who is pointing.

CONTEXT-SENSITIVE OBJECTS

Some objects reconfigure themselves based on changes in the context. Objects in the server
have sensors to monitor certain aspects of the environment. For example, a conference table’s
size is based on both the number of people in the room and the objects placed on it. The
reconfiguration method is triggered whenever there is a change (when people are added to or
removed from the room, or when objects are placed on or removed from the table). People
objects track changes in the tables at which they are seated, and relocate themselves as the
table shrinks or grows. In this case, an object can be endowed with behaviors that are
analogous to real world behaviors. For example, the people at a table will move aside to make
space for a newcomer.

VIEW-SENSITIVE OBJECTS
Whereas Friedell’s system[FR83] automatically generated objects based on the constraints of
the view and information to be shown, we are instead building objects adaptive to changes in
the view parameters. These objects have
methods using object-specific knowledge to
change attributes. The person object consists
of a set of images of a person from different
angles. It selects what image to use based on
its relationship to the current camera
position using a sensor mechanism that is
triggered each time the relevant camera
parameters change. Figure 2 shows people
using both the profile and frontal views.
Also in Figure 2, the shared display, which
contains shared application windows, is . S
another example of an adaptive object. It is Figure 2 View-sensitive objects: people and shared
. . . : display. Each people object selects an alternative repre-
constrained to remain leglble and is always sentation as the camera settings change. The shared
oriented in a upright position relative to the display (the blue area on the table) reorients itself to
camera. This is an improvement over the remain in an upright position relative to the camera.
real world in which a document on a table (Compare its orientation in this view to that in Figure 1.)
can only face one person.

CUSTOMIZED VIEWERS

A general viewer enables the user to navigate in the 3D environment. However, a single view
may not be able to show everything a user needs to know at the same time. Therefore, we have
designed a suite of context-sensitive viewers. Each is bound to communicate a specific set of
concepts and dynamically modifies itself as the situation changes[SE93]. Each viewer is
assigned a goal to achieve, such as to show the location of an object in a certain context, or to
show a set of objects (and ensure that they are visible and recognizable).

WHO IS THERE? 1t is very useful to know who else is with you in a virtual context (from the
people on multiparty line, to the people in a chat room). Figure 3 shows the Panoramic Viewer
as it changes state when people enter the virtual meeting room. The viewer updates its location,
orientation and perspective (viewing angle) based on the number, location and size of the

498

Figure 3 The Panoramic Viewer: as people join the conference. The camera’s location corresponds to
the user’s head location in the virtual room (the user is “seated” at the table). Initially, the user is alone,
and the empty table is shown. When people enter the room (and are placed at the slightly larger table) the
viewer modifies the view parameters.

participants in the room from the user’s vantage point. The panoramic viewer also provides a
visual representation of the 3D sound space (in which each participant’s voice is convolved to
emanate from his or her respective location).

WHAT IS BEING SHARED? During remote collaboration it is often unclear what objects are
accessible to the participants in the virtual context. Figure 4 shows the Shared Surface Viewer,

which locates and orients itself to depict all the objects on the shared work surface, in this case,
the table.

Figure 4 The Shared Surface Viewer: before and during application sharing. When the application shar-
ing service was brought into the room, objects were placed on the table, causing it to grow. The viewer
automatically changed the camera setting so that the participants and shared objects remain visible.

WHAT DO I HAVE? The Local Viewer shows all the devices and services available to the
user. This viewer locates and orients itself to show the user’s complete local area, consisting
of both the user’s real-world environment (e.g. office, home, etc.) and the currently accessible
service devices (such as video cameras, computers, phones, etc.).

AUGMENTING WITH ANNOTATIONS

The user can request additional information, thus causing the client to augment the 3D space
with annotation objects designed to show various types of information. These objects are local,
and only appear in the user’s viewer, without disrupting the other users. Thus, the user is able
to quickly access information about the environment without interrupting interaction.

499

HOW ARE THINGS CONNECTED? Connection cables show how the various devices are
connected. Figure 5 shows the color-coded cables that are automatically created using the
information cached about how each video source and destination is bridged. In this example,
a user can quickly determine who is looking at whose talking head.

Figure 5 View augmented with connection cables to show how video devices are bridged. Video
devices are color-coded to match their owners. The “red” person has three monitors, of which only
one is in use. It is connected to the “yeliow” person’s camera. This camera’s location and angle was
used to create the image of the virtual environment which is texture-mapped onto the monitor, thus
“showing” what is being displayed.

WHAT DOES THIS OBJECT
CORRESPOND TO? Association cables
show what objects are associated with each
other. Figure 6 shows the color-coded
“dotted” cables that indicate the real-world
counterparts for every video device in a
particular virtual place. In this example, a
user can quickly determine where a video
device in a virtual place is actually located
in the real world.

WHAT IS THIS? Textual labels are placed
on objects to identify them. These label
objects are constrained to remain legible;
they change size and orientation based on
the viewing parameters.

CONTENT Figure 6 View augmented with association cables

. . . to show the relationship between virtual and real
Although the media services often provide objects. The “dotted” cables connect devices in

content separately, it may still be useful or the virtual room to their real-world counterparts in
desirable to have some representation of the offices below. (They are color-coded to match
that content in the virtual environment. For their owners.)

example, a user might want to verify what is being displayed on a remote video monitor.
Figure 7 shows a grabbed frame of video in a video monitor object. The frame is retrieved by
the video service. Alternatively, the video service can use local hardware to display live video
directly into texture-memory. Figure 1 shows live windows texture-mapped into the 3D

500 |

Figure 7 Content Objects: live video. The user can view the actual video streams being sent to

the various devices.

scene[DY93]. The content of the window is
retrieved using the shared application
service.

ANIMATIONS

Certain objects are animated. We have ;
developed a generalized method for showing :

data flow. As described earlier, cable objects

are given two locations and constraints, and
instantiate themselves. Envelope objects §

travel through these cables at different rates.

Typically, an envelope is invisible and any :

object can be placed “inside” of it (with or

without clipping). In the spirit of [BI93] in !
which filters are applied to show different *

aspects of objects in a scene, a user can
request that the data streams be represented
in different ways. Figure 8 shows letters
traveling through the cable connecting a
keyboard and window, illustrating the input
stream of keyboard events to a window. The
letter objects are constrained to remain
upright and facing the camera. Some objects
illustrate actions using frame-based
animation. These objects contain methods for
different activities which, when called,
activate engines that cycle through the
appropriate animation. Figure 9 shows the
Dogzaic messenger running down the
hallway to deliver a message. In this case, an
invisible cable is created (the cable generates
its own path using knowledge about

501

Figure 8 Animated objects show activity. The user
has typed a “T” into a shared program. The key-
board is highlighted, the “T” key on the modeled key-
board moves and a 3D letter “T” travels through the
input cable to the appropriate window.

Figure 9 Animated objects: Dogzaic. Dogzaic
travels through the hallways to deliver messages.

hallways) and the Dogzaic is sent through it. In both cases, the call made to initiate the
animation is simple, consisting of object names and the method “send.”

IMPLEMENTATION

All code is written in C++. We have created a library of visual objects, and libraries for each
media service. 3D graphics are implemented using SGI's Openlnventor[WE94] and
OpenGL[NE93]. Constraints are implemented using our library of sensors and engines in
conjunction with the “connectFrom” field value provided by OpenInventor. We have created a
suite of OpenInventor objects to drive the animations and sound effects. Some objects are
multimedia, including frame-based texture-mapped animated objects with 3D sound cues. (All
textures were createdby Cati Laporte using Adobe Photoshop on an Apple Macintosh.) Audio
service ranges from ordinary telephones, ISDN phones with RS-232 communication ports, to
3D sound using Crystal River Engineering Inc. Convolvotron hardware, and most recently a
CRE Acoustetron 2x3. Our system operates on SGI machines ranging from Indy’s to a 4-
processor Onyx Reality Engine. We run the server and other media servers on the Onyx. The
client can run on any of our machines, including the Onyx. We have conducted experiments
between two cities using a ppp connection over ISDN. The figures were generated on the Onyx
Reality Engine.

CONCLUSIONS

Our task was to use 3D graphics in order to enhance multimedia communication. We conclude
that graphics can be used to provide visual cues that convey information to help users interact
more naturally and with greater confidence using complex multimedia systems. To this end,
we have adopted knowledge-based 3D graphics techniques to build a system to automatically
generate visualizations of, and control mechanisms for, complex and dynamic virtual
environments. We have shown how we use a combination of intelligent objects, constrained
viewers, annotation objects, and animations to convey the events and state of the system.
Every object serves a specified purpose, and each view is customized for a particular user. In
addition, our architecture allows for shared dynamic virtual environments without high
bandwidth requirements. Although, we have shown examples for just one application,
multimedia conferencing and collaboration, our approach is applicable for a wide variety of
multimedia applications.

FUTURE WORK

The most time-consuming aspect of developing our system has been the authoring of the
objects. We need to augment standard 3D modeling tools so that we can seamlessly augment
models with the attributes described in our paper. (For example, we should be able to create
animation engines that are simply attached to objects.) We would like to develop more
complex objects that are able to convey some of the more subtle and complex of human
communication, such as synthesized backchannel responses[CA94]. We would like to put our
system on the Web. We hope that efforts, such as VRML, will eventually enable dynamic
environments like the one shown here. We would also like to extend our model to enable users
to create personalized sub-worlds, allowing users to customized local versions of the
environments (e.g. building “mansions” of frequently visited virtual rooms). We are also
interested in developing a distributed version which ultimately could be used for MUDD:s.

REFERENCES

[AH95] Ahuja, S.R., Ensor J.R., Seligmann, D.D., “Archways: Making Remote Multimedia
Conversations Persistent and Natural” In Proc. of Technology Summit Telecom ‘95, Oct 2-7,
1995.

[BI93] Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T. “Toolglass and Magic
Lenses: The See-Through Interface.” In Proc. of ACM SIGGRAPH ‘93. Aug. 1-6, 1993. p.
73-80.

[CA94] Cassell, J., Pelachaud, C., Badler, N., Steedman, M., et al “Animated Conversation:
Rule-based Generation of Facial Expression, Gesture & Spoken Intonation for Multiple
Conversational Agents.” In Proc. ACM SIGGRAPH ‘94, Orlando, FL, July 24-29, 1994.

[DY93] Dykstra, P., “X11 in Virtual Environments.” In Proceedings of the IEEE 1993
Symposium on Reserach Frontiers in Virtual Reality, San Jose, California, October 25-26,
1993.

[FR83] Friedell, M. “Automatic Graphics Environment Synthesis.” Ph.D. Thesis,
Department of Computer Engineering and Science, Case Western Reserve University, 1983.

[GA91] Gaver, W. W., Smith, R. B., and O'Shea, T. “Effective Sounds in Complex Systems:
The ARKola Simulation.” In Proceedings of ACM SIGCHI ’91 Human Factors in
Computing Systems, New Orleans, Louisiana, April 27-May 2, 1991.

[NE93] Neider, Jackie. “OpenGL Programming Guide: the official guide to learning
OpenGL”, OpenGL Architecture Review Board; J.Neider, T. Davis, M. Woo. Addison-
Wesley, New York, 1993.

[SE93] Seligmann, D.D. “Interactive Intent-Based Illustrations: A Visual Language for 3D
Worlds.” PhD Thesis, Dept. of Computer Science, Columbia, University. 1993.

[SH91] Shimizu, Y. “Research on the Use of Stereophonics in Teleconferences.” In Business
Japan, March, 1991.

[WE94] Wernecke, Josie, “The Inventor Mentor.” Addison-Wesley Publishing Company, New
York, 1994.

[SE95] Seligmann, D.D., Mercuri, R.T., Edmark, J.T. “Providing Assurances in a Multimedia
Interactive Environment.” In Proceedings of ACM SIGCHI ’95 Human Factors in Computing
Systems, Denver, Colorado, May 7-11, 1995

503

