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Abstract: We present a new approach for the detection of buildings in
digital aerial images. It uses heuristic analysis of edge orientation and edge
position histograms, that are performed within a sampling of an edge based
representation of the input image. The result is a map that defines a belief
value for every position in the input image pleading for the occurrence of
buildings at the corresponding position.

1 Motivation

Three-dimensional building extraction from digital images becomes an issue of increas-
ing importance for a large number of applications in town planning, architecture, en-
vironmental investigations etc.

Image data usually reveal irrelevant information on the one hand and loss of relevant
information on the other hand, as can be seen in figure 1. Furthermore the complex-
ity of building shapes makes a sufficiently complete modeling of buildings and their
appearances in real images necessary.

In [Kort et. al. 96] we presented a model based approach for building extraction that
uses template matching of the image data and projective appearances' of building
models. A problem that arose from this work was the determination of worthy initial
searching areas where the template matching it to be performed.

Considerable methods for searching such areas of high probability for the occurrence
of buildings are (1) a semiautomatic, operator driven preselection of image areas (see
[Lang and Schickler 93]), (2) local elevation peaks in the case of a given digital elevation
model (see [Weidner and Forstner 95]), (3) a model based scoring of image areas.

Local elevation models are expensive and often unavailable for aerial images. In
[Braun and Kolbe 95] we gave a detailed overview about approaches to 3D building
extraction from aerial images '

In this work we present an approach that uses statistical and heuristic interpretations
— guided by a general building model — of an edge based image representation to
define such areas. Our aim is to sample the edge representation of the input image, to
evaluate the configurations of edges at the sampling positions and to construct a map
for this image that defines for each point of the input a belief value for the occurrence
of a building.

1These appearances are represented as an aspects hierarchy, see [Dickinson et. al. 92]
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2 Building Model

Our input is an edge representation of the original gray level image that was ob-
tained by passing the original through a general-purpose feature extraction module,
see [Fuchs and Forstner 95). Note that this initial step employs a very general object
model, not specific for building detection, i. e. it assumes homogeneous, smooth faces
with continuous edges.

We currently use images with a resolution of about 500 x 500 — 1000 x 1000 pixels
that contain about 10-20 buildings which occupy about 20% of the visible area. The
images are taken from nearly overhead views. Figure 1 shows an exemplary gray level
image as well as the extracted edge segments.
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Figure 1: The input image (left) and the extracted edge segments (right).

Although plenty of different instances of buildings exist, there are a few characteristics
that most of them resp. their projections have in common:

O1: specific dimensions
0O2: orthogonal corners between walls or even orthogonal ground plans that produce
orthogonal arrangements of edges in the projection?

O3: parallel wall groups and therefore parallel edge groups from which at least
some edges are well detectable

The results of edge detecting processes are in general incomplete and noisy due to
phenomena. like occlusions, shadows, low contrasts etc., furthermore the edge based
representation of such an image typically contains 2000-3000 edges. This shows the
complexity of the correspondence problem and causes a naive approach like finding
probable matchings between the ungrouped image data and the model to fail.

Moreover we cannot expect (1) to find edges that uniquely correspond to complete
building edges, (2) to refer immediately to above observations O1 — O3, (3) to deter-
mine if these edges might denote buildings.

3 Grouping of Image Structures

Obviously we need an information aggregating technique for deciding whether a given
area of the image shows a building or not. We will show how O1 — O3 can be met

2As we deal with nearly overhead views, even sloped roof edges form nearly orthogonal angles.
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by an analysis of histograms in a subregion of the image.

To start with, we define this subregion in the following subsection and show how
its choice meets observation O1. In subsections 3.2 and 3.3 we define two types of
histograms:

e orientation histograms
e distance histograms

These hold the opportunity to meet O2 resp. O3.

3.1 Clipping area

We isolate a circular region A of the image with centerpoint M = (z,y). Only edges
e; that fit completely into this circle — denoted by e; € A — will be considered in
the following steps in which we will compute histograms of the edges within this circle.
With different choices for M, we can perform the sampling process.

The wise choice of this clipping area’s radius r is essential for the detection result as it
defines the estimated extent of typical buildings in the image in the further processes
and therefore prevents us from considering edges that are too long to denote building
elements, thus the radius r is a parameter that corresponds to O1 in section 2. This
radius can be derived by the a priori knowledge of building dimensions on the one hand
and the resolution of the given aerial image on the other hand.

€, I(e,)
e,_—d(e) -
M~ x Figure 2: The circular clipping area.
clipping area T ' The edges e; and e3 are rejected, as
they do not fit completely. The edge
e, e is accepted, it’s properties are dis-

played in the figure.

Let I(e;) be the line that corresponds to an image edge e;, i.e. the extension of e; to
an infinite line. Each considered edge e; € A is assigned three values:

0< e <2r the euklidian length of ¢;
0<Lale)<n the angle between ! and the horizontal axis
—r<d(e) <r the minimum distance of [ and M

See also figure 2 that shows these quantities.

The values a(e;) and d(e;) define the Hesse form of the line [(e;) in a coordinate system
with the origin placed at M. The computation of |e;| and a(e;) can be done once in
the initial step whereas d(e;) depends on the clipping area that we currently consider.
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3.2 Orientation Histograms

For a considered clipping area A with center M we define an orientation histogram O:

OB,A)= > |el*e with 0<B<m
e;€EA
a(e;)=8

The parameter wo defines a weighting of the edges depending on their lengths, e.g.
for wo = 2 the edges e; contribute with the square of their lengths to the histogram.
Figure 3 shows two exemplary clipping areas and the corresponding histograms. We
denote the average [T O(B,A) d3/m of a histogram O with O. Extracting peaks in

90°

Figure 3: Clipping ar-
eas and correspond-
ing orientation his-
tograms. (a) shows

X the histogram of a
180° ® clipping area with a
900 building, (b) shows a

histogram of a non-
building area. The
outer semicircle repre-
sents the histogram’s
average O.

180° 0

these histograms means considering intervals that define local maxima. These maxima
vote for preferred orientations of edges in the image. Section 4 explains how these
preferred orientations can be evaluated to meet observation O2.

As we deal with discrete angle values and discrete histogram resolutions, we always
regard an orientational peak Pp together with an interval

Po=[p—€,..cspy...,p+ €| with O(p,A)>O(r,A) VT #p

for which the subintervals [p — €, ..., p] and [p,...,p + €] with the such defined left
and right borders p — ¢ and p — €, are monotonic, to derive a tolerance range for the
further steps. By iterating the maximum finding process we obtain a series of peak
positions. To ensure termination of the iteration we extract only the first no peaks.

Furthermore we assume that a peak’s maximum must be larger than a threshold
Omin = €0 - O, where co is a configurable, domain dependent parameter that describes
the ratio between the histogram’s average and this lower bound for peaks. This linear
dependency makes the choice of the threshold independent from the histogram’s abso-
lute values. Finally we assume that at least one edge that contributed to the histogram
at a given peak position must have a minimum length lp. These heuristic values co,lo
and wo serve to distinguish between significant peaks and accidental, small peaks of
histograms that do not show building specific configurations of edges.

The parameter for minimum length, lp, again corresponds to observation O1, as it
defines a minimum length of building edges. As edges might be split by the feature
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extraction module, its concrete value — about 0.5r — is somewhat smaller than the
typical length of complete edges specific for buildings.

The value for co just as for wp is not critical as we will show in section 5. Experimental
results show that cp ~ 3, wo = 2 is a good choice.

The choice of np strongly affects the performance of the later steps as it restricts
the number of peaks that have to be analysed. A value of about 5 is sufficient for
the desired application as building specific configurations typically occur within these
largest peaks.

3.3 Distance Histogram

Analogously to the construction of the orientational histograms we define for a given
orientational peak Pp = [p — €,...,p,...,p+ €] and a clipping area A the distance

histogram:
g D(Z,A,P0)= Z ’einD with _TSZS’I"
a(ei)e;ioel‘:d(e,')zz

Here the interval is not cyclic, a peak Pp of such a histogram votes for a stripe shaped
image area with strong agglomeration of nearly parallel edges. We call these stripe
shaped areas agglomeration azes. The dependencies between the orientation and the
distance histograms can be looked upon as a two level hierarchy as displayed on the
lefthand side of figure 4. This figure also displays how the peaks of the distance
histograms define agglomeration axes in the image. These agglomeration axes can be
utilized to meet observation O3.

Figure 4:  Histogram
hierarchy of a clipping
area defines axes in the
image with agglomera-
tion of nearly parallel
edges.

The principles for finding peaks are the same, just as the meaning of the parameters
wp, ¢p, np and Ip. The concrete values of these parameters differ slightly from that
for wo resp. co because we made the observation that only very few edges contribute
to a distance histogram whereas many edges contribute to an orientational histogram.
The reason is that taking only edges with a specific orientation into consideration for
such an histogram means a strong preselection.

Furthermore we already know that the edges that contributed to a peak must have been
significant, because they got over the selection caused by the previous computations.
Thus we do not have to weight them as strong as before, profitable values are wp =~ 1
and ¢p ~ 1. Note that wp = 1 does not mean that there is no weighting at all, but
each edge e; contributes with its length to the histogram.

The parameter Ij, for minimum length should be also chosen different from lp. In the
orientational histograms any edge of a specific orientation was considered, regardless
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of its distance. Therefore — in the case of ridges or gutters — any ridge or gutter
contributed to an orientational peak. In O3 we stated that some of them might be
decayed to a large extent. If we consider single ridges or gutters now, we have to accept

somewhat smaller edges, too. For this reason we assign a smaller value to /p, approx.
0.2r.

Finally, we set np = 5 just as we did for ng, because a projection of a building typically
can show many parallel edges, especially in the case of an inaccurate overhead view.

4 Evaluation Strategy

As mentioned before, the first and most important source of external knowledge is the
choice of the clipping area’s radius, as it defines the approximate extents of buildings
visible in the image. Structures like roads will not be detected in most cases, as they
produce too long edge segments in the image, that will be rejected by the clipping area.
On the other hand small details will produce minor contribution to the histograms
because of the weighting exponents wgp resp. wp.

Analogously we can find histogram characteristics that correspond to the other ob-
servations of section 2; we meet O2 by expecting a nearly orthogonal angle between
two of the computed orientational peaks. For simplicity reasons let an orientational
peak Py be characterized only by its maximum value p rather than by its surrounding
interval.

C1l: 3P, P, peaks of O(8,A) : |Pi— Py|=7/2%6

The parameter # stands for a tolerance interval, a value of about 5° suffices®. If
no such orthogonal configuration is found, there is no need to compute the distance
histograms at all, what results in a significant speedup of the computation. Otherwise
further constraints are necessary to distinguish between buildings and accidental similar
configurations caused by crossroads and other orthogonal structures.

A further constraint is the assumption that at least two agglomeration axes are detected
in the distance histograms that correspond to the two orthogonal directions P; and Ps:

C2: 3P, , P peaks of D(z2,A,F;) ; i=1,2

This meets observations O3.

Moreover the agglomeration axes in both of the directions should have a minimum
distance to each other to ensure that they describe image structures that occupy a
sufficiently large area to denote buildings:

C3: |Pa— Po|>2%n ; i=1,2

This is another expectation about the typical building dimensions and therefore also
corresponds to O1. Note that this constraint implies that r > |P; — Py, as we only
consider axes within the clipping area when computing the histograms. The value
is similar to lp, zo = 0.5r, as they both describe minimum dimensions which are
perpendicular to each other.

3Alt‘:hough we restricted our approach to operate on overhead views, we must tolerate slight viola-
tions of this restriction.
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The values for all of these parameters can be derived from the domain dependent size of
the clipping area what again emphasizes this parameter’s outstanding importance, but
as there might occur different house sizes within one image it might be more profitable
to define this constraint for minimum and that for maximum dimensions — the radius
r of the clipping area — independent from each other.

The response ® of the such obtained filter, applied on a clipping area A votes for or
against the occurrence of a building within A:

1 if C1ILAC2ACS
o(4) = {0 else
By sampling the image in discrete points M; = (z;,y;) We can construct a map B(z,y)
of belief values; starting with a map that initially contains the value B(z,y) = 0 for
every position (z,y), the values within the currently considered clipping area A are
incremented, if this area pleads for the occurrence of a building. Thus every point
(z,y) in the result map is assigned a belief value B as below:

B(z,y) = Z P(A)

(=, y)EA

The map’s regions with high scores maximize the probability for finding a building in
these areas.

Algorithm:

Input: Edge represented image I
Output: Result map B(z,y), same size as I.
initialize B with 0
foreach point S; = (z;,y;) of a sampling scheme do
create clipping area A(S;)
compute orientation (O(A, 8)) and distance (D(A, z, P;)) histograms of A(S;)
if ®(A(S;) =1
foreach point (zz,y;) of B with (zx,yx) € A(S;) do
increment belief value: B(zg,yx) « B(xk, yr) +1
od
fi
od

5 Results

Figure 5 shows the result of a sampling process of the edge representation of the input
image. We get a smooth gray level image. The bright maximums stand for a high belief
value for the occurrence of buildings at the corresponding positions. The clipping area’s
radius was r = 10% of the image-width #, the brightened circle in figure 5 (a) displays
its size. The computation was done using using 200 x 200 sample positions.

The input image contains 14 buildings, from which 13 could be detected with a high
belief value in the result map. The gambrel roof building in the upper right corner
was not detected successfully. The reason is, that it is located at the image’s border,
therefore only few sample positions contributed to the belief value.

4Just as 10’% of the height, as this image is square
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(c) (d)

Figure 5: Input (a) with a clipping
area as used in this example, extracted
. edges (b). The result of histogram
analysis (c) encodes the belief value
as the intensity. Image (d) is a mix-
ture of (b) and (c). Image (e) encodes
the belief value as the height of the
displayed surface. Its texture is the
input image. The grid helps to visual-
ize the 3D structure of (e), it does not
(e) represent the sampling positions !

The high importance of the radius r can be seen in figure 6, where we performed
the sampling process for the example of figure 5 with different choices for the radius,
conserving the remaining parameters. The results are best (at r = 10%), if the radius
is chosen such, that the buildings fit the clipping area.

Figure 7 demonstrates the robustness of the approach as its results remain constant
within a wide range with regard to the choice of the control parameters — except the
radius, of course. The value for co can be chosen safely within a range of about 1-5,
that for wo within 1.5-3. The choice of the sample rate is quite stable, too. Figure 5 (c)
arose from a 200 x 200 sampling, whereas we performed 100 x 100 samples for figure 6.

Figure 6: Different choices for r, specified as a percentage of the image width.

r = 2.5% r = 5% r="75% r=10% r=17.25%

The computation of a typical image as described in section 2 takes between 10-45 min.
on an Intel 486-66 system at a sample rate of about 100 x 100, depending on the choice
of parameters. It should be noted that the sampling process is suitable to a high degree
for parallel computing.

Figure 8 shows the results of our approach applied on other input images. We used
the same parameter set as for the image in figure 5. The images contain buildings
of different dimensions, what makes a wise choice for the radius of the clipping area
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Figure 7: Results for different choices for cp resp. wo.

Wwo = 1.0 Wo = 1.5 Wo = 3.0 Wo = 4.0 Wwo = 6.0
difficult. If the radius is too small, large buildings remain undetected, if it is to large,
many disturbing edges contribute to their histograms.

6 Conclusion and Future Work

We reduced the problem to determine worthy areas to be traced by the later template
matching steps to a maximum finding problem in the result map. By registering also
the orientation of the two orthogonal directions found in the orientational histograms,
better results can be achieved, because different regions that might melt together some-
times, can be distinguished by means of this extra information.

Moreover valuable extra knowledge could be extracted from the histograms for the
template matching, e. g. main orientation of the buildings, axes to be traced first, etc.

We propose an employment of the approach we presented as the second level within a
hierarchical concept with the following levels of abstraction:

1. general objects (not only suitable for building recognition) with homogeneous,
smooth surfaces and continuous edges as already mentioned in section 2
2. general model of buildings (not distinguishing between special building types),
visible in aerial images
3. domain specific aspect graphs of a finite set of spatial models of different building
types
Acknowledgements — This work was done largely within the project “Semantic Mod-
eling and Extraction of Spatial Objects from Images and Maps”, especially in the
subproject “Building Extraction” which is supported by the Deutsche Forschungsge-
meinschaft (DFG). We thank the DFG for supporting our work, moreover the Institute
for Photogrammetry, Bonn University, for the provision of aerial images and a feature
extraction module. Furthermore we profitted from discussions with our cooperation
partners, especially we thank André Fischer for his valuable comments on the early
drafts of this paper.

432



Figure 8: Results of the sampling process for different exemplary input images.

(b)
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