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Abstract
This paper introduces a new approach to erosions of models of terrains. This
approach is based on two dimensional generalization of the rewriting process - ar-
ray grammars. A height field representing the terrain is considered as the matrix
and context sensitive rewriting of this matrix, represents the erosion process. This
approach is quite general and allows us to use an arbitrary kind of erosion which
can be expressed by means of rewriting productions.

1 Introduction

Mandelbrot mentioned one of the curiosities of fractal terrains: fractal terrains look like
fractal terrains even when they are turn upside down [5]. This property is typical for
geologically new terrains in nature. Indeed, the fractal techniques provide terrains which
appear as though they were ”just created”. The terrains we meet in our life are mostly
quite different. They are maggeted by water, attrited by particles of sand and dust flown
in the wind, and crannied from influence of temperature amplitude. Most of the terrains
are also influenced by human factors. Most of the natural influences are reflected as a
kind of erosion. This problem has been addressed, e.g. in {3, 4, 6, 8]. Mandelbrot also
pointed out that most of the fractal methods fail to include river networks [5]. The rivers
represent another kind of erosion [4, 11].

We introduce general concept of erosion using array grammars. The erosion is rep-
resented as a sequence of rewriting of the initial matrix (height field). The erosion is
described as set of production rules. These production rules are applied to the square
shaped part of matrices. This method is also advantageous, because it is inherently
parallel.

2 Previous work

The previous work can be divided into two major groups. The algorithms belonging to
the first group of the methods generate already eroded terrains [3, 4, 9, 11].
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The second group describes erosions of any terrain [6], regardless if the terrain was
obtained with some artificial technique or if measured data was used.

2.1 Traditional fractal terrain modeling techniques

Several techniques for fractal terrain synthesis exist. The original method for generat-
ing fractional Brownian surface (fBm) uses Poisson faulting [5]. This method involves
application of Gaussian random displacements resulting in the statistically undistinguish-
able surfaces (planes or spheres). The main drawback to this approach is O(n®) time
complexity.

The random midpoint displacement method introduced by Fouriner et al. [3] represents
a de facto standard method in fractal terrains generation. This well known recursive
method is controlled by fractal dimension D of resulting fractal terrain.

Prusinkiewicz and Hammel [11] use the context sensitive rewriting process based on
random midpoint displacement method on triangular grid. Their algorithm creates land-
scape and river simultaneously. This method creates one nonbranching river as result of
the context sensitive rewriting system operating on geometric objects (in [11] on triangles).

The spectral synthesis method [8] (also called Fourier transform filtering) is another
representative of these kinds of fractal modeling methods. The Fourier coefficients with
spectral density proportional to 1/f? are generated and inverse Fourier transform forms
fractional Brownian motion surface. The exponent 3 controls the fractal dimension of the
final object. Using only several first coefficients of Fourier spectrum causes generation of
smoother surfaces than using coefficients corresponding to higher frequencies. A detailed
description of the method can be found in [8].

Pickover [9] uses logistic function for generating ”extraterrestrial terrains”. This
method has ability to create ridges, craters and streaks. Its advantage is that it can
be used for tuning of already created terrain.

Kelley, Malin and Nielson [4] published algorithm consisting of two distinct steps. The
first step represents the creation of a drainage network of rivers according to geologically
known data and behavior. In the second step, the terrain is modeled as a set of surfaces
under tension fitting previously generated data.

2.2 Terrain erosion models

Musgrave, Kolb and Mace [6] introduced techniques which are independent to the terrain
creation algorithm and can be applied to already generated data represented as a for
example height field. They introduce two methods: the hydraulic erosion and thermal
weathering. Hydraulic erosion is caused by the presence of water (rain). The basic scheme
of transport of the material is as follows: part of the material is dissolved in the water,
the water runs down the hill and after its evaporation the material stands on the new
place. This approach can be easily extended to any representation introduced in [2].

Thermal weathering is caused by temperature amplitude. Small elements of the ma-
terial are crumbled and they pile up on the bottom of an incline. Both methods are
controlled with several coefficients.

342




3 Erosion of terrain using array grammars

3.1 Formal means for the description of dynamic processes

In the previous part we described some methods for simulation of terrains erosion. These
methods were mostly developed for this particular purpose.

However, some classes of general methods for description of such geometric operations
exist. One of these methods is based on the theory of formal languages. The method
defines a set of production rules by means of which the generative process will run. During
this process some substrings are rewritten to other substrings. It would be possible to
assign certain interpretation with geometric meaning. A good example of this kind are L-
systems [10]. Here the dynamics of plant growing could be described in a formal way. The
theory of L-systems has been extensively and intensively developed by now (¢f. 7, 12, 13]
for latest results).

A simple two-dimensional generalization of string rewriting systems is to extend gram-
mars for one dimensional strings to two-dimensional arrays [1]. The primitives are the
array elements and the relation between primitives is the two-dimensional concatenation.
Each production rule rewrites one subarray by another, rather than one substring by
another.

Array grammar is an ordered triple
G = (V,w, P) (1)
where:
- V = {M} denotes an alphabet consisting of matrices M of real numbers of type
N x N; N >0,

~ w € V is an aziom (starting symbol of rewriting) and finally

~ P is a finite set of productions P C V x V of the form
A—->B; ABeV. (2)

The production (rewriting) (—) is one application of a production rule p € P to an
element A € V.
The derivation (=) Ao to A, of length n is a sequence of n rewritings

Ao—)Al —)...-—)An_l —)An,
where A; - A;4 € P;i=0,...,n — 1. We write
Ag= A, (3)

In our interpretation a two-dimensional array can represent a segment of terrain that
can be modified. The production rules should be constructed in such a way that their use
will correspond to the terrain erosion process.

3.2 The production rules

The rewriting process (2) is context sensitive. We must construct the set of production
rules P which will cause the physical simulation of erosion. These productions depend on
the profile of the terrain. If we want to raise some terrain for example we must construct
the productions which will curtail local disparity, and if we want to generate slope - we
do not care about local saliencies - more wide-ranging production should be used.
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3.2.1 Right side of the production.
Right side of the production (2) has the form

B=Xx*A, (4)

where A is the original matrix and X is a matrix of multipliers. Matrix X is of the same
type (N x N) as matrix A and operator * denotes that values b;; of the matrix B are
computed as

b — 4 (L+zij) ay; zi; <0
A a;; + xi; D; Ti; > 0

where

D= Z(aij — (1 + x,-j)a,-j) = Z —Ti;a;;; V:L‘,'j <0.
The number D is the total amount of material to be moved. This calculation causes no
material to be added and no material to disappear from the tested matrix if

Z:E;j =1; ‘v’a:,-j > 0.
For example the matrix of multipliers X from equation (4) defined as

0.125 0.125 0.125
0.125 -0.2 0.125
0.125 0.125 0.125

caused material to be moved from the center to the sides.

3.2.2 Where the production can be applied.

The production according to the definition (2) should replace whole matrix A. We use
small matrices (4 x 4, or 5 x 5) and we divide the two dimensional projection of the height
field into small squared subregions of the same type. This can be done in two ways in our
algorithm as a ”chess-board” partitioning or as a floating array.

In the first case the height field is divided into small regions as follows

ai1 aG12 | ai13 G4 |ays 4aie
a1 Q22 [A23 Q24 [ A25 Q26
a31 a32 | 433 (34 |A35 a36
Q41 Q42 | Q43 Q44 | Q45 GC46
G51 Qs | 53 Asg | Q55 Ose
| Q61 G622 | Q63 QOe4 | Q65 Oe6 ]

The left hand sides of productions are tested one by one with every subarray for matching.
If it matches - the subarray is rewritten. One disadvantage to this method is that the
size of A should be an integer divider of the size of the input height field, or the margin
must be treated as a special case.

Second, and a more important disadvantage, is that this approach does not match the
elements lying on the border of two regions.
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The floating array approach uses the following scheme

a1 a1z a3 a4 a5 ae] [ @11 @12 ais|as a5 age ]
a1 Q32 Q23 Q24 G25 a2 Q21 | Q22 (23 | G24 G325 Q26
@31 asz 0433 Aa34 G35 da3zg a31 dazz a3z G34 435 A3
G4 Q42 Q43 G4 Q45 Q46 | | Ga1 Ga2 Q43 G44 Qa5 Qa6 |
Gs51 as2 0as53 Apg4 G55 dse Gs51 as2 a53 G54 Q455 GAs

| G61 Q62 Ge3 Ude4 Gg5 dee | | Q61 G2 Q63 Q64 Ge5 d66 |

This is implemented as follows: So called shadow matriz is initialized with zeros. After
every step, the changes are summed in the shadow matrix. At the end these values are
added to the height field.

Size of production matrix plays a significant role for the algorithm. Small ones have a
better chance of matchings while large patterns can define more complicated appearance.
The size of the matrix in the floating array approach influences the execution time of the
simulation.

3.2.3 What the productions match.

We use the range matching; the rule matches if the values from the tested matrix belong
to some range denoted by [min, maz]. We consider three kinds of matching:

1. absolute matching,
2. matching with reference point and

3. matching with local ordering.

TN
N1

Figure 1: Left hand side of production (in the middle) matches one dimensional matrix
(leftmost) only in one case, because absolute matching of z-coordinates was used.

In the case of absolute matching (see Figure 1) elements of the pattern array match
if all of the tested elements belong to the ranges of the left side of production rules (2).
The pattern of size 2 x 2 has form

[011, bu] [012, b12]
[(121, b21] [022, 522]

where [a;;, b;;] are the ranges in which the tested value must lie within.

We can simulate for example erosion during very long time in one altitude (caused for
example by river or by sea level) with this method (see Figure 2).

Matching with reference point (see Figure 3) takes one (reference) point r from the
tested area and the differences in the z coordinate of the others are calculated. The rule
matches if these differences from the point r lies within the ranges in the pattern matrix.
The pattern of size 2 x 2 would have e.g. form

r [012, b12]

[a21, 521] [022, 522] ’
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Figure 2: This erosion was generated by absolute matching floating array. Pattern matrix
consists of the range [[0.6,0.8]] and maximum of altitude is 1.0. Matrix of multipliers X
has the form [~0.05] . It was applied two times on the Figure b) and ten times on the c) to
every elements. This production affects only the elements with absolute altitude within
the interval [0.6 0.8].

where r is the reference point and [a;;, bi;] are the ranges of differences. The position of
the reference point r is not fixed in the matrix and can be arbitrary.

~ >

Figure 3: Production matches two times, because differences from the reference point are
tested. Sign ~ indicates that it is independent to the z-coordinate

The z-coordinate of the investigated profile can be arbitrary in this method, but the
differences must fit the ranges in order to match (see Figure 3).
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Figure 4: This erosion has been generated by matching reference point with floating array
in ten iterations.

=

Using this kind of matching we can model erosion caused by the rain, where the
differences are related to gradient (see Figure 4).
The rule used for the Figure 4 has the form (maximum of altitude is 1.0)

T [0,0.1]

0,0.1] [0.05,01] | 7B (5)
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where B according to formula (4) and the matrix of multipliers has the form
-0.1 —-0.1
|01 o1 ®

This production is gradient dependent (as can be seen on Figure 4); it erodes only some
part of the terrain depending on the slope (it does not erode the top of the mountain).

a2 = —e—

Figure 5: The order matches two times regardless of the differences and of the absolute z
coordinates. It means the second element [2, 2] has to be greater then the first one [1,1].

Matching with local ordering works as an order statistic. It sorts the height field (or
its tested subsquare) out of z coordinate and assigns the position number to every element
(see Figure 5). Left side of the production in this method has e.g form

[au, bu] [012, b12]
[‘121, b21] [022, b22]

where a;; and b;; are ranges of the positions in the sorted rank.

With this kind of matching we can erode some shapes regardless of their gradient (see
Figures 6 and 4). This production is independent on the relative differences and depends
on the positions in the rank.

ALY N

MR
Figure 6: This erosion has been generated with local ordering with floating array in 10
iterations.

Pattern rule from the erosion in Figure 6 has form

1,3) [1,3)
1,3 [4,41]“’3 (@)

where B according to (4) and the matrix of multipliers has the same form as in previous
example (see (6)).

1 -0.1 -0.1

[ ~0.1 —0.1 ] (®)
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Figure 7: Erosion with rotation of pattern matrix. It was applied once a), twice b) and
four times c). ‘
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A matrix which is not symmetrical to its center causes erosion in certain direction
(see Figure 7). If we want to erode in a different direction using the same production,
we can rotate the pattern matrix and the matrix on the right side of the rule. Figure 7
demonstrates application of one production rule without its rotation - in the second case
it was rotated by 90°, and in the last one it was rotated three times.

4 Implementation and results

The program is very easy to implement, we use ANSI C and our program works under
MS-DOS and UNIX (we have tested Solaris, IRIX and Linux).

We have used data generated by the random midpoint displacement method as well
as the data generated by spectral synthesis.

c)

Figure 8: This erosion has been generated with local ordering with floating array and
with rotation.Height field resolution is 64 x 64. Figure a) represents uneroded terrain.
On Figure b) c) d) there are some terrains after 200, 400 and 600 iterations.

Figure 8 consists of several frames from erosion of fractal terrain using local ordering
with floating array with three rotations of the pattern matrix. The total time of compu-
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tation on SGI Indigo? with R4400/200MHz in resolution 64 x 64 with number of iteration
600, was 10 minutes.

5 Conclusions

A new method for synthetical terrain erosion is presented here. This method is based
on rewriting of matrices. We use three kind of rewriting. The absolute rewriting allows
erosion of objects in predefined altitude, rewriting with the reference point erodes arbitrary
object in any altitude and the last method — matching with local ordering — erodes some
shapes in any scale.

This paper presents a new approach for erosion of synthetical terrains. The other
methods describe only one kind of erosion. QOur approach is general - we can simulate
wide classes of erosion using one algorithm.

Future work includes parallel implementation of the algorithm as well as including
stochastic rules.

We would like to thank our anonymous referees for helpful comments and suggestions.
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