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Abstract.
"Sewing Faces". From 3D images defined by a block

We present a new algorithm, called

of voxels, this algorithm based on a contour follow-
ing reconstructs bounding surfaces of 6-connected ob-
jects. A bounding surface is a set of faces shared by
two voxels : one belonging to the object, the other
one belonging to its complement. The topological
model used to represent these surfaces consists in a
set of such faces which are sewed together in such a
way that they define a closed surface, or skin. The re-
constructed surface can then be embedded into space
to give a surface mesh. We show that the complexity
of the algorithm is linear in time and space relatively
to the number of faces of the skin.

1. Introduction

The magnetic resonance imaging (MRI) tech-
nique developed in the 80s has deeply con-
tributed to the evolution of medical imaging
from 2D to 3D. Using this technique one can
get 3D digital images of any part of the hu-
man body. These images are characterized
by 3D integer matrices called blocks. Each
integer defines a value associated with a vol-
ume element or voxel of the image. This value
represents the summation of the nuclear mag-
netic resonance (NMR) signals from the sub-
stances found in the voxel. From a digital
imaging processing point of view such images
can be seen as grey scale images.

Assuming that preliminary image processing
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has been realized such that the objects or or-
gans described by the 3D image are "distin-
guishable" [3], we want to reconstruct bound-
ing surfaces separating the discretized objects
from the background.

Many research works have focused on this
problem. The various existing methods can
be classified using several criteria. The first
one, based on the Van Gelder et Wilhelms
classification [10] distinguishes the methods
by approzimation from the ezact methods.
The methods by approximation reconstruct
a bounding surface by interpolating the dis-
cretized data while the bounding surface re-
constructed by the exact methods is com-
posed of faces shared by a voxel of the ob-
ject and a voxel of the background. A second
classification criterion is based on the type of
scan used to determine the surface. The sur-
face reconstruction can be realized either by
a complete search among all the voxels of the
block or by a boundary following for which
only the voxels of the object "boundary" are
scanned. The boundary following approach
yields more efficient algorithms whose time
complexity is proportional to the number of
voxels of the boundary instead of the number
of voxels of the whole block. A third classi-
fication criterion is related to the nature of
the synthesized information. It can be exclu-
sively geometric, i.e. reduced to the list of
the faces defining the bounding surface. On
the other side, the information can be both
geometric and topological, i.e. composed of
a list of faces enriched with topological infor-
mation stating how these faces are connected
together. In this later case the closed bound-
ing surface delimiting the 3D object is called
a skin.
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The first methods have been developed in the
context of visualization and are therefore ex-
clusively geometric. However the determina-
tion of both geometric and topological infor-
mation is required for many applications such
as the optimized display of a bounding sur-
face, the distortion of a surface, the transfor-
mation of a surface into a surface mesh, the
derefinement of a surface by merging adjacent
coplanar faces, the reversible polyhedrization
of discretized volumes.

From the geometric information defining a
bounding surface, it is of course possible to
recover the topological information, i.e. the
neighbourhood information between faces.
For each face, one have to scan all the other
faces defining the bounding surface in order
to find its adjacent faces, i.e. the ones which
share one edge with it. If the surface contains
n faces then this topological reconstruction is
O(n?). To avoid this quadratic operation the
topological information must be collected to-
gether with the geometric information.
Among the many works on boundary recon-
struction the most well-known is probably the
Marching Cube developed by Lorensen and
Cline [4]. It is a method by approximation
which scans all the voxels of a 3D block and
builds a triangulation of the bounding sur-
face. There are cases where the Marching
Cube does not work well : ambiguous vox-
els may result in holes on the bounding sur-
face. Various extensions of the method have
been proposed, either by defining a heuris-
tic to solve ambiguous cases [10] or by re-
ducing the number of generated triangles [7].
Faster reconstructions have been developed.
Some are based on parallelized versions of the
algorithm [6]. Others use the octree abstract
data type [11] which reduces the number of
scanned voxels. The Marching Cube and its
different extensions reconstruct only the geo-
metric information related to a bounding sur-
face. They do not synthesize any topological
information.

An alternative to the Marching Cube is the
method proposed by Artzy et al. [1]. It is an
exact method which extracts the faces shared
by a voxel of the object and a voxel of the

background. It is based on a boundary fol-
lowing but does not extract any topological
information.

The method we propose in this paper is an
exact method (it extracts faces belonging to
both a voxel of the object and a voxel of the
background) based on a boundary following.
Moreover it is both geometric and topologi-
cal since the faces are extracted together with
their adjacence relations. These bounding
surfaces called skin are closed, they define 6-
connected objects. This method is founded
on the regular surfaces proposed by Rosen-
feld [9] who studied their topology without
developing a reconstruction method.

The paper is organized as follows. Section 2
recalls standard notions of 3D imaging and
topology and introduces new notions related
to 3D objects skin. We show in Section 3 that
the geometric and topological reconstruction
of the bounding surface of a 6-connected 3D
object is always possible using our bound-
ary following. The algorithm is briefly de-
scribed in Section 4 while Section 5 presents
the transformation of the bounding surface
into a surface mesh. The complexity analy-
sis of the algorithm is conducted in Section 6.
Finally Section 7 discusses some currently un-
der development extensions of this method.

2. Digital imaging notions

We first recall some basic notions in digital
geometry [2] and in 3D imaging [8]. We then
introduce some new definitions and use topo-
logical results on regular surfaces introduced
by Rosenfeld [9)].

Definition 1 . Let G be a subset
[0,X] x [0,Y] x [0,Z] € N3; X,Y,Z > 0.
G is a 3D finite grid associated with a coor-
dinates system R. The points of G, called
vertices, are defined in R by their inte-
ger coordinates. From the vertices of a
grid, we construct the edges, faces and voz-
els. Fach face is numbered from 0 to 5 rel-
atively to a vozel which contains it. A face
numbered with i (i € [0,5]) is called a face
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i or a t-face. The centers of all the voz-
els built on grid G constitute a dual grid
G¢=1[0,X-1x[0,Y—-1x[0,Z-1] €
N3. We associate with G a dual coordinates
system R in which the vozels are defined.

Definition 2 Two edges shar-
ing ezactly one vertez are adjacent. Two
faces sharing exactly one edge are adjacent.
Two vozels sharing exactly one face are 6-
adjacent, or meighbours'. Two vozels
sharing at least one edge are 18-adjacent?.

Definition 3 . If vozel v shares one
of its siz faces f with vozel v', we say that
f is the face by which v sees v', or that the
neighbour of v by face f is v'. The set of
vozels which share one face with v s called
the neighbourhood and is denoted by N(v).
We have 0 <Card(N(v)) < 6.

Definition 4 . A sequence of voz-
els ug, ..., ux such that Vi € [0,k[, vozels
u; and u;yy are 6-adjacent (respectively 18-
adjacent), is a 6-path (respectively a 18-
path). Two vozels v et v' between which a
6-path (respectively a 18-path) ezists are 6-
connected (respectively 18-connected).

Definition 5 . A block B is a func-
tion from G to a domain of values D(B).
We usually have D(B) = {0,1} for binary
blocks, or D(B) = [0,V] C N for intensity
blocks.

In the case of binary blocks, the points of G¢
can be partitioned into two sets : the object
(denoted O) and the background (denoted
0O). In the other cases, if the user defines
a subset of D(B) as being the set of values
representing the object, we can always come
back to the binary case.

Definition 6 . A set of vozels for
which each pair defines 6-connected vozels is
6-connected.

!Two edges (respectively faces or voxels) sharing
more than one vertex (resp. edge or face) define one
and only one edge (resp. face or voxel).

2Two voxels which are 6-adjacent are 18-adjacent,
the inverse is false.

We only consider blocks whose background
and object are 6-connected. It means that
there is only one object per block and that
the object enclose no hole. If the object or
the background contain several 6-connected
components, we run the algorithm on each
surface to extract. The final number of vis-
ited voxels will still remain lower or equal to
the total number of voxels in the block.

Let us now introduce new notions used for the
Sewing Faces algorithm. In the first place, we
want to define the “thick contour” of an ob-
ject. This contour is composed of a set of 18-
connected voxels called the 18-boundary.
To determine the voxels of the 18-boundary,
we introduce some specific notions and espe-
cially the one of voxel type.

Definition 7 . — The type of vozel v is
defined as follows :

o type(v) =0 <= v € O. We say that v is
outside of the object, or is a 0-vozel;

e type(v) =1 <= v € O and Card(N(v))=
6 and Vv' € N(v),v' € O. We say that v is
inside the object, or is a 1-vozel;

o type(v) =2 <= v € O and either 3V’ €
N(v) / v' € O or Card(N(v)) < 6. We say
that v is in the 18-boundary of the object,
or is a 2-vozel.

Definition 8 . The 18-boundary of
G4, is the set denoted by §(G%) of all the 2-
vozels of G¢. ’

In a second place, we focus on the bounding
surface, i.e. on the "contour without thick-
ness" of an object. It is composed of a set of
adjacent faces coming from the thick contour,
i.e. from voxels of the 18-boundary. Each
face of a voxel of the 18-boundary shared by
one voxel of the background as well as each
face of a voxel of the 18-boundary shared by
no other voxel (in the case of a voxel located
on the circumference of the 3D block) belongs
to the bounding surface. Such a face is called
a surfel.

Definition 9 . — Let v = {fo, ..., f5}
be a 2-vozel of G¢ whose neighbour by face
fi (i €]0,5]) is either in the background, or
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does not exists (i.e. is out of G¢). Face f; is
called a surfel. The set of all the surfels of
vozel v is denoted by ®(v).

We want to analyze and extract the topology
of the surfels. Since the object is 6-connected,
two surfels are adjacent by one edge according
to three modes introduced by Rosenfeld [9].
We call these modes half-sews.

Definition 10 . Two 2-vozels which
are 18-adjacent but not 6-adjacent (i.e. they
share only one edge) and which neighbour-
hoods intersection contains ezactly one vozel
of the background and one vozel of the object
called support vozel, are said to be binded.

Figure 1 shows two binded voxels and their
support voxel : the three grey voxels belong
to the object, voxels v et v’ are binded, voxel
u is their support voxel and the voxel drawn
in dotted lines is in the background. The
black faces belong to the skin.

Definition 11 . The three types of
half-sew, or 1/2-sew, between surfels of the
skin that are adjacent by exactly one edge
are :

1/2-1-sew : between two surfels of one 2-
vozel of the 18-boundary;

1/2-2-sew : between two surfels belonging to
two neighbouring 2-vozels of the 18-boundary;
1/2-3-sew : between two surfels belonging
to two binded vozels. We will say that these
two vozels induce some 1/2-3-sew on their
support vozel, or on the edges of their support
vozel.

Two 1/2-sews are needed to make one sew. If
surfel f is sewed (by one half-sew) to surfel
f’, then surfel f’ must be sewed (by another
half-sew of the same type) to surfel f. The
type of a sew is the type of its two 1/2-sews.
We distinguish between 1-sews, 2-sews and
3-sews as shown in Figure 2.

Property 1 . — The 18-boundary is 18-
connected, but not necessarily 6-connected.

Proof. 18-connectivity of the 18-boundary
is obvious. To prove that the 18-boundary is

; A A ,
v

2-sew

1-sew 3-sew

Figure 2: Three types of sews.

not necessarily 6-connected, let us consider a
counter example. Figure 3 shows an object
composed of seven voxels. The 18-boundary
of that object is composed of all voxels of
the object, except for the one in the middle :
this set of six voxels is not 6-connected. o

Our objective is to extract the surfels of an
object by examining as few voxels as possible.
Surfels being faces of 2-voxels, it is sufficient
to examine the voxels of the 18-boundary to
catch all surfels. A way to examine all the
voxels of the 18-boundary, is to examine first
one voxel and then all of its 6-neighbours
which are also 2-voxels. And so on. How-
ever we know from Property 1 that some 2-
voxels may be forgotten when examining the
voxels of the 18-boundary with such a strat-
egy. One way to avoid missing voxels would
be to analyze, for a given voxel of the 18-

Figure 3: Object composed of seven voxels.
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boundary, all its 18-adjacent voxels belong-
ing to the 18-boundary. This strategy would
require the scanning of 3 times more voxels.
To prevent this inefficiency we use another
strategy which relies on the 6-connectivity.
It uses the notion of 6-boundary which is the
6-connected "thick contour” of the block in-
cluding the missing voxels called the bind-
ing ones. We will see that apart from the
6-connectivity, the 6-boundary allows us to
sew all the surfels of the surface.

Definition 12 . — Let v be a vozel of
type 1 and vy, v; be two binded vozels of 5(G?)
such that v € N(vg)NN(v1). Vozelv is called
a binding vozel3.
Definition 13 . — The 6-boundary of
G¢, denoted by A(G?), is the union of the
18-boundary §(G?%) and of the set of all the
binding vozels.

Definition 14 . Let G be a grid. We
call skin a triplet S = (B, F,C) where :

e B is a block from G to D(B);

o F is the set of all the surfels of G, such that
Vf € F, 3 exactly four distinct ordered
pairs (607 f)a ) (637 f) € C;

e C is a set of ordered pairs (e, f), called
half-sews or 1/2-sews, where e € f is an
edge of G and f € F is a face of G, and such
that V (e, f) € C, Al (e, f) € C f' # f. Set
{(e, f); (e, f")} is called sew, or sew of edge
e, or sew between faces f and f'.

3. Minimal voxel set to scan

We now state some results guaranteeing that :
e the 6-boundary is 6-connected and can be
scanned according to the strategy presented
in Section 2;

e each sew can be determined by handling
one voxel of the 6-boundary and if neces-
sary its neighbours that also belong to the
6-boundary;

3A binding voxel is a particular case of support
voxel.

e each voxel of the 6-boundary yields at least
one sew.

To prove the 6-connectivity of the 6-
boundary, we use the following property.

Property 2 . — Let G be a grid and X
be any 6-connected subset, i.e. with holes or
not, of vozels of the object. Let v be a type 1
voxel that is not a binding vozel. X — {v} is
still 6-connected.

Proof. To prove that X — {v} is 6-connected,
we must establish that for any 6-path going
through v, there exists a "substitution" 6-
path in X — {v}. Let ug, ..., Ui, v, Uig1, o, Un
be any 6-path in X going through v. Let
v' € N(u;) N N(ui4;). Since v is 6-adjacent
to u; and wu;41, v' is 18-adjacent to v. More-
over, by definition of a binding voxel, since v
is a 1-voxel and is not a binding voxel, the
voxels which are 18-adjacent to v are in the
object (i.e. of type 1 or 2). Therefore voxel v’
is in the object. Path wg, ..., u;, v, wiyq, ..., Un
is therefore a 6-path in X — {v}. o
Theorem 1 . — Let G be a grid. The
6-boundary A(G?) is 6-connected.

Proof. The 6-boundary is obtained by delet-
ing from the object all the 1-voxels apart from
the ones which are binding voxels. After re-
moving one such voxel, we obtain a voxel set
with a hole. Nevertheless, Property 2 guaran-
tees that such a removal will not disconnect
the final set. The 6-boundary is therefore 6-
connected. o

Definition 15 . Let G® be a grid and
v be a vorel. N'(v) is the subset of neigh-
bourhood N(v) such that ¥V v' € N(v), v' €
N'(v) <= v € A(GY).

Theorem 2 . Let G be a grid and
S = (B,F,C) be a skin. For any sew
{(e.fi(e,f)} € C, 3 v € AGY) and
3 vo,v1 € {v} U N'(v) such that f € vy, f' €
1.
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Proof. Let cc = {(e, f); (e, f')} be asew. Let
us distinguish three cases corresponding to
the three possible types of sews for cc :

1-sew : faces f and f’ belong to a same 2-
voxel v, which is included by construction in
the 6-boundary A(G?). Let v = vz, v = U
and v, = v, we have v, € {v;} U N'(vz);
2-sew : faces f and f’ belong to two neigh-
bours of type 2 v, and v, which are included
by construction in the 6-boundary A(GY).
Let v = wvz,v9y = v, and v; = v,. Since
vy € N'(v;), we have vz, vy € {vz} U N'(v);
3-sew : faces f and f’ belong to two voxels
of type 2 v, and v, which share only one edge.
Faces f and f’ being sewed, voxels v; and v,
are binded. The intersection of N'(v;) and
N'(v,) contains exactly one voxel v, of the
object : their support voxel. Two cases arise
for v, :

— v, is of type 1. In this case v, is a bind-
ing voxel belonging by construction to A(G9);

— v, is of type 2. In this case v, also
belongs by construction to A(GY).

In the two cases, let v = v,, v = v, and
v; = v,. Since {vs,v,} C N'(v;), we have
vz, ’Uy e {Uz} U N,(vz)- ]

Theorem 3 . — Let G be a grid and S =
(B,F,C) be a skin. For any vozel v of the
6-boundary A(G?), there ezists one 1/2-sew
(e, f) of C such that f € U @)

v €{v}UN’(v)

Proof. Let v be a voxel of A(G?). Let us
distinguish between two cases corresponding
to the type of v :

1-vozel : by definition, there exist two 2-
voxels v; and v, in A(G%) whom v is the sup-
port voxel and such that 3 f; € ®(vy), f» €
®(v;) and e an edge of G such thate € fiN
fo. Let us consider for instance the 1/2-sew
(e, fi) of C. Wehave 1€ )  ®(v');
v'e{v}UN'(v)

2-vozel : v contains at least one surfel. Let
f € ®(v) and (e, f) one 1/2-sew of C. We
have fe |J (). o

v'€{v}UN'(v)

4 . Construction of the skin

The skin of an object is the set of all the
surfels separating the inside from the outside
of the object, and sewed together according
to one of the three sew types previously
described. Since we suppose that there is no
hole in the object, the skin is made of only
one bounding surface "object / background".

The skin is well-defined by scanning the
voxel set of the 6-boundary and by deter-
mining the sews. Theorem 1 guarantees
this can be done by analyzing and treating
the 6-neighbourhood of each voxel of the
6-boundary. Recall that any face i of a
2-voxel v is added to the skin if and only
if the neighbour of v by face i is of type
0. The scanning of all the voxels of the
18-boundary is therefore sufficient to create
all the surfels of the skin. But determining
all the sews (particularly these of type 3)
requires the scanning of the 6-boundary.
This is guaranteed by Theorem 2.

The algorithm needs beforehand one 2-voxel
vy. This voxel is either given by user, or
determined using a dichotomous search
algorithm of the 2-voxels in G¢. This voxel
is the starting point of the algorithm :
its neighbourhood is inspected, then the
neighbourhood of its neighbourhood and so
on. If the object or the background include
more than one 6-connected component, we
must run the algorithm on all the surfaces
we want to extract. For each run of the
algorithm, a new initial voxel vy must be
given or determined.

4.1 . Principle of the algorithm

The algorithm reconstruct progressively the
skin defined by triplet S = (B, F, C). It
successively scans all the voxels of the 6-
boundary. For each of them it examines those
of its six neighbours that also belong to the
6-boundary. For each of them, it detects the
surfels they generate and it creates the nec-
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essary sews. For efficiency reasons, the algo-
rithm is iterative. It uses a stack of 2-tuples.
Each 2-tuple or call is composed of two neigh-
bour voxels : a previous voxel denoted by
v, and a current voxel denoted by v.. Such
a call is in the stack if it has been pushed
during a previous iteration step when voxel
v, was the current one. We call co-calls the
set of all the calls generated by one voxel,
i.e. having all the same v,. Co-calls are alto-
gether pushed, the ones on top of the others.
The core of the algorithm which is fully de-
scribed in [5] is :

SewingFaces (B : G¢ & D(B), vf) =

stack + NewStack ()

S = (B, F,C) + NewSkin ()

Treat ((null,vs), S)

Co-Calls (vy, S, stack)

While (NotEmpty (stack)) Do
(vp,ve) « Pop(stack)
Treat ((vp,vc), S)
Co-Calls (v, S, stack)

Done.

A call may be poped a long time after it
has been pushed and a voxel may be the
current voxel of more than one call. When
a call is poped, it may therefore involve
a current voxel which has already been
treated. In this case, the treatment of this
call is simplified : for instance if the voxel
is of type 2 its surfels have already been
detected and their 1-sews have already been
determined. Such a voxel must not generate
its co-calls since they have already been
generated. The only authorized calls have
the following profiles : (previous vozel of type
1, current vozel of type 2), (previous vozel
of type 2, current vozel of type 1), (previous
vozel of type 2, current vozel of type 2). A
1-voxel may only be a binding voxel and
must not cause any call towards another
1-voxel, in order to avoid the unnecessary
exploration of the interior of the object.
A call of profile (previous wozel of type 1,
current vozel of type 1) is therefore forbidden.

From the study of the three sew types (cf.

Figure 2), it arises that :

e 1-sews are made by scanning only one 2-
voxel;

e 2-sews are made by scanning two 2-voxels
which are neighbour;

e 3-sews are made by scanning three voxels :
two binded 2-voxels and their support voxel.

Chronologically, each call is at first pushed on
the stack, then it is later poped to be treated
and finally it produces its own calls. During
the treatment of a call, four stages must be
realized :

1. detection of the surfels of the current
voxel;

2. 1-sews between surfels of the current voxel;
3. 2-sews between surfels of the previous
voxel and surfels of the current voxel;

4. 1/2-8-sews of surfels of the current voxel,
i.e. 1/2-3-sews induced by the current voxel
on the previous voxel. In this case the previ-
ous voxel is performing the role of the support
voxel.

4.2 . Treatment of a call

Let us consider any call (vp,v.). Voxel v,
may have already been treated. In this case,
stages 1 and 2 previously indicated must not
be performed. Notice that voxel v, has nec-
essarily been treated, otherwise it would not
have pushed that call. Stages 3 et 4 can (and
must) always be realized. The treatment of
a call consists therefore in the following func-
tion.

Treat ((UP’UC)’ S= (B’Fa C)) =
If v, has never been treated Then
Sewl (v, S)
EndIf
Sew2 (vp, v¢, S)
Sew3 (vp, Ve, S).

Function Sewl determines the surfels of wv,.
For each surfel s; it scans all its adjacent
faces f; and checks if s; and f; define a
1-sew. In that case the 1-sew is added to the
set of sews C.

337




The 2-sews between surfels of v, and v,
are determined by function Sew2.  This
function scans the pairs of faces (fp;, fei),
and if both faces are surfels then it creates
the corresponding 2-sew. Notice that this
function is symmetrical, i.e. Sew2(vp, Ve, S)
and Sew2(v,, vp, S) realize exactly the same
modifications of S.

The 1/2-8-sews induced by v, on v, are re-
alized by function Sew3. One call of this
function only detects 1/2-3-sews. To real-
ize a full 3-sew between two surfels of two
binded voxels v, and vg, the two function
calls (vp,vq) and (vp,ve2), where vy, is the
support voxel of v,; and v, must be poped
and treated. This function is not symmet-
rical, i.e. Sew3(vp,v., S) and Sew3(v, v, S)
do not realize the same modifications of S.
In the first case, the 1/2-3-sews created are
these induced by the surfels of v, on some
edges of v,. In the second case, the 1/2-3-
sews created are these induced by the surfels
of v, on some edges of v.. We will see that
this not symmetrical aspect must be taken
into account in the production of co-calls of
Ve.

4.3 . Co-calls production

When the treatment of a call (v,, v) is done,
v, must produce a co-call towards each of
its neighbour voxels, apart from : (1) the
0-voxels, (2) the 1-voxels if v, is itself of
type 1, (3) its previous voxel .

Points 1 and 2 allow to produce only autho-
rized profile calls. Point 3 is used to avoid
unterminated run of the algorithm. However
this point rises a problem : some 1/2-8-sews
may be missing. Hence to fully realize a 3-
sew involving v,, v. and a third voxel two
calls to Sew3 are required : Sew3(vp, v, S)
and Sew3(vc, vp, S). However, point 3 forbids
this later call to ensure the terminaison. To
remedy this problem, these 1/2-3-sews are re-
alized by v, while producing its co-calls.

5. Embedding of the skin

We have realized so far only topological
operations (adding faces into a set of surfels,
adding sews into a set of sews), without
any consideration of real coordinates of the
vertices. Therefore the extracted surface
is a "topological surface". To transform it
into a “geometrical surface”, i.e. into a 2D
mesh of the object bounding surface, we
embed the skin. A surfel embedded in the
3D space becomes a facet. To convert all
surfels into facets, a starting point is required

the real coordinates of the four vertices
of a given surfel f. From the face type of
face f and from its sews types, it is easy to
deduce from what j-face arises each of the
four surfels sewed with f. We can compute
coordinates of the four surfels adjacent to f.
And so on. We thus obtain the real coor-
dinates of all the surfels and we get all the
facets. If the three dimensions of the basic
parallelepiped representing one voxel are
integer values, embedding of the skin does
not require any computation with real values.

6 . Results and discussion

We have run Sewing Faces on synthetics 3D
blocks, of growing size n X n X n, representing
digital balls of growing radius n. The tests
were realized on a Intel Pentium 133 Mhz,
under Linux 2.0.0. with 32 Mo of memory.
Experimental results are summarized in
Table 1. User times are measured in seconds
and memory in Kbytes.

The method has been developped under
the following objectives : (1) to prove the
theoretical sturdiness, (2) to reach a near
optimal complexity in time and space, (3)
to ensure practical reliability.

In Section 3, point 1 is proved. The stated
theorems ensure that the choice of the
scanned voxels, the way to scan them and
the way to create all sews allow, in all the
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n | vox. scanned | % 1-vox. | # surf. | user time | time/surf. | mem. | mem./surf.
85 29106 34.80 | 34710 1.28 | 0.00003702 | 2890 0.083261
95 36378 34.87 | 43254 1.61 | 0.00003733 | 3510 0.081149

105 44426 34.97 | 52782 1.97 | 0.00003741 | 4318 | 0.081808
115 53426 35.01 | 63270 2.35 | 0.00003714 | 5174 0.081777
125 63074 35.04 | 74694 2.77 | 0.00003708 | 5896 | 0.078935
135 73634 35.10 | 86958 3.32 | 0.00003823 | 6844 | 0.078705
145 84866 35.00 | 100302 3.75 | 0.00003743 | 7986 | 0.079620
155 97058 35.14 | 114582 4.30 | 0.00003752 | 9086 | 0.079297
165 110058 35.16 | 129750 4.90 | 0.00003776 | 10328 | 0.079599
175 123810 35.16 | 145854 5.55 | 0.00003805 | 11596 0.079504
185 138426 35.19 | 162846 6.18 | 0.00003794 | 13030 | 0.080014
195 153722 35.20 | 180870 6.92 | 0.00003825 | 14438 |  0.079825
205 169946 35.25 | 199878 7.63 | 0.00003817 | 15968 | 0.079889

Table 1: Experimental results.

cases, to reconstruct the skin. There is no
exception, the only condition is that the
object must be 6-connected.

To prove point 2, we first send back the
reader to the different algorithms. Functions
Sewl, Sew2 and Sew3 are the elementary
functions. They are called a linear number of
times relatively to the number of voxels of the
6-boundary. Except for the binding voxels
(which represent in average 35% of the whole
voxels of the 6-boundary), all the voxels of
the 6-boundary generate some surfels. The
number of calls to the elementary functions
is therefore linear with the number of skin
surfels. This is corroborated by the column
time/surf of the experimental results table.

The basic functions implementation requires
data structures that are linear in space with
the number of voxels of the 6-boundary. If
we disregard binding voxels for the same
reasons than above, we deduce that the
algorithm is linear in space with the number
of skin surfels. It is also corroborated by the
column mem/surf.

The third point led us, at first, to write the
algorithm in Caml-Light, a functional lan-
guage allowing to write runable specifications
and to validate a program. Later on, we

wrote again the program in the C language
in order to mesure better execution times.
From the numerous tests realized, either on
real data coming from MRI or on synthetic
data, we have verified the reliability of our C
release to Sewing Faces.

7 . Conclusion

We have presented in this paper an algo-
rithm for the topological reconstruction of
the skin or bounding surface of 6-connected
3D objects. This algorithm is based on a
boundary following, therefore not all the
voxels of the 3D block are scanned. The
reconstructed surface is exact, i.e. composed
of voxels faces without any approximation.
It has been shown that the time and space
complexity of the method are linear accord-
ing to the number of surfels of the skin.
This method is therefore optimal. Its major
interest is that it focuses not only on the
geometry of the skin but also on its topology,
which is synthesized without increasing the
complexity of the algorithm. The skin surfels
are sewed together in such a way that each
surfel knows its four adjacent surfels. The
sewing is realized according to three modes
as described by Rosenfeld. A topological
extension of the algorithm would consist in
building the inclusion tree in order to deal
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with several objects defined in an image.
Due to its topological nature this method
may be useful in various image processing
applications such as surfaces deformation
and derefinement, surface meshes manipula-
tion, reversible polyedrisation of discretized
volumes.

Various parallelizations of this method are al-
ready under development. One is a sub-block
approach. The 3D image is decomposed
into several sub-blocks that are analyzed in
parallel. The partial skin related to each
sub-block is determined and an aggregation
process reconstructs the whole skin from
the partial ones. With such a large-grain
parallelization approach one can work on
large 3D images that are too big to fit in
memory. A small-grain parallelization is also
studied. It is based on modifications of the
data structures, in particular the call-stack.
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