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Abstract

The paper presents the internal graph-constructive representation of parametrised
geometry in a CAD system that supports the design of objects with variable topology.
A constructive constraint solver is extended by adding two implicit constraints: ed (equal
distance) and ea (equal angle). The necessity of supporting both constraints in a model
with structural parameters is argumented. The basic solvable patterns involving these
constraints and the forming and merging of circularly linked clusters is presented. The
applicability of the constraint solving to hierarchically structured parametric objects is
also shown with a practical example.
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Introduction

Modelling by constraints has become a preferred method of defining geometry in CAD systems.
This process begins with drawing a rough sketch and is followed by stepwise fixing of the
degrees of freedom of the object’s components. The latter is done adding geometric constraints
such as tangency, perpendicularity, prescribed distance and angle between primitives, etc.,
usually depicted as annotations in engineering drawings. The CAD system is then attempting
to satisfy all imposed constraints in a process referred to as constraint solving. The constraint
model is attractive also for the ease with which complex modifications to the geometry can
be carried out. Constraints can be removed and/or substituted, and families of parts with
variable dimension values can be represented.

As far as geometric constraints are directly represented by algebraic equations, numerical
constraint solving has been widely used in a number of systems [2], [5], [8], [12]. In addition
to its generality, the method supports integral constraints such as prescribed area, perimeter,
moment of inertia. However, the iterative solver needs an instance to start with and might
converge to an undesired solution.

Another class of solvers are based on the constrictive approach. Geometric elements are
placed in some order either following a set of construction rules — rule-constructive solving [1]
- or building a graph of geometric elements linked by constraints and attempting to reduce
it to a set of predefined solvable patterns — graph-constructive solving [3], [9]. The second
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method is more robust and may be guided to select the proper solution, but graph analysis is
strongly dependent on the set of possible constraints.

Most constructive solvers deal with a restricted number of constraints: prescribed distance
and angle, incidence and parallelism, and still their scope goes beyond the class of problems
solvable by ruler, compass and protractor. However, they lack the support of some typical
constraints representing the relations that exist between geometric elements of the so-called
parametric objects.

In this paper we discuss the extension of a graph-constructive solver to handle the instan-
tiation of objects that may in general have structural parameters. We concentrate on some
new constraints required when modelling repetitive structure and the basic construction steps
needed to support them.

Parametric models and constructive constraint solving

Parametric models have often been opposed to variational, constraint-based ones. The latter
may represent a wide class of families of parts by utilising explicit constraints, such as pre-
scribed dimensions involving parameters rather than fixed values. A parametric object is a
more general concept being the description of a class of objects, the individual members of
which (called instances) are uniquely identified by the values of a set of attributes, called input
parameters.

Parametric objects with structural parameters

One of the main difference lies in the fixed topological structure of a constraint problem.
Conversely, a parametric object may have structural parameters to describe similar but not
identical topology between instances [7]. A typical example is a cog-wheel with a parametrised
number of cogs or the comb-like polygon in Fig. 1 with a varying number of slots N's.

Figure 1: Two instances of a COMB with Ns =3 and Ns =5

Attempts have been made to introduce structural parameters in a constraint-based model,
but they are based on performing modelling operations like circular repetition on a set of
elements already constructed [10]. This implies that geometric elements can be split in groups
of constructable sets which can after be replicated in a circular or rectangular manner. A
similar idea has lead to the definition of the circular and the matriz pattern features in the Step
standard. Representation in such a mixed procedural-declarative manner might not always
be possible, which is illustrated with the same object shown in Fig. 1. Editable models are
more suitable [6], [11], but they require an internal representation involving a larger number
of constraint types than usual.

Constraints representing equal dimensions

A typical implicit constraint inferred by parametrising topology is the equal distance. It
represents the requirement that the distance between two points should be equal to the distance
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between another pair of points. A similar implicit constraint equal angle relates two pairs of
lines, so that the angle between two of them is equal to the angle between the other two.
Such constraints are produced when defining that a set of geometric elements are equally
spaced which is the case with the object in Fig. 1. In a parametric model the actual distance
between the slots will not be specified, and the ed-constraint is a natural way of representing

the fact that they are equally spaced.
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Figure 2: An instance of COMB with Ns =1 and the corresponding constraint graph

Figures 2 and 3 show two instances of the object COMB and the graphs, representing the
relations between the constituting elements. The nodes of the graph are the points and the
lines (the construction lines rather than the segments that connect the points) of the object
and they are linked by arcs representing the imposed constraints. We have marked the arcs of
the graph with the type of the constraint as follows: pa — parallelism; pe — perpendicularity;
d — prescribed distance. By arc with no label we denote the incidence constraint.
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Figure 3: An instance of COMB with Ns = 2 and the corresponding constraint graph

Equal angle constraints would be used for objects that possess circular repetitive structure
to denote the equal angular dimension between the adjacent items. This constraint would be
expressed as the natural language specification: A cog-wheel with a variable number of cogs,
being located at equal angles around a common centre.
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The graph-constructive solving

We shall first briefly present the process of graph reduction, its analysis and the placing of
geometric elements, which does not differ in its central part from the process described in
[3] and [9]. The model is first translated into an internal representation with fixed topology.
This is the graph whose vertices are the characteristic points and construction lines and circles
rather than the arcs and line segments comprising the drawing.

We use a pure bottom-up approach. The graph is first decomposed to a set of clusters
built up by elements for which the execution of a construction step is possible. The cluster
formations are then analysed in a recursive manner to discover solvable patterns treating
clusters as single geometric elements. Clusters are grouped and placed with respect to each
other until no more isolated clusters (elements) exist.

The algorithm is made of two steps:

1. FORM A NEW CLUSTER: Select a pair of geometric elements, related by a constraint
(excluding ed- or ea-constraint), so that a maximum number of constraints relates this
pair to other graph vertices. Make a new cluster comprising these two elements. This
aims at forming a cluster that consists of as many elements as possible.

2. JOIN TO A CLUSTER: Select a cluster and for each element (or another cluster) not
belonging to the cluster that has two dimensional or implicit constraints relating it to
elements already in the cluster execute a construction step. The element (or cluster) can
be located wrt the selected cluster and thus become a new cluster member.

The second step is actually the core of the construction process. A set of basic patterns
for locating an element related by dimensional or implicit constraints to two other elements
with known position is defined as the solution of a simple system of equations. This solution
gives the parameters of a translation and rotation that is applied to the newly added element.
Examples of such patterns involving dimensional (explicit) constraints are the basic steps:

e Put a point at prescribed distances from two other points;

e Put a point at prescribed distances from a point and a line;

e Put a line at prescribed distance from a point and at an angle from another line;
o Put a line at prescribed angles with two other lines; etc.

Note that the process ends when all geometric elements have been merged in a single
cluster, i.e. no isolated elements and/or clusters exist. This single cluster possesses the three
additional degrees of freedom on the plane.

Apart from the problem with the exponential number of solutions some precautions must
be taken when dealing with the parallelism constraint [4]. The reason for it is that two parallel
lines, that are not related by an additional distance constraint, do not form a rigid cluster,
i.e. the latter is not relocatable by applying translation and rotation only.

One of the methods of extending a constructive constraint solver is to form small systems
of equation inferred by patterns of two and more constraints. An example of placing two
clusters linked by three different constraints is to satisfy two of them and derive the loci of
the element involved in the third constraint. Although very powerful this method is hard to
apply for the constraints in question as they are not explicit, and can not be isolated and
solved separately.

Instead, we propose to add a number of construction steps corresponding to a set of
solvable configurations of clusters linked by ed- or ea-constraints. We should not account for
all possible cases, but rather concentrate on the ones usually generated by varying topology
parametrisation.
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Solving the additional implicit constraints

We shall first present the basic construction steps taken to merge two clusters linked by an ed-
constraint and sharing a common element. The most important is the configuration when the
constraints are imposed on points (rather than lines), which is shown in detail. The specifics
of ed-constraints linking a point and a line and two lines are discussed briefly as well.

Two ed-clusters sharing a common line

Figure 4 shows the general case of two ed-clusters a and 3 sharing a common line I. The relative
position of each pair of points in the cluster they belong is fixed, and has been determined
during cluster construction. The next step is performed by fixing one of the pairs and letting
the other slide along the line keeping C and D on a constant distance from it until the condition
|A — C|| = ||B — D|| is satisfied. Obviously, the motion of the second cluster is translational.
In the trivial case all four points lie on the shared line as shown in Fig. 2. Note also that the
two cluster may share more than one line if these lines are parallel.
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Figure 4: Cluster 8 may slide along the line

Let the line has coordinates (n%,¢*) in cluster o and (nﬁ ,cﬂ) in cluster 8. To form the
equation to solve we need to rotate both clusters so that the common line becomes parallel to
the z-axis and then translate vertically the clusters to coincide with the z-axis. Cluster § has
one degree of freedom which is the unknown u as the z-component of the translation. Thus,
the two transformation matrices in homogenous coordinates are:

My= | -ny ny —c* |, Mp(u)= —nf nd —cf
0 0 1 0 0 1

The equation to solve is then:
Mo - A — Mp(u) - C|| = [Ma - B — Mg(u) - D],

which is linear wrt to the unknown u due to its symmetric position at both sides. Thus, in
case of imposing orientation on the construction lines the uniqueness of the solution at this
step is guaranteed. The actual distance between the points in the pairs can then be computed,
but this is not necessary as the clusters can be merged directly by transforming all elements
of 8 by the matrix
Mﬂa = Mo, . Mg(u)

Clearly, an equal distance constraint can be either redundant or contradictory, i.e. the

equation may have infinite or zero number of solutions. The uniqueness is only possible if:

n“- (A -B)#n?.(C-D).
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It seems easy to extend the scope of the solver by generalising the ed-constraint involving
simple functions of the distance. For example, one might wish to specify that the distance
between a pair of points must be twice as big as the distance between another pair of points.
This will lead to the cluster formation shown in Fig. 5 and to a slight modification to the
equation we derived above. Unfortunately, this equation is no longer linear and two possible
solutions exist. Both solutions of a simple configuration when all the points lie on the shared
line and the relation between the constraints is given by f(t) = t/2 is also shown.

\
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Figure 5: The dual solution of a simple ed-configuration

This situation must be accounted for by solvers which form a solution tree [1] and/or use
heuristics to select the estimated user-desired configuration.

Two ed-clusters sharing a common circle or point

These two cases are practically equivalent as the degree of freedom of the second cluster wrt
the first one is the angle of rotation around the common point or the centre of the common
circle. We shall present the solution when a point is shared. Having a common circle may
sometimes involve an additional scaling to the transformations applied to both clusters.

Let S be the only common element of clusters a and 3 having coordinates (Sg,S;) and
(88, S) respectively. As before, we first need to translate each cluster so that S coincides
with the origin; fix the first cluster; and then apply a rotation to the second one with two
unknowns u = cos(#) and v = sin(#) corresponding to the rotational degree of freedom 6.

This construction step is carried out by solving the following system of two multivariate

quadratic polynomial equations:

|A -S4 —IR(U,U) - (C —Sp)|| = ||B — Sa — R(u,v) - (D — S
u? +v?= )

Computing the coefficients of the first polynomial we obtain the form:
(||C —Ss|I> - ||D - Sﬁ||2) (u2 + v2) +cu+tcv+c=0

The product of the unknowns has a 0 coefficient and the system can be reduced to a much
simpler one:
coutcav+cat+e=0
u? +v2 =1 ’

for which we can certify that four real solutions exist when

o+ ¢ — (2 +es) >0,
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while a unique construction step can be taken only if either the above or ¢y equals 0. Otherwise,
the ed-constraint in question is contradictory and the solver terminates.
The clusters are merged by transforming all elements of 3 by the matrix:

Mg, = T(SZ, S2) - R(u,v) - T(S?, S9).

Unlike the previous configuration, a more complex function than identity relating the pairs
of points does not complicate the final system of equations, nor it increases the number of
possible solutions.

Other configurations involving ed-constraints

As mentioned above, an equal distance might be specified between a line and a point and two
parallel lines as well. The main difference from the distance between points of these two is
that a line has orientation and the distance to it is usually signed. To avoid the treatment of
various combinations, we have limited the construction patterns to involve only constraints of
identical type.

This makes it impossible to require the distance between a point and a line to be equal to
the distance between two points. However, for the needs of parametrising geometry made of
clusters of similar elements and constraints this is not a serious limitation.

Other configurations, that can be of interest, occur if the two clusters do not share a
common element, but are linked by three constraints, two of which are ed-constraints and the
third is a prescribed distance or another ed-constraint. The most simplified case of this type
is finding the point located at equal distances from three other points. A more general one is
shown in Fig. 6.

Figure 6: Two clusters linked by three ed-constraints

Unlike the ed-constraints the angle constraint may only involve two lines and the angle
itself is always a signed value. Thus, the ea-constraints are signed as well.

There is only one basic pattern which is of particular interest: two ea-clusters sharing a
common point. A single common line does not determine the exact position of the second
cluster wrt to the first one as the former is still free to slide along the common line. We need to
perform the same transformations as before and then use the algebraic equation representing
a prescribed angle constraint. It is more convenient to equal the sine and the cosine rather
than the angle itself.

Circularly constrained ed-clusters

In this section we present the solution of the more common case when several couples of geomet-
ric elements are linked by equal dimension constraints. As noted earlier, ed- and ea-constraints
must be treated separately as they control different degrees of freedom. We concentrate on the
equal distance constraint as it needs a more complicated approach depending on the common
element, shared by the clusters.
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Two cluster formations originate from the use of structural parameters: the first comprises
a number of clusters all sharing a common element and each two adjacent being related by
an ed-constraint; and a more general case when each two adjacent clusters possess a common
element as illustrated in Fig. 7. The first configuration is the one produced as a result of
modelling the COMB object as shown in Figures 2 and 3.

Figure 7: The two configurations of ed-cluster sets

In both cases we can apply the same location technique as presented above. Let us con-
centrate on the first, being the simpler situation. If the common element is a line the cluster
relocation is translational, while if this element is a point the degree of freedom that the
ed-constraint controls is the angle of rotation around the common point.

Let us first consider the presence of a common line. If we express the translational degrees
of freedom wu; of each cluster 3; wrt to one of them a which we select as a basic one, we shall
acquire the following system of equations:

2, 42 ;
| -+t —ati+aiatipi=c, 1=1,...,n

wrt to the unknowns u; given by t; = u;, {t; = u; —u;—1, 1 =2,...,n},tny1 = —us.
This system can be solved symbolically once the coefficient are computed. For example, if
the ed-constraints are imposed on pairs of points, a; is the dot product expression:

a;=2(P;-n; — Qi—1 ' ni_y)

where the points P; and Q; belong to the cluster 3;, and n; is the unit vector on the common
line in the cluster local coordinate system. The ed-constraint relates the pairs (Qi-1,P;),t =
0,...,n, where P, = Pg and Q.41 = Qo.

The symbolic computation produces all possible solutions, which are then analysed accord-
ing to orientation of placement requirements or solver heuristics to select the one, expected by
the user. A solution tree [3] may also be created as the transformation matrices are explicitly
evaluated and stored. This permits the construction process to be revised and redirected by
adding new selection criteria.

The same transformation-based approach is applied to the case of a common element being
a point or a circle. The system to solve wrt to the rotational degrees of freedom of each cluster
is more complex, but still solvable symbolically. A serious problem here is that it may have no
real solution, i.e. a construction step might not be executable. Presently, we do not analyse
the correctness of the imposed constraint but rather check for a real solution after the solver
completes its task.

The situation is complicated substantially in the second type of configurations if the com-
mon elements are of different type, e.g. some clusters share a common point, while others
share a common line. We have left this case aside as it is not produced by variable topology
parametrisation. Due to the symmetry of constraints in parametric object the most common
situation is the one shown at the left side in Fig. 7.
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An example of nested structural parameters

The approach we have adopted is also suitable for processing graphs, where multiple sets of
equal dimension constraints exists. There are two major cases when this occurs. The first is
a configuration of two separate ed-cluster sets that can be solved independently. It might also
happen that these two sets can not be separated, i.e. they form a single ed-cluster, between the
members of which different ed-constraints exist. This requires the building of a more complex
system of equations than the ones presented here. Again, this case is not typical for variable
topology parametrisation.

The second case reflects the usage of nested structural parameters when representing a
wider class of objects as the one shown in Fig. 8. The electrical machine depicted may have
a parameter Npoles being the number of stator poles (8 for all instances shown) as well as a
parameter NslotsPerPole to specify the number of slots on each stator pole.

NSlotsPerPole=4 NSlotsPerPole=1 NSlotsPerPole=0

Figure 8: The effect of changing the value of a nested structural parameter

The bottom-up solving presented here will first detect the internal ed-clusters where the
equal distance is imposed between the slots on each stator pole. The poles are then constructed
independently of each other producing as a result a set of clusters, linked by the ed-constraints
between the ends of the pole tips. The last step is then to solve this cluster pattern (where only
one set of equal distance constraints is imposed) to produce the instance of the cross-section
of the machine.

All cluster patterns in this example are of the type sharing a common point or circle.
Together with the comb-like elements shown at the beginning, these represent the majority
of variable topology parametric objects used. Another class of objects are the matriz pattern
features (defined as such in the Step standard), which can be constructed in the same manner,
because they can also be regarded as two nested ed-cluster sets.

To summarise, the system presented processes a parametric object in the following manner:

1. Generate the constraint graph for fixed values of all structural parameters. The result
is a graph with fixed topology and will be altered only if a structural parameter’s value
is changed.

2. Replace all trivial equal dimension constraints by explicit ones. These are ed- (or ea-
constraints) that link pairs, one of which has a prescribed distance (or angle) as well.

3. Repeat the following until no more free elements (clusters) exist.

3.1 Create a new cluster by choosing an element with maximum links to other elements.

Call it the current cluster.
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3.2 For each element (cluster) not in the current cluster and linked to two elements in
the latter by non-equal dimension constraints execute a construction step and join
it to the current cluster.

3.3 If the current cluster has elements related to other graph nodes by equal dimension
constraints check whether this cluster belongs to a solvable equal distance constraint
pattern. If so, merge them in a single cluster.

Conclusion

We have presented the addition of equal dimension constraints that are necessary to model
geometry with similar topology. The solvable patterns presented are restricted to the con-
figurations that are inferred by constructing objects with repetitive structure. The future
work is directed towards introducing preliminary top-down analysis to discover solvable equal
dimension patterns aiming to verify correctness at an early stage and detect repetitive cluster
configurations. A further challenge is to find a representation for the constraint graph avoid-
ing the multiple solution of similar cluster configurations, which occur especially when nested
structural parameters are used.
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