An Incremental Declarative Modelling applied to
Urban Layout Design

Sylvain Liege, Gérard Hégron
Ecole des Mines de Nantes
4 rue Alfred Kastler
44070 Nantes cedex 03, France
Sylvain.Liege@emn.fr , Gerard. Hegron @emn.fr

Abstract

In this paper, we present an interactive declarative modelling approach devoted to the design
of urban layout. Declarative modelling palliates the weaknesses of imperative techniques. The
scene model is described by means of properties without knowing explicitly its geometrical
model. From a scene description a set of solutions fitting the properties is obtained. In our
approach, the designer describes the urban layout with a description language in an
hierarchical and incremental way. The scene description is translated in a constraint graph
which is instanciated to compute one solution or a few solutions using a constraint
propagation algorithm and a scene generation model. From the scene generation model
providing a particular solution, a geometric model (2D map) is extracted. A 3D model of the
urban environment can be generated for urban simulations or virtual reality applications.

Key Words : artificial intelligence, declarative modelling, constraint propagation, urban
modelling.

1 Introduction

In CAD and image synthesis, the main bottleneck among modelling and rendering processes
is the time spent for scene modelling. This is mainly due to the complexity of the scene in
terms of number of objects (from ten or so to thousands) and in terms of geometric properties.
Traditional technique, called P,

imperative modelling, has shown
its limits. For example in
mechanics construction some
authors [SR88] have clearly
pointed these weaknesses :

e There is not enough
information on non-
geometric aspects of the
ObjCCtS s Imperative Methods

. Figure 1 : Declarative modelling and imperative modelling
e There is not enough

abstraction level. For example, if we want to make a hole in the middle of an object,
we need higher geometric information than a collection of faces to do it ;

° A‘ complete knowledge about the object is necessary to modify it.

A few approaches have been proposed to palliate these drawbacks : parametric modelling,
constraint-based and rule-based techniques ([LG82]). A new approach called declarative

272

modelling is meeting a constantly increasing interest in all CAD domains ([GT88], [Luc91],
[VtH91], [DH93b]). The user describes the properties of the object and the system tries to
compute the corresponding set of geometric models from the object’s description (Figure 1).
With an imperative approach only one geometric model is created and it is often very difficult
to check if the desired properties of the object are verified. Declarative method provides a
large number of solutions. Our system can propose one or a few solutions among the whole
set. In this paper we present such a declarative method devoted to the design of urban layout.

In the first section our declarative modelling methodology and urban layout characteristics are
detailed. Then the scene description model and the calculation of a scene description solution
are presented. The constraint propagation algorithm used to compute the solutions is
developped in section 5. Before to conclude, a few results illustrate our approach.

2 Declarative modelling and urban layout design

Declarative modelling

Declarative modelling is an attempt to get automatically the geometric models of objects
corresponding to a description in terms of properties. The properties can be geometric,
topologic, structural and more or less semantic. They depend on the application domain. This
approach offers to the designer a more progressive scene specification, leaving the system the
care of proposing more than one solution from an object specification, detecting
inconsistencies and dealing with incomplete knowledge. Unlike the imperative method,
declarative modelling produces more sketches than complete object models. We are applying
the declarative methodology to urban layout design and mainly for the development of urban
neighbourhoods.

Urban layout design

Figure 2 displays the layout of Canberra city. This
layout is mainly a set of streets whose configuration
is a mixture of chequered pattern, rayonnant pattern
and radio concentric pattern (Figure 3). Streets are
the basic geometric elements of the layout. Therefore
a set of properties of the layout defines specific
configurations of a set of streets. The following set of
properties can be distinguished ([LH96]) :

unary relations (intrinsic property of a street) :
short, long, broad, narrow, etc.

binary relations (relationship between two
streets) : with or without intersection, with or

e
without common extremity, an extremity of a “:\“‘:»', T NP KIS
R B
street belongs to another one, parallel, (é.‘,tﬁ;-’@'yrb{?
. . TR HIT .‘
perpendicular, aligned, etc. “.;;}g,,.':!" .‘le
. . . 1AM . » & v
n-ary relations (relationship between n streets) : —] RS
Chequere.d pattern, rayonnant pattern, radio Figure 2 : Canberra city : a mixture of chequered
concentric pattern, etc. pattern, rayonnant pattern and radio -concentric
pattern.

273

global properties (relationship about the whole set of streets) : percentage of an n-ary
relation occuring in urban layout, minimum area of the parcels delimited by the streets,
etc.

o

Figure 3 : Urban patterns : radio-concentric, rayonnant, chequered, diamond shaped.

Scene generation process

From a set of urban properties, the designer describes the layout in a hierarchical and
incremental way. The user can start from a crude description of the scene involving only the
main axes like the grand boulevards and the main characteristic points like squares and
crossroads. A solution computed from this first description can be decomposed in subparts,
and for each subpart a new subdescription enables the user to refine the layout model. Figure 6
illustrates this hierarchical description approach. For each description level, the designer
increases step by step the layout description by introducing a set of streets and relations. From
each partial description one solution or a few solutions among numerous potential ones is or
are computed. If this intermediate solution does not satisfy the user, the current description
can be changed or completed or another solution can be asked for. This process is presented
Figure 4. At each stage of the scene generation process the current solution provided by the
system can be frozen and kept.

.. Partial n solutions)
Description | ———> Generation > Solution(s)
description 1< n <all

T

Figure 4 : General scene generation process.

The final geometric model of the urban layout is genarated by the system through the
following stages :

1. The designer provides a scene description by means of a descriptidn language.

2. The current scene description is translated in a constraint graph which is instanciated
to produce a solution using a constraint propagation algorithm and a scene generation
model.

3. From the current scene generation model providing a particular solution, a geometric
model (2D map) is extracted.

274

DQuououoawy

The scene description model

From a description language, the designer describes the urban layout. The geometric
primitives are line segments (streets). The properties are unary, binary or n-ary relations, or
global properties. A line segment can be specified by an imperative method providing the
coordinates of its extremities. The scene description is then represented by a constraint
hypergraph whose nodes are primitives (streets) and whose arcs are properties. An example of
such a graph is given Figure 5

intersects B

intersects C

has a common extremity with A
does not intersect A

does not intersect B

has a common extremity with C
is large

is narrow

Figure 5 : A description and the associated constraint graph.

3 The calculation of a scene description solution

The scene generation model

The way to compute a solution from the scene description depends on the type of space in
which the scene model is generated. If the space is continuous the number of solutions is
infinite and no countable. In this case optimization techniques are necessary to get a solution
[DH93a]. If the scene is generated in a discrete space, a countable and finite set of solutions is
obtained [PD94]. In this case it is more a combinatorial problem.

Our work takes place in the second case. The street configuration (set of line segments) is
drawn on a grid of points. The grid can be regular or not, depending on the result we want and
the existing environnement. It represents the working space in which we will search a solution
of the description. The street extremities are either points of the grid or intersection points
between streets, or can belong to another street. If during the scene generation process two
line segments intersect, the intersection point is added to the set of points used for line
segment extremities.

275

The calculation of a solution

The calculation of a solution is achieved by instanciating the constraint graph which
represents the scene description. This instanciation is performed by a constraint propagation
algorithm and by means of the scene generation model on which line segment configurations
are generated till they fit the properties. During the constraint propagation algorithm, for each
node a set of line segments verifying the properties with the connected nodes is computed and
finaly one line segment is kept to compute a final solution. From this configuration of line
segments, the set of intersections between line segments is extracted, then a 2D map is
generated. The 2D map is useful to compute properties about the layout (shortest path
between two points, area of parcels, size of parcels, etc.) and to build a 3D model of the city.

The hierarchical approach

As we mentioned in section 2,
the description of the scene can
be achieved in a hierarchical
way. For each description level
of the urban layout, the solution
generation process of this 1
subdescription uses the related /
information included in the
different representations of the
scene of the previous description

level : // 1
e constraint graph :]
subgraph including the ./
streets (nodes) belonging \
to the subpart of the .
layout and the associated
relations (arcs) ;

—

W

e scene generation model :
set of streets, points of
the grid and intersection
points belonging to the
subpart of the scene ;

Figure 6 : A map with neighbourhoods.Three of them are in bold.

e 2D map : subgraph containing the streets belonging to the subpart and intersection
points between these streets.

4 The constraint propagation algorithm

The number of solutions of a description depends on the resolution of the workspace (number
of grid points). We are looking for only one solution or a few solutions, but a lot of
intermediate potential solutions are computed.

276

A node is randomly chosen in the graph.

The node is instantiated, that is to say a V © " Random posionforthe st et A
line segment whose extremities belonging °°

to the grid points and having its unary
properties is set up. Then a constraint [° S 3 possible
propagation starts from this node. The }(Z ® fn
propagation goes through the connected © ° °o°
nodes. The system tries to instanciate
each node. The algorithm randomly
chooses a set of line segments whose S Lem =~) positions
extremities belong to the grid or to the set ! ?% \
of intersection points. A few line 8% P it choice
segments are kept if they verify the T

A intersects B

B intersects C

l 2 possible

2" choice

. C has a common
intrinsic properties given at this node, extremity with A
those of the relation with the previous | ¢ ... a common
instanciated node and finaly the global | iiea'®Y Verification: fail
properties of the layout. The propagation Bockimcking
stops when all the nodes are instanciated. ;{\Z
. . . Verification: Success !

During the constraint propagation two | . ,

Figure 7 : Example of constraint propagation algorithm in a
problems have to be solved : 2X 3 grid

e A node is already instanciated :
that happens when there is a loop in the graph. In this case, we check if the connected
nodes verify the new constraints of the relation. If they do not, a backtracking is
performed to explore new possibilities ;

e A node instanciation fails: that is to say no new line segment can verify its
corresponding properties (unary, binary, n-ary and global). Then a backtracking is also
performed : each node knows all its possible instantiations on the grid. If an
instanciation achieved during the previous graph traversal leads to a failure, a new one
is picked up in the set of possible instanciations of the node, and a new constraint
propagation starts from this node.

The main algorithm of constraint propagation is given Figure 8. It is called PlaceSegment
because its work consists in calling the rule which computes possible position for the current
segment (current node in the graph), then assigning one of these possible positions to the
current segment and finally propagating the information to the connected nodes in the graph.
It performs backtracking if needed.

In this algorithm, we do not use a classical generation tree ([Tsa93]) from which all the
solutions are computed and in which we verify a posteriori if the line segment configurations
fit the properties or not. For instance, in a 3x 2 grid, with a classical generation tree, at the
most 15x 14 x 13=780 configurations containing three line segments can be computed. In this
case the algorithm provides all the solutions. Our system computes only a few solutions and is
guided by the properties. At each leaf of our generation tree, a new constraint is solved.
Figure 7 illustrates the constraint propagation algorithm computing in a 2 3 grid a solution of
the following description : A intersects B ; B intersects C ; C has a common extremity with A .
In this example, only 8 configurations are generated to find a good one. This number depends
on the random choice of the new line segments at each step.

277

PlaceSegment (SegmentToPlace, ReferenceSegment,Relation)
/* Place SegmentToPlace respecting the Relation between
SegmentToPlace and ReferenceSegment. ReferenceSegment is already

placed */
BEGIN

ENDFOR
ELSE

————

CASE relation OF

property
ENDIF
ENDCASE
needToContinue € True

result € succes
WHILE result=success DO

ENDWHILE

needToContinue < True
ELSE
_medToContinue < False
ENDIF
ENDWHILE
IF needToContinue = true THEN

return(fail)
ELSE
T;tum(success)
ENDIF
ENDIF
END

IF ReferenceSegment=nil THEN /* I* Segment*/

RandomPlacing(SegmentToPlace)

FOR ALL Segment in relation with SegmentToPlace DO
PlaceSegment(NewSegment, SegmentToPlace,NewRelation)

PossiblePositions € ApplyRelation(SegmentToPlace,Relation)
IF there is a global property to verify THEN
remove from the set the solutions which do not verify this

WHILE possible position exists and needToContinue DO
AssignPosition(SegmentToPlace, a position in the set)
result € PlaceSegment(NewSegment,

SegmentToPlace,NewRelation)

IF listOfResults contains a fail THEN

/* All the Segments did not succeed in looking for a place */

Improving the realism of the
solutions

As the line segments are
generated in a discrete space,
the system does not produce
satisfactory solutions in two
cases :

1. Some properties as « a
street Starts In another
one » and « a street is

Between two other
streets » cannot most
often beverified

because line segments
seldom pass through
the points of the grid.

2. The number of dead-
ends (street
extremities without
connection with
another street) would
be too important to get
a realistic solution.

So, we have developped a
method to solve both
problems. Each time the
system computes the possible
positions for a segment, a part
of these positions is computed
in the continuous space: we
add to the set of the grid

Figure 8 : Main constraint propagation algorithm.

few points computed along the
segments already placed. By this
way, we allow the future
segments to start from these new
points out of the regular original
grid. An example of a segment
computed with this method is
given Figure 9. E is located
between B and D. The
extremities of the segment E
belong to B and D but not to the
regular grid.

This method allows us to guide
the research for some properties

points where the segment
extremities can take place, a

o]

o]

Figure 9 : Instanciation of a segment placed between two other segments.

o] [e] [o] [¢] o o] @] ¢] [¢] o [¢]

o o
: Points to add

(o] (o] O o] (o] [e] (o] [e] o} (o]

278

very difficult to be verified in a discrete space and to improve the realism of the solutions by
reducing the number of dead-ends.

5 System Implementation and Results

The system is
written in
Visualworks 2.0
(Smalltalk). The user
interface is mainly
composed of a
description zone and
a display zone as
shown Figure 10.
The description is
made using an
interactive interface
with buttons and
other common
widgets. The user
gets an echo of his
description in a text
window. All the
properties are
available by this
way. Step by step,

Tj - diteur de Plans Contexduat

O Hisusrchical O Global

CHAOIOVOZIr A" IQTMOO® P

Acoupe B
B coupe C
C coupe D
D coupe E
E coupe F
F coupe G

H meme orlgine que A

[Chequered pattern

[C1 Rayonnant pattern
[0 Radio-concentric pattern

[Diamand-shaped pattern

=\

CHAVNDTODVOZIr X" IHTMOO D@

Figure 10 : A view of the main window of our application.

the user enriches the description and the system computes a new current solution. If a solution
satisfies the user, he can freeze and go on with the description. So, the part of the constraint
graph which is frozen will not be altered during the computation of the next solutions. If the
solution does not suit the designer, another one can be asked for. The system can also provide
more than one solution and display them. The current description can be saved in a file with
its solution and restored in order to carry on the design process.

.

vd
N

W

=N

Figure 11 : Urban layout examples containing a few neigbourhoods.

JAVEN

TS

Cle

279

Basically, the system is devoted to the production of 2D models. The creation of 3D models is
then the next step for the design and the simulation of comprehensive virtual urban
environment. This problem is out of the scope of this paper but Figure 12 presents a 3D
example of the urban layout of the right map of Figure 11. This 3D model respects the
Inventor syntax and a real time walk through the city can be performed. For virtual reality
applications, this declarative method would be very efficient to create very quickly many
different cities with the desired properties.

6 Conclusion

In this paper a new method for declarative modelling applied to urban layout design has been
presented. The system provides a high level and friendly man-machine interaction. The
description of the layout in terms of properties is done step by step and solutions are proposed
in an incremental and hierarchical way. An original constraint propagation algorithm has been
presented which enables the user to get a solution or a few solutions among a large number
potential ones. To compute these solutions in a reasonable running time, we have
implemented some powerful prune methods wich guide the research and give more realistic
solutions in the same time.

The 3D extensions let the user to have a walk in the city with a VRML browser. This is a first
step to a virtual reality
modelling system. We
can create a sketch of a
city in a few minutes
without thinking in terms
of geometric coordinates.

Right now a few
properties have been
implemented. New
properties have to be
introduced to make the
solutions more and more
realisticc. In order to
detect if there are
contradictions in the
scene description, we also
have carried out the
Figure 12 : 3D scene corresponding to a 2D map of Figure 11. verification of]ogica]

' inconsistencies, but the

presentation of this work is out of the scope of this paper.

This declarative approach can be helpful not only for urban layout modelling but also for
every kind of layout based on line segment configurations like the 2D design of gardens. The
only change would be the introduction of a new set of properties depending on the specifity of
the application.

280

A The description language grammar
Here is a light version of the language grammar of our application.

Description ::= descriptionName spaceSize ruleList .

descriptionName ::= caracter | word | string

spaceSize ::= Space (integer, integer) ;

ruleList ::= rule ruleFolowing

rule ::= property | absolutePosition

property ::= unaryProperty | binaryProperty | naryProperty | globalProperty
ruleFolowing ::= nil | ; ruleList

absolutePosition ::= streetName : point, point

point ::= number @ number

unaryProperty ::= narrow(streetName) | normal(streetName) | large(streetName) |
veryLarge(streetName)

binaryProperty ::= intersects(streetName, streetName) | doesNotIntersect(streetName,
streetName) | sameExtremity(streetName, streetName) | differentExtremity(streetName,
streetName) | startsIn(streetName, streetName) | doesNotSartIn(streetName, streetName)
naryProperty ::= Rayonnant(streetList) | Chequered(streetList)

globalProperty ::= Rayonnant(streetList) | Chequered(streetList)

References

[DH93a] Stéphane Donikian and Gérard Hégron. Constraint Management in a Declarative
Design Method for 3D Scene Sketch Modeling. In First Workshop on principles
and practice of constraints programming, April 1993.

[DH93b] Stéphane Donikian and Gérard Hégron. A declarative design method for 3d scene
sketch modeling. In Eurographics 93, Barcelona, Spain, September 1993.

[GT88] F. Giunchiglia and E. Trucco. Object by incremental ill-described spatial
constraints. Technical report 400, Departement of Artificial Intelligence, University
of Edinburgh, 1988.

[LG82] R. Light and D. Gossard. Modification of geometric models through variational
geometry. Computer Aid Design, 14(4) :209-214, July 1982.

[LH96] S. Liege and G. Hégron. An Interactive Declarative Modelling for Urban Layout
Design. Internal report 96-2-INFO. Ecole des Mines de Nantes. February 1996.

[Luc91] M. Lucas. Equivalence Class in Object Shape Modelling. IFIP TC5/WG 5.10
Working Conference on Modelling in Computer Graphics. Tokyo, 1991.

[PD94] Laurence Pajot-Duval. Modélisation déclarative de configurations de segments de
droites : le projet FiloFormes. PhD thesis, Ecole centrale de Nantes, June 1994.

[SR88] J.J. Shah and M.T. Rogers. Expert form feature modelling shell. Computer Aid
Design, 20(9), November 1988.

[Tsa93] Edward Tsang. Fondations of Constraint Satisfaction. Academic press. 1993.

[VtH91] P. Veerkamp and P.J.W. ten Hagen. Qualitative reasoning about design objects. In
5™ International Conference on the Nanufacturing Science and Technology of the
Future, Enschende, Pays-Bas, 1991.

281

