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Abstract

In this paper we propose a new visualization technique to characterize qualita-
tive information of a large DNA sequence. While a long DNA sequence has huge
information, it is not easy to obtain genetic information from the DNA sequence
visually. We transform DNA sequences into polygons to compute their homology
in image domain rather than text domain. Our program visualizes DNA sequences
with colored walk plots and simplify them into k-convex polygons. A walk plot
represents a DNA sequence as a curve in a plane. A k-convex polygon simplifies a
walk plot by removing some parts of insignificant information of a walk plot. This
technique gives a biologist an insight to detect and classify a group of homologous
DNA sequences. Experiments with real genomic data proves our approach shows
good visual forms for long DNA sequences for homology analysis.
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1 Introduction

Visualizing a very large amount of arbitrary data is one of the big challenges. One major
research problem in molecular biology is to study the sequence of genome. Molecular
biologists want an efficient genomic sequence analysis tool to process huge amount of
information contained in DNA.

Sequence analysis is to characterize two or more sequences in terms of similarities
(homology). It is the basic assumption that if two creatures have “similar” genomic
sequences, then they are “relatives” in a view of the evolution theory. Thus it is crucial
to compute the genetic homology between two different genomic sequences to find a
homologous group. However till now there is no universal homology function to measure
the “genetic distance” two different genomic sequences.

In order to find homology and some characteristics in several genomes, two different
approaches were introduced. The most common approach considers the genome sequence
as a string of finite alphabets. When a DNA sequence is regarded as a simple string, we
can use several string processing algorithms. However such good string algorithms have
disadvantages to be applied directly in genomic sequence analysis. At first, it is quite
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difficult to give a formal objective function for biological problems. Secondly, some string
analysis algorithms, e.g. the famous Wunch-Needlman’s sequence alignment algorithm
does not work for large data set. General dynamic programming approaches are costly
to compute, especially when multiple genomic sequences are considered [4].

Rather than those strict string processing algorithm, visual techniques can be used
to compare two sequences [7]. Though visual representation does not give quantitative
measure, it reveals another useful qualitative information which can not be described in
a formal statement. For example, Correlation Image(CI) has been proposed to display a
three-dimensional shape containing the DNA sequence similarities and differences[l, 7).

In this paper we give an advanced visualization technique which gives an approxi-
mates the original walk plot of DNA sequences with a closed polygon. For this purpose
we introduce a new class of polygon called k-convex polygon. Fig.1 shows three k-convex
hulls generated from three genomic sequences (responsible for secreting insulin hormone)
from a man , a chimpanzee, a dog. By our visualizing system we can easily figure out
that the insulin secreting mechanism of human-being is nearer to that of chimpanzee
than to that of dog. This shows one of advantages of k-convex hull representation for
the homology analysis of DNA sequences. In the following section, we will explain how
to construct those k-convex polygons appeared in Fig.1.

(a) Dog Insulin (b) Human Insulin (c) Chimpanzee Insulin

Figure 1: the k-convex hull of three insulin genes(k = 0.6)

2 DNA Sequence and Random Walk Plot

A DNA sequence is composed of four bases A,C,G,T (Adenine, Cytosine, Guanine, and
Thymine). The main concerns of DNA sequences analysis are
i) frequency of the occurrence of subsequence,

i1) similarity with known sequences stored in data banks,

117) biological function encoded in DNA.

The random walk plot was originally introduced to represent an arbitrary DNA
sequence into a visual form[3]. The main idea of this technique relies on that DNA
sequences are composed of only four bases. It makes a DNA sequence possible to be
represented as curve in 2-D plane. The walk plot is another display based on counting
excesses of one type of base over another type. It moves either left/right or up/down
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depending on its base type. The occurrence of an A(Adenine) moves the curve to the
left, a C(Cytosine) to the right, a G(Guanine) down and a T(Thymine) up. The choice of
these particular pairings is justified because GC and AT are complementary bases. Fig.2
shows one walk plot for a simple sequence s = cctcttgegetttcgaattcecgggageccatcettc.
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Figure 2: a DNA Walk Plot for (s = cctcttgegctttcgaattccegggeaggageccatettc)

This representation scheme is compact, but often cause information losses because
walk plot moves more than once over the same ground. And another disadvantage is
that the final image from walk plot requires too complicated line segments. Fig.3 shows
a walk plot of a genome including 6,197 bases. The original walk plot is difficult to be
used directly to find genomic homology. So it is required to make walk plot into a simpler
shape.

Figure 3: a walk plot from a gene sequence with 6197 bases

3 Image and k-convex Hull

Previous lots of works for shape representation were done on polygons and the curve
approximation [8]. There are various polygon approximation methods, which have some
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common features in that approximating segments of shape boundary are represented by
straight line segments. Thus the finally approximated polygon may cut out some parts
of an original shape. But it is well known that images are characterized by its concave
parts rather than convex parts.

The k-convex hull is a parameterized polygon which is approximated from an image.
“k-convex” means that we can control the convexity of the polygon by the normalized
parameter k. Our k-convex hull is generated constructively by filling the concave pockets
of the image.

Let us define the following notations. I, denotes the original image and huli(1,, k)
denotes the output polygon with parameter variable k generated by our algorithm from
I,. Note that hull(l,,0) is the boundary of I, and hull(1,,1) is the convex hull of I,.
Given an image I, and a parameter variable k, k-convex hull algorithm gives the final
k-convex hull with the following three phases.

Phase 1 : Extract a set of boundary pixels from I,. This procedure has the worst
case time complexity O(01,) where 01, is the number of boundary pixels. Boundary pixel
coordinates are ordered counter-clockwise where the first starting point was fixed to the
leftmost upper point. '

Phase 2 : Expand I, until the convex hull of I, finds. In this phase, we get the
information such as the number of filling steps, area and perimeter of each hull(1,,7)(0 <
¢ < 1) by generating intermediate polygons hull(I,,0), hull(l,, A), hull(1,,2 - A),

.., hull(I,,n - A = 1). These are used to determine the number of filling steps for a
given parameter k value.

Phase 3 : Generate an appropriate hull(1,, k) for a given parameter k. This is done
by applying the filling procedure to I, by ny times. ny is determined by the information
getting in Phase 2.

3.1 Determining the number of filling steps

Given a parameter k, we have to determine ny which is the number of filling steps for
generating an appropriate hull(I,, k). The information obtained in the phase 2 is used
to derive the measuring variable C}(0 < i < n) which is used to determine ny. k-convex
hull Aull(1,,k) is an intermediate polygon hull(l,,m - A) where the difference between
CT and k is minimum. area(P) and peri(P) denote the area and the perimeter of a
polygon P, respectively. The ratio ri of the area and the ratio r:, of the perimeter of
hull(I,,i- A) to a convex polygon is defined as follows :

i area( hull(1,,i-A) ) — area( hull(1,,0) ) oo peri( hull(I,,0) ) — peri( hull(I,,i-A))
*” area( hull(I,,1) ) — area( hull(L,,0)) ’ P peri(hull(I,,0)) — peri( hull(I,,1))

Note that r} and r are in interval [0, 1]. Using ry and rj, we derive the measuring value,
Cj, as following;: o .

Cr=ry*vw+r*(1-w)
, where 0 < w < 11is a trade-off control parameter to balance perimeter and area. It
is easy to see that 0 < C7 < 1 since r, r} and w are in [0, 1]. If C} is found, we can
determine ny. The gap between each Cj value and k is defined as following

gap(k,CH) =| Ci—k|, 0<i<n

,where n is the number of intermediate polygons to be generated in Phase 2. If gap(k, C})
gives the minimum value, j must be set to n;.
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Let us describe the detail steps for filling concave parts of a boundary polygon of an
image. This procedure makes a polygon hull(l,,j - A) from a hull(l,,(j — 1) - A). This
algorithm uses four basic rules. Two tolerance variables are needed for applying these
rules.

Let pi_1, pi, pi+1 denote consecutive three points of a polygon. We define two
tolerance variables § and 7 as followings : '

Definition 1. § is the tolerance variable for the length of line segment p; 7, pit1.

Definition 2. n is the tolerance variable for the distance between p; and line p; -3, pis1.

Let p/=t, pi™t, p’_H denote consecutive three pomts of the polygon Aull(l,,(j — 1) - A).
According to four basic filling rules, the point p’ can be included or excluded in the
new polygon hull(1,,j - A). Otherwise a new point can be inserted to replace p’ ~!. Rule
1 is applied to the case of Signed_Area(pi-1,pi,pit+1) = 0. Otherwise rule2-4 is apphed
to other cases, where Signed_Area() is defined as following :

Ty T2 I3
i Y2 Y3

Signed_Area(py, p2,p3) =

o v
m NG AR AN
(a.1) (a.2) (b.2)
(a) Rule 2 (b) Rule 3
Pl ol Pl
® . 4 )
(c.1) (c.2)
(c) Rule 4

Figure 4: filling procedure with Rule 2-4

Rule 1 | If SignedArea -':l,p?._l, > 0, then pJ ~! is included in hull(1,,j - A).
1—19 0 +1

[ Rule 2 ] If d < é and h < 5, we exclude p!™! from hull(I,,j - A). Since d,k has few
effects on polygon boundary. (See Fig. 4(a))

[ Rule 3 ] If & > 5, then we replace p!™* in the triangle of pffll,pf_l,pf:;ll with p. (See
Fig. 4(b))

[ Rule 4 ] If A <75 and d > 6, we replace p.~! on the line p,’_fllp,’;ll with p. (Fig. 4(c))

216




Notice that applying those rules could not give a desirable filling effect for a polygon.
When we apply rule 2 repeatedly, it forces several consecutive points to be excluded from
hull(I,,j - A) as shown Fig.5(a). This problem is critical to handle with an image where
it has many small concave regions. Our solution is to detect the range [p,, p.] by applying
rule 2 repeatedly, and find the point p,, which has the longest perpendicular line to line
PsP:(See Fig.5). So we can change and fill the concave features smoothly.

(a) (b)

Figure 5: (a) applying of [Rule 2] three times, (b) one solution

3.2 Removing knots of boundary pixels

This k-convex hull algorithm is mainly based on the Graham’s convex polygon algorithm.
Graham’s algorithm sorts the input points in the increasing order of angle of each point
to a origin point. That algorithm can not work for the boundary points since the degree
of angle of each boundary point is not ordered due to the concavity of the image. Fig.
6(a.1) shows that boundary points are ordered as a, b, ¢, d, but their angles are not
ordered such as /dOX < LaOX < LeOX < LbOX. When we apply Graham’s scanning

directly to the ordered points along the boundary, we encounter three types of knots.

The type-I knot has two crossing edges (See Fig. 6(a.2)). In this case, we remove point
c.

* Pis
(a.1) (a.2) (b.1) (b.2)
(a) Type-I knot (b) Type-1I1 knot

Figure 6: type-1 knot and type-III knot

In the type-II knot, the consecutive three points are on one line. Fig. 7(d) is desirable
but (a)-(c) are not. These three cases must be corrected by a desirable filling process. In
(a)-(c), the line segment of three points p;_1,pi, piy1 would not be any edges of k-convex
hull. Thus this line segment must be removed out of the polygon boundary. The dashed
line shows the shape after filling process in Fig.6.

Type-1II is not a knot but a part of pocket regions. See Fig. 6(b.1). This case could
make a knot in the next filling process since p!_g is in the triangle of p]_;, v, p’_H So we
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oPi ® pi oDi
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(2) (b)

(c) (d)
Figure 7: type-1I knot

remove the pocket, pi_, - p?, of a polygon. Fig. 6(b.2) shows final results after removing
a pocket.

Now let us describe the metric function for computing the similarity between two
k-convex polygons. Let p(z1,y1) and ¢(z2,y2) be two points with coordinates z;,y; in
2-D euclidean space. Then we denote d(p, q) the euclidean distance between two points

as d(p,q) = \/(xz —21)2 4 (y2 — ¥1)%. In a similar way we can define distance between a
point ¢ and a polygon P as

d(g, P) = min{d(g,p)}

,where P denotes the set on the boundary points of a polygon P.

Let |P| denote the number of polygon vertices in P. Then we can say d(z, P) is
the length of the shortest line segment from z to the boundary of polygon P. Fig.8 (a)
shows how d(z, P) and d(y,Q) are computed. Suppose that P and () be polygons with
| P |=n,| @ |= m. In the following V(P) denotes the vertex set(=corner points) of a
polygon P. Also analogously we can define the distance between two polygons as the -
following.

L

‘Pl Z d(pi, Q)

pi€V(P)

D(P,Q) =

This means D(P,Q) is the average distance between boundary points on V(P) to
Q. It should be noted that D(P,Q) is not symmetric. The reason we take the average
value is that if we do not consider the number of boundary points, then the more two
polygons have points, the larger the polygonal distance between two polygons grows.
Consequently we give a symmetric metric function Dist(P, Q) to compute the symmetric
distance between two polygons P and Q.

Dist(P, Q) = max{d(P,Q), d(Q, P)}

Fig.8(b) and (c) explain the polygon distance between two k-convex hulls.

4 Experiment

We have conducted experiments with several DNA sequences. Table 1 explains DNA
sequences and its homology obtained by “Clustal-W”, that is a commercial DNA analysis
tool widely used in practice. Experimental data was obtained from Korea Biotechnology
Center.
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@ (b) (c)
Figure 8: distance between two polygons
Table 1: DNA sequences Table 2: Homology table by Clustal-W
No. | Seq. Name # of bases No. 1 2 3 4 ) 6
1 | Rhusiopathiae protein | 2052bp 2 170.0
2 | Aureus genes 1834bp 3 | 42.0 [ 42.2
3 | Human HSP 70 2107bp 4 | 46.0 | 46.1 | 40.9
4 | Mouse HSP 70.1 1930bp 5 | 47.6 [ 46.6 | 41.2 | 72.1
5 | T.cruzi HSP70 1963 bp 6 | 51.5 1529|389 |58.1] 56.2
6 | Halobacterium HSP 70 | 1909bp 7 | 53.6 | 55.1 {39.5(59.759.2|64.7
7 | Rhizobium HSP 70 1927bp

Fig.9 shows each k-convex polygons of seven DNA sequences, No.1-No.7. In this
experiment we fixed k value to 0.6. Note that the k-convex polygons appeared in Fig.9
was scaled up/down to fit a unit square, since such a size normalization enables a better
homology comparison. We should note that No.8 sequence is not a real sequence. That
sequence was made from No.3 sequence with adding some artificial noises. Noise was
generated by adding or deleting some bases randomly.

Table 2 shows that No.2 shows the highest homology value with respect to No.l
sequence. In Fig.9, our system also shows that No.2 polygon is the most similar one

comparing with No.1 polygon. And our visualizing tool gives very similar polygons for
- No.3 and No.8.

In Table 1, we can see that No.l seems to be very similar to No.5 than to No.3.
Since we do not consider the reflection or the rotation cost of a polygon, No.l seems to
be quiet different to No.6 though it has a high homology value in Table 1.

Fig.10 shows several k-convex hulls from a given image. We can see that the number
of points in the k-convex hull is decreasing rapidly when k approaches 1.
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5 Conclusion

In this paper we proposed a new visualization technique for huge genome sequences. We
newly introduced the k-convex hull polygon, which is an intermediate polygonal form
between two extreme shape such as the convex hull and the original image. Also we can
control the degree of convexity with the variable of k in terms of the perimeter/area of
the convex hull. Experiment results confirmed us that two “relative” genome sequences
are of similar shapes. In our experiment with 10 DNA sequences, we can easily point out
the highly closer DNA sequences with the help of k-convex hull representation.

Our visualization technique enables it easy to compare homology and to find ho-
mologous group among lots of DNA sequences. In the future we expect that our system
will be used to construct phylogenetic tree for a group of tiny microorganisms in Korea
Biotechnology Center.
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No.1 No.2 | No3 No.4

No.5 No.6 ' No.7 ‘ No.8

Figure 9: HSP 70 proteins, k = 0.6

k=02 k=05 k=0.7 k=1
No.of points = 1164 No. of points = 209 No. of points = 76 No. of points = 26

Figure 10: E.coli K12 rbsD, rbsA, rbsC, rbsB, rbsk, and rbsR genes encoding. 6198bp
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