PENGUIN — A Portable ENvironment for a Graphical User INterface

M. Fischer
Graphics Group, Dept. of Computer Science, University of Bonn,
fischer @ graphics.cs.uni-bonn.de

Abstract

Although designers of user interfaces can choose between several different user interface management
systems like InterViews, Fresco, Motif, Tcl/Tk, ET+*, Forms, or WIN!, none of these systems is
portable between different operating systems. Most of them are fixed to the X Window system. All of
them provide a large number of dialog objects, i.e. a large number of object classes like buttons or slid-
ers. The complexity of the interfaces is further increased by the diversity of the individual objects (push
" buttons, check buttons, ...). As a consequence, the training period for programers becomes unaccept-
ably long. They are not designed to be easily extendible if the functionality provided is insufficient. The
reusability of their objects is small. It is very hard to integrate them into another environment, e.g. use
them in combination with a special graphics package. In this situation we felt the need for a portable
graphical user interface that is easy to learn and easy to use still providing an adequate functionality.

Categories and Subject Descriptions: 13.4 [Computer Graphics]: Graphics Utilities — Graph-
ics packages; Software support; 1.3.6 [Computer Graphics]: Methodology and Techniques — device
independence;

Keywords: UIMS, OOP, platform independence, high quality graphics, software produc-
tivity, extensibility, customization
General Terms: Design

1 Introduction

State-of-the-art and thus complex graphical user interfaces tend to have a large number of dif-
ferent dialog objects, i.e. object classes and subclasses®. This leads to complex interfaces most
likely resulting in extensive training periods. Desired features can only be accessed by setting a
large number of parameters for constructors or functions creating an object and/or by selecting
and calling a few out of many possible methods or functions. Many parameters make function
calls hard to read and increase the likelihood of incorrect usage. The case of more than one
function that must be called to use the framework leads to the use of uninitialized (or only par-
tially initialized) objects. The completeness of the interfaces leads to a lack of extensibility. It is
very hard to integrate special dialog objects, e.g. 2D sliders or objects doing calculations during
idle time, in any of the interfaces. For a comparison of the abilities and shortcomings of various
user interfaces see [Fis96].

As a consequence, PENGUIN’s (short for Portable ENvironment for a Graphical User IN-
terface, [Fis96]) main design goal was a compact interface, minimal training time and comfort
of usage. The compactness of PENGUIN supports beginners becoming familiar with the pack-
age and significantly reduces the time of average development cycles. This is further improved
by a large number of default parameters making it possible to develop a user interface with
minimal knowledge of function parameters. It is impossible to create dialog objects that are
only partially initialized and hang up the system when they are used. To become started, only
two methods have to be called: method z_Penguin: :instance() and method ¢t_Penguin::run().

IThe graphical user interface provided as part of Microsoft Windows.

21 this context, the word, class is used with a non-object-oriented meaning for a functionality of the objects,
e.g. a button, and the word subclass is used for the different graphical appearance of objects in a class, e.g. a radio
button, a toggle button, ...

124

Even though some ideas originate from InterViews and Fresco, the interface of PENGUIN
is much cleaner and more powerful. Therefore, updating to a new version of the interface is
an easy task compared to the updates from InterViews versions 2.6 to 3.0 to 3.1 and finally
to Fresco. During the development of PENGUIN a consistent interface has been kept across
different versions.

2 Basic Concepts

The functionality of PENGUIN is divided into five parts, which are described in the following
sections. Each part focuses on some basic concepts that are used throughout PENGUIN. These
are the parts:

Control Elements Elements that are responsible for access to the window system, e.g. for
opening windows or receiving and dispatching events, that manage hotstrings, save the con-
text, and other global jobs.

Events Events are used to pass information from the user to the system, e.g. with mouse or
keyboard events. The list of event types supported by PENGUIN is extensible. The system
will react to any event derived from a predefined type. This provides an easy way for an
application programmer to pass information from one section of the program to another one.

Dialog Objects These objects define the interface to the user. They can be created, modified,
or deleted at any time. Derived classes implement common objects like buttons or sliders.
The different dialog objects that are available provide a small but adequate functionality.

Actions Actions are called by dialog objects to perform an application specific task. Every
action, that reacts to any event or is executed by any dialog object, can be connected to any
character string that is entered.

Dialog Description Files These files are used to parse a dialog description at runtime. They
provide rapid prototyping to PENGUIN and simplify development of dialog hierarchies.

All interfaces provided by PENGUIN, e.g. interfaces to dialog objects, events, control ele-
ments, or actions, only offer methods using reference pointers [Fis95a]®> whenever pointers to
PENGUIN objects are used. The use of reference pointers ensures that all objects live exactly as
long as they are used without requiring a complex management by the application programmer.

2.1 Control Elements

All user interface systems need some global control mechanisms. It is standard that an appli-
cation transfers program control to the user interface system by calling a special function after
initializing the interface and defining the necessary* dialog objects. This function keeps control
of the program, either until the program ends or until control is explicitly transferred back to
the application (this is possible in some user interface systems). Inside the function events are
collected (e.g. from the underlying window system) and forwarded to the dialog objects in one
way or another. In PENGUIN, this functionality is completely encapsulated in class z_Penguin.
This class contains all available control elements. It is the only class in PENGUIN that con-
tains system dependent parts. To simplify the structure of the class, the system dependent parts
have not been encapsulated inside the class or moved to a special class. The easy portability
of PENGUIN is obtained by implementing all system specific methods in special files (one for
each system).

Class t_Penguin is responsible for creating, deleting, showing, and hiding of windows. It
manages lists of hotstrings. A hotstring is a sequence of characters, i.e. a character array, that
is used to execute an action. It is similar to hotkeys, but the use of more than one character

3A special design for reference pointers guarantees that no overhead or complicated or unpleasant usage is
forced on the application programmer.

“Either all dialog objects used throughout the application or only a subset, e.g. top level dialog objects, depend-
ing on the system.

125

enables direct access to all available actions, using a long name to globally access an action and
a short name, e.g. only one character, to access actions in the current scope. Class t_Penguin
redraws the windows and reinitializes the dialog objects if necessary (e.g. after resize events).
It receives events from the system (e.g. events from X Window) and events sent with method
sendEvent() and dispatches the events to the dialog objects. It offers methods to flush the event
queue (i.e. to delete all outstanding events) up to an event of a special type or to deliver events
only to a special dialog object. It provides access to the parser for dialog description files and
registers parsing functions defined at runtime (see section 2.5). It enables applications to access
windows and instances of class t_Cgi [FF93] opened by PENGUIN and the hierarchy of dialog
objects for every window. It provides some information that is global to PENGUIN, e.g. a
minimum and maximum font size requested by the user.

In every application, the first step to use PENGUIN is to instantiate class ¢ Penguin. To
ensure that only one instance of class t_Penguin is active at any time, only private constructors
are provided. The user must use the static method instance() to instantiate the class and/or to
get a pointer to the actual instance. Afterwards the application builds up a hierarchy of dialog
objects (of course, this hierarchy can be changed at any time). This can be done by either
directly instantiating the dialog objects or by using dialog description files. Then method run()
of class t_Penguin is called to start collection and dispatching of events. When method run()
returns, most applications clean up memory and exit. Of course it is possible to restart event
handling any number of times.

2.2 Events

Events describe an action that has taken place, e.g. that a key has been pressed on the keyboard,
or an action that should take place, e.g. an event defined and sent by an application program-
mer can invoke a special dialog object. A common interface for all events is defined in base
class t_EventBase. It defines two methods used by PENGUIN to dispatch the events to the di-
alog objects. The methods describe the window and the position inside the window where the
event took place. These two pieces of information are meaningful for all events created by the
user, e.g. mouse or keyboard input. They might not be meaningful for events defined in the
application, though the application routine can also provide a valid window id and position in
the window to speed up event distribution. The application programmer must ensure that the
window and position of an event created and sent by the program are recognized by the dialog
object that shall handle the event. Newly defined dialog objects are free to accept events of
any type that occur inside or outside their active area. The reason to provide the window and
position in the base class is that most dialog objects react to user input and are only interested in
events that took place inside their active area. This is used by PENGUIN. It optimizes dispatch-
ing of the events by first delivering them to the window they occurred in and provides a default
implementation that rejects events outside the active area of a dialog object in the base class for
dialog objects. The base class provides another method that is intended to store the state of the
modifier keys (e.g. shift, alt, and control) on the keyboard at the time the event was created.

t RtiRef —— t_EventBase

4/\..

t_EventKeyboard t_EventMouse
t_EventKeyboardPress t_EventKeyboardRelease t_EventMouseMomventMouseRelease
t_EventMousePress t_EventMouseDrag

Figure 1: Class hierarchy showing classes derived from class t_EventBase.

126

Classes t_EventMouse and t_EventKeyboard are derived from class t_EventBase. They are
designed to handle input events generated by the user (though events of these classes can also be
created and sent by the application). Class ¢_EventMouse provides the information which but-
ton has most recently been changed and which status all buttons have after this change. Class
t_EventKeyboard provides a character string describing the key that was pressed. This can ei-
ther be a single character or (for special keys) a string, e.g. “enter”. Derived from these classes
are classes t_EventMouseMove, t_EventMousePress, t_EventMouseDrag, t_EventMouseRelease,
t_EventKeyboardPress, and t_EventKeyboardRelease. Depending on the type of event that oc-
curred the corresponding derived class is instantiated. The application can access the type with
runtime type information [Fis95b]. Figure 1 shows the complete class hierarchy derived from
class t_EventBase.

2.3 Dialog Objects

Until now only elements of PENGUIN have been discussed that are invisible to the user of an
application. This section focuses on the interface between the application and the user. The
interface consists of objects, called dialog objects, which provide information to the user, e.g. a
text output, and/or provide a possibility for input, e.g. a button.

t_RtiRef — t_DlalogObJectBaSC\

tIdle \ § t_UseEvent
t_DialogObject

t_ButtonBase t_TextInput —» t_FileChooser

t_Button t.CgiGlyph t_Text
t_ButtonSelect t_Glue t_ScrollBarBase t_ScrollBar
0x

t_.CheckB t_PointInfo* t_PolyObject EE t_ScrollBarRange
t_ClickBox t_ScrollBarRangeValue

t Frame t_Slider3DGrid

t_Menu 7 t_ListObject t.Slider
- t-Menultem t-Selection
t System t_Slider2D

t_PolyObjectRearrange
t_Slider2DGrid ;

t_Slider3D

Figure 2: Class hierarchy showing classes derived from class t_DialogObjectBase. *) Class
t_PointInfo is also derived from class t_Action.

Class t_DialogObjectBase defines the basic interface for all dialog objects. To keep the
system open for improvements and extensions, this class defines only a minimal set of methods
all dialog objects must support. All dialog objects focused on user input are derived from the
subclass t_DialogObject. Direct use of class t_DialogObjectBase is only necessary to enlarge
the functionality of PENGUIN with dialog objects that do not react to user input. It offers
methods for redrawing of the dialog object, reactions to focus changes, dispatching of events,
and coordinate mapping from a window position to a position inside a dialog object. Class
t_DialogObject implements all abstract methods from class t_DialogObjectBase. It enhances
the functionality of the base class by defining methods corresponding to all input events and
by defining some colors to encourage designers of dialog objects to use only a limited number
of different colors. The usage of predefined colors optimizes color management and reduces
the number of similar but different colors. Figure 2 shows the class hierarchy derived from
class t_DialogObjectBase. The underlying graphics library used for drawing is CGI** [FF93].
It provides a portable graphics interface offering the complete functionality defined in CGI

[ISO91].

A hierarchy of dialog objects is a tree where any node has an unlimited number of chil-
dren, which can be nodes or leafs. The root of the tree is an instance of class t_PolyObject or
of class t_PolyObjectRearrange, which is automatically created when the window for the hi-
erarchy is created. The application programmer can choose whether class ¢_PolyObject or the
derived class t_PolyObjectRearrange is used. Class t_PolyObject uses exactly the geometrical
specifications of its children without respect to minimum or maximum size restrictions. Class
t_PolyObjectRearrange adapts the specifications of its children to find a best matching graphical
layout for the children. This includes resizing and moving of children relative to each other to
meet size restrictions. There is no restriction on the position of dialog objects inside the tree ex-
cept for objects that cannot be used as nodes. This introduces some new aspects to the design of
dialog hierarchies, e.g. the possibility to insert checkboxes or sliders directly into menus. This
minimizes the amount of work necessary for the user of an application to look up or change
objects.

2.4 Actions

Dialog objects must access application specific functions to perform their tasks, €.g. a button
labeled ”quit” must somehow be connected to a function that ends the application. The inter-
face to these functions is provided in class t_Action. Note that PENGUIN does not use global
callback functions for this task but defines a clean interface. Class t_Action provides a virtual
method execute() that is called when the action is triggered. This method is overloaded in de-
rived classes to implement an application specific action. Depending on the application there
are three basic approaches for the design of actions. The first is to derive a class from class
t_Action for every action that is defined thus creating many different classes. This is impracti-
cal for actions that are closely connected. The second approach is to design a class hierarchy
that is derived from class ¢ Action. An interface between actions that are closely connected is
implemented in a base class (maybe as static members) and special actions are derived from
both classes. Alternatively, method execute() can be used to switch between different actions.
The third approach is used if one class, e.g. named ApplicationClass, exists that is instantiated
only a few times and that defines methods that must be executed by an action. For this task,
only one class is derived from class #_Action, which is passed a pointer to an instance of class
ApplicationClass and a pointer to a method in class ApplicationClass when it is constructed. It
overloads method execute() to call the method for the instance of class ApplicationClass. The
class derived from class ¢t_Action is instantiated once for every instance of class Application-
Class and every method inside the class that must be accessed.

Method execute() accepts a pointer to the dialog object that invoked the action as the only pa-
rameter. This pointer is provided to access special information kept in the dialog object, e.g. the
value of a slider. To access the functionality offered from the dialog object, runtime type infor-
mation is used to convert the passed pointer to a class derived from class t_DialogObjectBase.
This concept enables an action, which is part of an application, to access information available
in a dialog object specially designed for that application. Class t_Action also provides methods
to automatically register a name for the action in the parser. This is used to access the action
from dialog description files (see the next section).

2.5 Dialog Description Files

To allow rapid development of applications and to loosen the connection between the graphical
appearance of the user interface and the application functions that implement a specific behavior
of the program a parser has been defined that allows definition of dialog objects (a complete
hierarchy or only part of it) at runtime. The parser, which is based on the tool PCCTS [Par95],
reads dialog description files and creates corresponding PENGUIN objects.

*128

The parser simplifies the usage of PENGUIN. It provides the possibility to dynamically
change the user interface without any modification of existing code. The dialog description files
can contain complete dialog hierarchies. Any number of description files can be read in. They
may add to existing dialog hierarchies or may overwrite or change them. Therefore it is simple
to provide special user interfaces to different users, e.g. interfaces for professional users or for
beginners, or to adapt the language of the interfaces. Any user can adapt the interface to special
needs by changing the description files. The dialog objects used do not depend on objects used
in the application®, therefore the user is free to use any convenient dialog object. The only
restriction is that the used dialog objects must be linked to the application. It is sufficient to
create a new dialog object and link it to the application if the functionality or visible output
of the existing dialog objects is not convenient for an application. Absolutely no changes in
existing code are necessary. In particular, the application programmer is not forced to change
any event loop to process events for or from a new object or to assign unique identifiers to any
objects, neither identifiers for classes nor identifiers for instances of classes. Such identifiers
are used in almost all available UIMS. The user is also free to reorder the dialog hierarchy or to
insert dialog objects in more than one place in the hierarchy. This is supported by PENGUIN
because the decision whether dialog hierarchies should be orthogonal or not must be made by
the application programmer or by the user and not by the UIMS.

The syntax of the parser can be enlarged without modification of existing code. To use this
feature, every new object must register a function that reads in the new object in the parser at
startup. The underlying idea is described in detail in section 3.2.

The experiences with PENGUIN show that the instantiation of dialog hierarchies at runtime
using a parser and clear text encoded description files is sufficiently fast. For small dialog
hierarchies, e.g. menues, no delay is visible.

3 Enlarging the Functionality

No matter how many dialog objects a UIMS provides, there will always be a special func-
tionality some applications desire that is not available. Therefore an easy and straightforward
extensibility is a necessity for every UIMS (though most UIMS are hardly extensible).

There are several ways to enlarge the functionality of PENGUIN. The next section describes
the easiest possible extension, which is to add a new optical appearance but no additional func-
tionality to existing dialog objects. The second section describes what is necessary to register a
new object in the parser.

3.1 Optical Changes

Suppose a new optical appearance for a button should be created. To achieve this goal, a new
class is derived from class t_ButtonBase, called t_MyButton. Only three methods are defined for
the new class: the constructor, the assignment operator, and the drawing method. The class is
defined as follows®.

class t_MyButton: public t_ButtonBase

{
public:
t_MyButton (...);
t_MyButton& operator = (const t_MyButton& button);
) virtual t_Bool draw (const t_2DVector& lower, const t_2DVector& upper);

SOf course, if the application requires the dialog object to provide an argument, e.g. a text string, a dialog object
derived from a corresponding class must be used.

6The code provided is shortened. For a complete example look at the source code of PENGUIN, e.g. the
definition of class ¢_Button.

129

The implementation of the constructor and the assignment operator is trivial. Method draw()
defines the desired optical appearance. For this task the complete functionality of CGI*t is
available. The virtual device coordinates and clipping region can be adapted for each object by
calling method draw() of its base class. Thus the call z_ButtonBase: :draw(lower, upper) adapts
the virtual device coordinates so that the lower left corner of the object has coordinates (0,0) and
the upper right corner of the object has coordinates (1,1). The clipping region is restricted to
the intersection of drawing area of this object and the clipping region inherited from the dialog
hierarchy to ensure that no other object is painted over.

t_Bool t_MyButton::draw (const t_2DVector& lower, const t_2DVectorg upper)

if ('t_ButtonBase::draw(lower,upper)) { return False; }

// ... somehow draw the button ... maybe only draw the label ...
label()->draw(cgi(),t_2DVector(0,0) ,t_2DVector (1,1));

return True;

3.2 New Parser Functionality

The new class t_MyButton, created in the last section, can only be used if it is instantiated inside
the program. It cannot be used in a dialog description file. To achieve this, some more efforts
are necessary.

The functionality of the parser can be divided in two parts. Basic functionality, e.g. reading
of real numbers or vectors, calculations, or definition and reference of variables, is done invisi-
ble for the application programmer. The second part is responsible for the creation of complex
objects. The objects must be derived from class t_RtiRef since runtime type information [Fis95b]
and reference pointers [Fis95a] are used to access the objects. Complex objects are created with
a function call syntax. The input ‘button (a, b, c, d, e);’ first creates objects a to e” and than
creates object button with parameters a to e. The syntax accepted by the parser for the definition
of complex objects is defined at startup and may be changed at any time by registering or re-
moving functions (or static methods) that are able to read in new objects. This concept enables
an application programmer to include new objects in an application without any modification of
existing code, neither in PENGUIN nor in the application itself. This is important to simplify
the definition of new objects, to protect investments in software development since no source
code must be supplied, and to integrate extensions provided by different programmers since no
changes must be adjusted. It is sufficient to link the application with the object files defining
the new dialog objects to instantiate the new object from a dialog description file. Though the
possibility to register functions in the parser was originally included in PENGUIN to provide an
easy way for an application programmer to use new objects in dialog description files without
enlarging the syntax accepted by the parser in an existing parser definition file, the functions
can also be used to change existing objects instead of creating new objects®. Normally, all func-
tions are registered at startup to be available before the first dialog description file is read in.
To register a parse function, a struct must be passed to the parser that contains the following
information:
¢ A name for the object to be matched.
¢ The minimum and maximum number of parameters for the parse function.

e A pointer to a function that creates (or modifies) the object from an array of parameters.

e A list of parameter types, i.e. an array of length ‘maximum number of parameters’ that con-
tains runtime type information for the expected parameters.

o A list of parameter descriptions, i.e. an array of length ‘maximum number of parameters’ that
can be used as an explanation of the parameters when dialog objects are created interactively.

"These objects can be any kind of object, e.g. variable references or complex objects.
8 As an example, function min() sets the minimal size for a dialog object passed as a parameter and returns the
object.

130

P

4 Sample Programs
4.1 A Test Application to Instanciate a Dialog Description File

The first example program reads in a dialog description file and runs the menu defined in the
description file. No application specific actions are defined in the program. It reads in it’s
only parameter, the name of a dialog description file®, instanciates PENGUIN, defines a parser
variable (‘root’), parses the file, adds the parser variable to the main PENGUIN polyobject, and
runs the dialog.

#include <stdlib.h>
tinclude “penguin.hh"
tinclude "pendobj.hh"

int main (int argc, charx* argv)

const char* name = "mytest.pen";
if (arge==2) { name = *++argv; }
else if (argc >2) { cout << "Parameters: [filename.pen]" << endl; exit(1); }

t_Penguin* ctrl = t_Penguin::instance(t_2DintVector(400,300),"PENGUIN DEMO") ;
t_DialogObjectBasePtr p = NULL;
ctrl->defineParserVar("root",&p);

ctrl->parse (name) ;
ctrl->mainPolyObject (ctrl->mainCgi())->addSon(p);
ctrl->run (False);

t_Penguin::deleteAllInstances();
return 0;

4.2 A Complex Description File

The second example shows an extract from a dialog description file used for the 3D rendering
toolkit MRT, developed at the University of Bonn [Fel96]. Only a short extract is shown to pro-
vide an idea how complex menus can be defined. The complete code would need a description
of the MRT that would go beyond the scope of this paper. One part of the menu is visible in
figure 3.

The following dialog definition file creates a small part of the menu. First the dialog objects
for menu preview are created. They are four buttons, named wireframe, phong, gouraud, and
flat, two checkboxes, named texture and planar, and a slider, named trianQual. For example,
each of the buttons is created with an offset, a size, a label, an action, and a hotstring. Note
that the size for the buttons is saved in a variable bSize and that the offset is created by a
multiplication of variable size and a position. These objects are inserted in menu preview.
Menu preview is accessed as a submenu from menu item previewl. This menu item is inserted
in menu view together with two buttons raytrace and radiosity. Menu view is accessed as a
submenu from menu item viewl. viewl is inserted into a polyobject that is assigned to variable
mainMenu (other objects to be inserted in this object are indicated with an ellipses notation).
This variable, that is defined in the application, returns the complete menu to the application.

size =1./7.;

bSize = (1.,0+size);

wireframe = button ((.0,0%*size),bSize,label("Wireframe") JAwireframe,"w");

phong = button ((.0,1*size),bSize,label("Phong") ,Aphong P
gouraud = button ((.0,2*size),bSize,label("Gouraud") ,Agouraud ,"g");

flat = button ((.0,3xsize),bSize,label("Flat") ,Aflat LY
texture = checkbox ((.0,4*size),bSize,label("Texture") ,Atexture ,"t");
trianQual = slider ((.0,5%size),bSize,"Triangulation Quality",.0,0-.5,0.5,.1,AtriangQual);

9Note that the description file must define variable (‘root’) for this simple example to work.

131

planar = checkbox ((.0,6%size),bSize,label("No planar refinement"),Aplanar ,"n");

preview = menu ((.3,.05/size),1,0,p1anar,trian0ua1,texture,flat,gouraud,phong,wireframe);
size =1./3.;

bSize = (1.,0+size);

previewl = mitem ((.0,2%size) ,bSize,label ("Preview"),2,preview,"P" ,Apre);
raytrace = button ((.0,1*size),bSize,label("Raytrace") ,Aray ,"R");
radiosity = button ((.0,0*size),bSize,label("Radiosity"),Aradi,"0");
view = menu ((.3,.05/size),1,0,previewI,raytrace,radiosity);

viewl = mitem ((.33,.0),(.33,1.),label("View"),1,view);
mainMenu = polyobject ((.0,.86),(1.,.08),viewl,...);

5 Experiences with PENGUIN

Experiences with PENGUIN are rare at the time being. Until now it has only been used for
projects inside the graphics group. Besides test and demonstration programs it has been used
in a few student projects. Two applications are worth mentioning: The first is the 3D rendering
toolkit whose dialog definition file was partially shown in section 4.2. A picture of it is presented
in figure 3. The second is a 3D editor, which has been developed by one of the students,
B. Hermes, that simplifies definition of scenes for the 3D rendering toolkit. Figure 4 shows a
screen dump of the editor. The experiences with these applications show that the design goals
of PENGUIN have been reached. The time needed to learn how PENGUIN is used and how
its functionality can be extended (if this is necessary) is quite small. Students were able to start
working on their real project within the first week of using PENGUIN.

6 Availability of the Software

PENGUIN is available for UNIX (Silicon Graphics and SUN), LINUX, Microsoft Windows
NT, and Microsoft Windows 95. Details on how to get the software by anonymous ftp can be
obtained from URL http://hyperg.cs.uni-bonn.de/CompGraph.

References

[Fel96] FELLNER D. W.: Extensible image synthesis. In Object-Oriented and Mixed Pro-

gramming Paradigms, Wisskirchen P., (Ed.), Focus on Computer Graphics. Springer,
Feb. 1996, pp. 7-21.

[FF93] FELLNER D. W., FISCHER M.: CGI** — A 2D Graphics Interface Based on CGI.
Tech. Rep. IAI-TR-93-9, University of Bonn, Dept. of Computer Science, Bonn, Ger-
many, Aug. 1993.

[Fis95a] FISCHER M.: Reference Pointers for Class Hierarchies. Tech. Rep. IAI-TR-95-12,
University of Bonn, Dept. of Computer Science, Bonn, Germany, Aug. 1995.

[Fis95b] FISCHER M.: Runtime Type Information for Class Hierarchies. Tech. Rep. IAI-TR-
95-11, University of Bonn, Dept. of Computer Science, Bonn, Germany, July 1995.

[Fis96] FISCHER M.: Software Architectures in Computer Graphics. PhD thesis, University
of Bonn, Dept. of Computer Science, July 1996.

[ISO91] ISO: Information Processing Systems — Computer Graphics — Interfacing tech-
niques for dialogues with graphical devices (CGI), Part 1-6, 1S 9636, Dec. 1991.

[Par95] PARR, JOHN TERENCE: Language Translation Using PCCTS and C** (A Reference
Guide). Parr Research Corporation, June 1995.

132

Figure 4: Screen dump of a 3D editor using PENGUIN by B. Hermes.

133

