On the Expected Number of Common Edges in
Delaunay and Greedy triangulation

Han-Gue, Cho”

Abstract

So far some average-case properties in the Delaunay and greedy triangula-
tion were given by complicated probabilistic analysis. In this paper, we present
a rather simpler proof on that the expected number of common edges between
Delaunay and Greedy triangulation is at least 40% when points are uniformly
distributed, where n is the number points in a convex planar region.

Our analysis shows that the value ¢ of o(c-n) expected number of common
edges between two triangulations is greater than 1.26. That constant ¢ = 1.26
implies that at least 40% of Delaunay edges are common to the edges of Greedy
triangulation. Applying this property, we can easily find at least 1.26n greedy
edges in linear time from a Delaunay triangulation, if points are uniformly
distributed in a region.

Finally we give two experimental results showing that in practice ¢ ap-
proaches up to 2.7, which means about 90% edges are common between two
triangulations.
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1 Introduction

Computing a “good” triangulation is a long standing problem in computational geom-
etry. For the optimal triangulation with various objective functions, lots of heuristic
triangulation algorithms have been developed [4, 5, 8].

Among these various triangulations, there are two well-known triangulations,
which are greedy triangulation and Delaunay triangulation. Since algorithms for
those triangulations are relatively easy to understand and simple to implement, two
triangulations are used as an initial solution to be refined for the final optimal mini-
mum weight triangulation. ‘

The greedy triangulation inserts edges one by one by the increasing length of
the edge from a shortest one. If the inserted edge does not break the triangulation
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constraint, it is added in on-constructing triangulation. Otherwise it is discarded and
the next longest edge is considered. And the Delaunay triangulation is generated from
a dual of the Voronoi diagram for a given point set easily in o(nlogn) time.

Till now a lot of works were done on these two triangulation in the aspect of
geometric property, algorithm complexity, the approximation ratio to the minimum
total edge weight and so on. Also some general and extremal stochastic properties
on the Delaunay triangulation were given assuming that the points are distributed
on the unit-intensity Poisson process [1, 6].

In this paper we will give a proof for that there are at least 1.26n common edges
for two triangulations for a given uniformly distributed point set in the plane. The
fact that o(n) edges are common in two triangulations can be proved by using a
rigorous probabilistic [1, 2].

The first result on the common edges in two different triangulations is found
in [7]. He proved that if n points are chosen with a Poisson process distribution,
then the expected fraction of reciprocal pairs is 67/(87 + 3(3)}/?) ~ 0.6215. The
reciprocal pair of point set is defined as a pair, (a, b), satisfying symmetrical nearest
neighbor relation such that a and b is the nearest neighbor of b and a, respectively.
Since if there is any segment which crosses (a,b) and that is shorter than the length
of (a,b) then that point would be the nearest neighbor of a or b, it is easy to see the
segment connecting a reciprocal pair points should be an edge of greedy triangulation
with that point set. According to his analysis, we can say at least 10% (= 0.32n) of
Delaunay edges are common to greedy edges, since every edge connecting a reciprocal
pair must be included in Delaunay edges.

At first we will show that at least 30% edges of Delaunay edges are expected
to be common to the greedy edge set. The value 30 % implies that among 3n — 6
edges about 1.0n edges are common in two triangulations. Applying this strong
commonness between two triangulations, we can find o(1.2n) greedy edges in linear
time from a given Delaunay triangulation.

Since ref.[2] have given an algorithm finding Delaunay triangulation in linear
time expected with uniformly distributed points in a unit square, combining this
algorithm to our proposed algorithm makes it possible to get a linear time expected
algorithm for greedy triangulation. Though there has been other linear time expected
algorithm for greedy triangulation with uniform point set[3], we believe our algorithm
is straightforward and easy to implement.

In final section we give two experimental results for the number of common
edges between two triangulations with more than 100 points in a square. A little
surprisingly about 90% of edges are common in two triangulation, which proposes an
interesting conjecture, that is, Delaunay triangulation has at least n common edges
to the greedy triangulation with every planar point set.
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2 Expected number of common edges

Let S be a convex region and P be a point set uniformly distributed on S. Let
the number of points in P be n, that is |P| = n. In the following we assume that
points are uniformly distributed on that region S. Let Ep(A) and area(A) denote
the expected number of points in region A and the area of region A, respectively.

This assumption of the uniform distribution implies that the expected number
of points located in any sampled region A over S is estimated as follows.

area(AN S)

Ep(A)=n- area(S)

If the convex hull has o(n) edges, then simply those convex hull edges are included in
both greedy and Delaunay triangulations, which gives a trivial proof on o(n) common
edges. So we assume that the number of convex hull edges is constant or sub-linear.
For the simplicity of the proof procedure we assume that the number of convex hull
edges is constant. If the number of convex hull edges is sub-linear, then the proof for
this case would be obtained in a similar way of the following procedure.

Let DT(S) and GT(S) denote the Delaunay triangulation and greedy triangu-
lation, respectively from P on S. Also we denote each triangle as T; in DTs and
its circumscribed circle as C;. Consider one triangle T; in DT'(S) in Fig.1. Let a b,
c denote the three vertices of T;. (a,b) and |(a,b)| denotes the edge and its length,
respectively. o; is the center point of C;. And let d; denote the diameter of C}, that
is d; = |(0i,a)|. For the following proof procedure, we need to construct one extra
enlarged circle from C;, which will be denoted as EC;. The center point of EC; is o;
same to C; and its diameter is extended as follows.

At first, we take the shortest edge in the three edges of T;. Without loss of
generality we assume that (a,b) is the shortest one in the Fig. 1. Then we move
that line (a, b) in parallel to the outside of the circle C; till the middle point of (a, b),
that is m;, just encounter with C;. Let z and y be the end points of the line segment
which was moved from (a, b) parallel to the direction (o,m )

Therefore we get another circle EC; of a slightly extended diameter with length
|(0i, z)| compared to d; = |(0;, a)|. Notice that |(o;,z)| = |(0;,y)|- And now we have
another geometric object “annulus” between E; and EC;, denoted as A; = EC; — C;.

Lemma 1 If there is no point in A;, then edge (a,b) is one edge of greedy triangu-
lation with the point set P.

Proof: Greedy triangulation procedure considers an edge at a time by examining
each pair in order of length and adding or discarding it based on its compatibility
with the edges already added[8, 5]. Thus for an edge (a, b), if there is no line segment
which is shorter than (a, b) and crosses (a, b), then (a, b) should be included in greedy
triangulation edges, since when (a,b) is considered by the greedy procedure, there
would be no blocking line segment of (a, b).
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Fig.1: One Delaunay triangule Aabc Fig.2: (u,v) is a greedy edge since no line
and its corresponding enlarged circle. ~ segment shorter than (u,v) cuts this edge.

There would be two cases that some line segments crosses (a,b) in Fig. 1. One
case is that two points outside A; blocks (a,b), and another case is that one point is
of inside EC; and the other point is of outside FC;. Then by the property of EC;
which was enlarged from C;, the shortest length of the line segment whose end points
are outside of EC; and which crosses over any points in C;, that is the edge (a,b),
should be greater than |(a, b)|.

Let’s consider the other case. Assume that there is an edge (z,y), where z is
outside of EC; and y is in C;, and it crosses over edge (a, b). Since (a, b) is the shortest
edge in three edges of T;, y must be point c in C;. Also if (¢, x) intersects (a,b) for =
outside EC;, then |(c, z)| > |(a, )|, since |(c,a)| > |(a,d)| and |(c, b)| > |(a, b)|.

Therefore there is no shorter line segment than |(a, )|, and which crosses over
(a,b). This completes the proof of this lemma. O

Therefore if we find that the region A; is empty, then (a, b) must be one of greedy
edges. However we do not have to examine the whole region of A; to assure that (a, b)
is a greedy edge. For this we define another subregion, called “forbidden region” to
guarantee (a,b) as one Delaunay edge.

For an Delaunay edge (u,v), if some associated region which surrounds (u,v) is
large enough, then we can expect that (u,v) also could be an greedy edge, since the
abundant surrounding region to (u,v) may exclude all crossing line segments which
could be shorter than |(u,v)|.

As was shown in Fig.2, if there is no point in the circle containing edge (u,v)
except u,v, then we can easily see that (u,v) must be included in the greedy edge
set. Here now we raise one question, that is how we can find the empty region to
guarantee one greedy edge and how much that empty region is needed to do so. We
call such an empty surrounding region to guarantee (a,b) to be a greedy edge as
forbidden region of edge (a,b). So the main point of our proof is reduced to find the
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smallest forbidden region for (a,b) in general case. Though we could not give the
minimal(optimal) forbidden region for (e, b) in this paper, we can give one relatively
small forbidden region with respect to the area of T;.

Definition 2.1 Let T; be one of triangles in a Delaunay triangulation and (a,b) be
the shortest edge in T; and m is the mid point of (a,b). And let point p and g be on
C; with |(p,a)| = |(g,b)] =1 and p # b, ¢ # a and p # q. Then one forbidden region
of (a,b) in T;, denoted as FR; is the angular sector of annulus Ai(= EC; — C;) with
angle /po;q = 3 - Lao;b.

In Fig.3 our forbidden region F'R; is illustrated as slashed region. Now we give
one corollary on a property of F'R; by Lemma 1.

Corollary 1 If there is no point in the forbidden region FR; of T;, the shortest edge
(a,b) of T; must be included in greedy edges. And if C; is a unit circle and Lao;b = 20,
then we get the function of area(F R;) in terms of the half of central angle Laoym = 0
as follows.

frr(0) = area(FR;) = area(A;) - %0% = 3.-0-sin% O

The proof of this corollary is similar to the proof of Lemma 1. Suppose that
there is an edge (z,y) which is shorter than (a, b) and it crosses (a,b). Then its one
vertex, namely z, must be in A; and is within the distance |(a, b)| from a or b. So if
we want to search such z in A;, we do not have to examine the whole region of A;.
Thus it is enough to search only some partial region of A;.

For frr(9), let Lao;m = Lmo;b = 0, then examining 6-0/(2- 7) part of area(A;)
is enough region to search z. Since [(p,a)| = |(a,b)] = |(b,q)], it is easy to see
area(FR;) = area(A;) - 36/, which can be verified easily in Fig. 3. However one
more careful observation would show that we can get smaller "forbidden region” than
area(FR;). That smaller region’s angular sector is denoted as ¢ in Fig. 3, which is
smaller angle than 36.

It is easy to see that (ui,u2) is the shortest line segment which connects two
points outside EC; with crossing (a, b). Thus as was illustrated in Fig. 3, the angular
sector A; with angle of 2 - Luz0;a + 6 also can be used another forbidden region
which has smaller area than area(F R;). However, we do not consider this smaller
forbidden region for simplicity of analysis. We hope if more complicated analysis is
possible to find smaller forbidden region, then we can see more common edges in two
triangulations.

This concept of forbidden region raises one interesting question, “what is the
optimal(=minimal area) forbidden region to guarantee (a, b) to be included in greedy
edge 77 If we move EC; slightly with parallel to (a,b), then we find another smaller,
but irregular shaped forbidden region than our F'R; with the 36 angular sector of
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EC; \ '
Fig. 3. The forbidden region FR; of T; Fig. 4. Computing average value of r;

EC;. We hope more careful analysis would get the minimal area for the forbidden
region of (a,b), which would be helpful to expect more higher fraction of common
edges in two triangulations.

Since the number of common edges in greedy and Delaunay triangulation is
related to the number of points in each forbidden region, now we are required to
estimate the expected number of points in each forbidden region. For this we consider
firstly the total sum of the each area of forbidden regions F'R; of T;, formally saying
U;FR;. We hope to compute the expected ratio of area(F R;) to area(T;). But here
we can not estimate area(T;) exactly, since we only know about the smallest angle.
Thus we substitute the area(T;) as the smallest area in all possible T; with preserving
that (a,b) is the smallest edge of T;. Thus as shown in Fig. 4, ¢, only moves on circle
C; from ¢, to d. Minimal area, min(T;), is defined as following.

min(7;) = 2sin?0 - sin(26)

So let us define one another variable r; = area(FR;)/min(T;) for all :. To
calculate the average of r; we have to integrate r; assuming that Zacb is minimum,
which is one of conditional probability.

If points are uniformly distributed in P, it is known already that any two angles
of T; has a joint distribution function {7]. That probability density function of two
arbitrary angles a, # in an arbitrary triangle of a Delaunay triangulation is

fla,B) = :—?—sina-sinﬂ- sin(a+p), a>20, 20, a+p< .
T
So the density function of a random Delaunay angle can be obtained by inte-
grating f(a, ) over § then it is

Asi
fla) = S;ZQ (stna + (r — a)cosa), 0L a<m.
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By the following lemma we compute the average value of r;.

Lemma 2 If points are uniformly distributed in any 2-dimensional convezr region,
then the expected value of ratio R; = area(F R;)/area(T;) is greater than 1.112.

Proof: This lemma implies that it holds area(T;) > 1.112-area(F R;) for average
case. We can compute the average value of r; for all ¢ since it is easy to see

area(FR,) < area(FR;)
area(T;) min(T;) -

Thus the average value of r; is calculated as followings.

. _ 1 /3 area(F R;)
"= (fé’/3f(0) ) L iy 10

1 3 frr(6)
- k_o'/o 25in?0 - sin(20) f(0) 40

1 3 30 ]
= —_— — d — L .

B h T sinzy IO @ (55288) @559
1.112

Q

, where constant kg is calculated as follows.

n/3
/0 £(6) do
=r/3
o + 4t — 2mcos(2t) + 2tcos(2t) — 3sin(2t)) ]
t=0

—2— -\/—— ~ 0.5288
3 A4r

ko

Thus by Lemma 2, we can compute the expected number of points located in
each forbidden region, and the expected number of empty forbidden region.

Lemma 3 If points are uniformly distributed in the 2 dimensional convezr region,
then the expected number of points located in F'R; is less than 0.555.

Proof: Let S be point set on P convex polygon and k be the number of triangles
in DT(S). We get the sum of all area(FR;) for all 7 to estimate the number of points
located in all F'R; region.

If the number of convex hull edges is c,, then we prepare one extra point to each
convex hull edge to make pseudo-face of DT(S). In adding one extra point for each
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edge, we add it so far away for each convex hull edge to get area(F R;) of that pseudo
face approaches 0 since each convex edge ought to be included in greedy edges. By
this adding procedure, we can get exactly 2n number of faces of DT'(S) consisting of
real-faces and pseudo-faces.

If FR; is not enclosed we only need to consider the intersected area between F R;
and Conv(P), since the outside of Conv(P) has no points which do not effect the
following analysis. Lemma 2 shows that the average ratio of area(F R;) to area(T;)
is less than 1.112, so we get the following.

k k
A, = > area(Conv(P)NFR;) < ) area(FR;)

i=1 =1

IA

k
> 1.112 - area(T;) by Lemma 3

=1

< 1112 (f: area(T}) = area(Conv(P)))

=1

Above calculation shows that the total sum of area(FR;) is less than 1.112 -
area(S). Note that each FR; is not mutually disjoint. Thus the expected total
number of points located in each F'R; is estimated 1.112-n by the uniformity of point
distribution. Therefore Ep(F R;), the expected number of points in each FR; is less
than

1.112-n
The number of faces in DT(S)
1.112

The number of real faces
< 0.555 O

i

Ep(F R;)

Lemma 3 implies that there must be at least 0.899 empty F R; by the pigeon-hall
principle. If the number of points which are located in each FR; is nearly equal to
each other, we can expect the number of empty FR; is at least 0.899. Thus we can
say the probability of empty F'R; is at least 0.445.

But in practice some bigger F'R; is expected to have more points than a smaller
FR;, so the expected number of empty F'R; would increase. If we assume that each
FR; is nearly same size and 1.112 points are uniformly distributed and 20 > noo then
we know Prob[Ep(F R;) = 0], the probability that a F'R; excludes point is given.

1 1 0.555
0.5697 < ProblEp(FR) =0] = (1— )" w (E) ~ 0.574

So the total expected number of empty F'R; would be 2-0.569 = 1.138. However
since above analysis is too crude, so some more exact analysis is needed to get a more
accurate value for the expected number of empty F'R;.




Now we give another procedure for finding the common edge, also we will show
that procedure will give about 1.26n common edges. This argument is based on the
angle of each T;.

Definition 2.2 Let S be a point set in 2 dimensional plane P. Let (z,y) be an edge
which is shared by two different, adjacent triangles Azyu and Azyv. Then we call
Lzuy is a facing angle of Lzvy and vice versa. And those two angles are called a pair
of facing angles with (z,y). And (z,y) is called the common edge of the facing Lzuy
and Lzvy.

Intuitively we can see that if an Delaunay edge is relatively small, it is more
likely to be included a greedy edge. Thus we give one characterization on that if
the common edge of a pair of facing angles could be an greedy edge in a Delaunay
triangulation.

Lemma 4 Suppose that p is a facing angle of q with respect to edge (x,y) in DT(S).
Ifp <7/3 and ¢ < ™ — p/2 then (z,y) is one of greedy edge. If /3 < p < 7/2 and
q < 27 — 2p then (z,y) is also a greedy edge.

Here we give our first result on the number of common edges between GT'(S)
and DT(S) by the moving the shortest edge of T; explained above.

Theorem 1 If points S are uniformly distributed in any convez region, then at least
1.26n of Delaunay edges are expected to be common to the edges greedy triangulation
with the same point set.

Proof:(sketch) We take the shortest edge of each T}, which is called (a;, b;). And
move it to the direction of outside till it just pass away C; in parallel, as explained
previously. Since (a;, ;) is the shortest edge in T;, it is easy to see Laic;b; < 7/3. Let
p < 7/3 be one angle of a Delaunay triangle. Then we can compute the probability
that the facing angle of p is less than 2r — 2p, since we know the probability distri-
bution function for Delaunay angles[1]. This calculation shows that 1.26 is the lower
bound of expected number of edges of common in two trianulations. O

3 Experiment and Conclusion

We conducted one experiment to find the number of common edges for five
randomly generated points set. Table 1,2 show that about 90% of the edges in the
Delaunay triangulation are also common to the greedy triangulation from uniformly
distributed points set. We think that it is an interesting problem to find the greedy
triangulation in o(n) time from a given Delaunay triangulation. Finally we give one
combinatorial conjecture.

Conjecture: More than |S| edges are common between Delaunay and Greedy
triangulation for any 2-D points set S.
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size

exl

ex2

ex3

ex4

exd

100

0.919298

0.915194

0.886525

0.907801

0.929329

200

0.880342

0.901893

0.905822

0.914089

0.912220

300

0.891033

0.909194

0.914966

0.921857

0.925170

400

0.923077

0.922232

0.910246

0.912088

0.912860

500

0.899932

0.912897

0.894381

0.908232

0.914750

Table 1: Ratio of common edges in rectangle 2000 x 2000

size

exl

ex2

ex3

ex4

ex5

20

0.959184

0.959184

0.958333

0.960784

0.958333

50

0.920290

0.941606

0.933333

0.918519

0.903704

100

0.904930

0.903915

0.922261

0.956522

0.910714

200

0.899306

0.915371

0.924007

0.915371

0.909722

300

0.907429

0.919134

0.922018

0.927024

0.903448

Table 2: Ratio of common edges in circle with diameter 3000
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