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Preface 

 
 
This volume contains the proceedings of the 3rd International Conference on .NET 
Technologies held in Pilsen, Czech Republic, from May 30 to June 1, 2005. 
 
The purpose of the .NET Technologies conference series (http://dotnet.zcu.cz) is to bring 
together practitioners and researchers from academia and the industry to discuss the latest 
developments in .NET and to advance the state of the art in the research on related 
technologies. Interest in these topics has been continuously growing as a consequence of the 
importance and the ubiquity of object-oriented technologies. 
 
For .NET Technologies 2005, papers describing theoretical and practical results were 
solicited in the following areas: software engineering, programming languages and 
techniques, parallel and distributed computing, virtual machines and bytecode, educational 
aspects of .NET, support for .NET on non-Windows platforms. 
 
Out of 42 papers submitted this year, the Programme Committee has selected 16 full papers 
and 6 short papers for presentation at the conference. Each paper has been reviewed by three 
referees, including at least two Programme Committee members. All selected papers are 
included in this volume. 
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ABSTRACT 
The base class library of the .NET Framework makes extensive use of the Code Access Security system to ensure 
that partially trusted code can be executed securely. Imperative or declarative permission demands indicate where 
permission checks have to be performed at run time to make sure partially trusted code does not exceed the 
permissions granted to it in the security policy. 
In this paper we propose expressive method contracts for specifying required security permissions, and a modular 
static verification technique for Code Access Security based on these method contracts. If a program verifies, it 
will never fail a run time check for permissions, and hence these run time checks can be omitted. 
Advantages of our approach include improved run time performance, and improved and checkable 
documentation for security requirements. Our system builds on the Spec# programming language and its 
accompanying static verification tool. 

Keywords 
static verification, code access security, stack inspection, Spec# 

 

1. INTRODUCTION 
Nowadays, most software is created by combining 
components from various sources. Some programs 
can even be extended at run time with new 
components. For example, by extending a media 
player with a new codec, additional content can be 
displayed. However, not all parts of a composed 
program are necessarily equally trusted. For instance, 
a codec, embedded in a media player, may not be 
trusted to create network connections while the player 
itself does have that permission. Nonetheless, all 
parts, whether they are trusted or not, share the same 
process space, i.e. memory, processor etc. 

To allow execution of heterogeneous programs (i.e. 
programs composed from parts with different 
permissions), the Common Language Runtime (CLR) 

and the Java Virtual Machine (JVM) offer a fine-
grained access control mechanism called stack 
inspection [Gon02a, Fou02a]. The CLR uses the term 
Code Access Security (CAS) to refer to the stack 
inspection machinery. A trusted library can rely on 
this mechanism to protect the resources it 
encapsulates. The basic idea is to prevent 
unauthorized access to resources by guarding every 
sensitive operation by an access control check. This 
check determines whether the requested operation is 
allowed by inspecting (every frame on) the call stack. 
The Base Class Library makes extensive use of CAS 
to protect access to files, network resources, and so 
forth. 

While stack inspection has proven its usefulness in 
the past, it also has a number of shortcomings 
[Wal00a, Aba03a, Pot01a]. First of all, run time 
checking is used to enforce the security policy. These 
run time checks can incur a substantial performance 
overhead. Secondly, since access control checks are 
part of the implementation of library code, and since 
such checks are scattered throughout the 
implementation, it is hard to understand what is 
actually enforced. This is an issue for the developers 
of the library code: it is hard to validate that no 
access checks have been omitted, and that a 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
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consistent security policy is enforced [Bes04a]. It is 
also an issue for developers of client code that calls 
the library: they will have to rely on informal 
documentation to infer what permissions their code 
will actually need to run properly [Kov02a]. 
Moreover, the risk that documentation becomes stale 
as library code evolves is real. 

In this paper, we propose formal method contracts 
specifying the CAS related behavior of methods, and 
we propose a modular static verification technique. 
For a library developer, successful static verification 
of a library method ensures that the implementation 
respects the method contract. Hence, the method 
contract can be seen as an improved and checkable 
documentation for possible security exceptions. For 
the developer of client code, successful static 
verification of a program (under an assumed minimal 
permission set for the client code) ensures that no run 
time check for permissions will ever fail. Successful 
static verification by the CLR at load time (under the 
actual permission set for the client code) proves that 
it is safe to turn off run time checks. 

Our system builds on the Spec# programming 
language (itself an extension of C#) [Bar04a] and its 
accompanying static verification tool. 

The rest of this paper is structured as follows: in 
section 2 we briefly review the mechanism of Code 
Access Security, and the Spec# programming system. 
In section 3 we discuss the abovementioned problems 
of CAS in more detail, and we define the goal of this 
paper. Next, we present our proposed solution in 
detail (section 4), and discuss its advantages and 
disadvantages (section 5). Finally, we compare with 
related work and conclude. 

2. BACKGROUND 
Code Access Security 
Code Access Security (CAS) defines code access 
rights by means of permissions. A permission is a 
first-class object that represents a right to access 
certain resources. A FileIOPermission object 
for instance represents the right to perform certain 
operations (read, write, ...) on certain files. 
Permission objects actually represent sets of more 
primitive permissions, and it is always possible to 
take the union or intersection of two permission 
objects of the same type. A PermissionSet object 
groups permissions of different types. 

Permissions are assigned to assemblies based on 
evidence. Examples of evidence include: location 
where the assembly was downloaded from, or the 
code publisher that digitally signed the assembly. The 
security policy is a configurable function that maps 
evidence to permission sets. The resulting permission 

set for a given assembly is called the static 
permission set. In this paper, we assume static 
permission sets can be approximated sufficiently, so 
we don't elaborate on evidence and the security 
policy evaluation process. In particular, when 
verifying client code for which the static permission 
set is not yet known, we will rely on a CAS assembly 
level attribute that the developer of client code can 
set to indicate the minimal static permission set his 
code needs to run properly.  

The CLR maintains for every thread an associated 
dynamic permission set that represents the actual 
access rights that the thread has at this point in its 
execution. The dynamic permission set is not 
represented explicitly in the CLR, but is computed by 
stack inspection: it defaults to the intersection of the 
static permission sets of all code that is currently on 
the call stack, but trusted library code can influence 
the stack inspection process as discussed below. 

Library code can control access to protected 
resources by means of the following operations on 
permission objects: 

• Calling Demand on a permission object p 
checks if p is in the dynamic permission set. 
This operation initiates a stack walk: all 
frames on the stack (from top to bottom) are 
checked for permission p. If a frame is 
encountered that doesn't have permission p 
in its static permission set, a Security-
Exception is thrown. Otherwise, 
Demand just terminates normally without 
any side-effects. This method is used by 
library code to guard sensitive operations 
from being accessed by semi-trusted code. 

• When calling Assert on a permission 
object p, the current stack frame is marked 
privileged for permission p. If such a frame 
is encountered during stack inspection for 
permission p, Demand returns normally. 
Hence, asserting a permission makes the 
dynamic permission set grow. Asserting a 
permission is used by highly trusted code to 
allow less trusted code to access some 
resource in a well-defined, secure way. 

Our analysis of the Rotor BCL, a partial, shared-
source implementation of the BCL [Stu03a], has 
shown that other operations on permission objects, 
such as Deny and PermitOnly, occur only rarely. 
Therefore, we do not consider them in this paper. 

Operations on permissions can be done imperatively: 
they are just method calls on objects. However, the 
Code Access Security system also supports a limited 
form of declarative operations on permission objects: 
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an attribute can be placed on a method to indicate 
that a specific operation on a specific permission 
must be performed before execution of the method. 
Declarative CAS can be seen as a first step towards 
making the CAS behavior of a method more explicit. 
In their current form, declarative demands have 
limited expressive power: permissions that depend on 
the state of the program cannot be demanded in a 
declarative fashion. For example, to demand 
FileIOPermission for a path that was given as a 
parameter to the method, one must resort to 
imperative demands. 

The CAS system has numerous other features such as 
link demands and inheritance demands that we do not 
discuss here. We refer the reader to [Fre03a] for full 
details. 

Spec#/Boogie 
The Spec# Programming System [Bar04a] consists of 
three parts: an object-oriented language called Spec#, 
a compiler, and a program verifier, called Boogie. 
The language Spec# is an extension of C#. It extends 
C# with non-null types, checked exceptions, and 
constructs for writing specifications, such as object 
invariants and pre- and post-conditions for methods. 
Our proposed system builds on Spec#'s support for 
writing specifications. 

The Spec# compiler emits run-time checks for these 
specifications, and adds specification information as 
metadata to the generated assembly. The static 
verifier, Boogie, takes such an assembly with 
specification metadata, and statically verifies the 
consistency between the implementation and the 
specification. The verification is sound, but not 
complete. 

3. PROBLEM STATEMENT 
Problems with CAS 
While Code Access Security is a usable and essential 
part of the .NET security infrastructure, it has a 
number of well-known shortcomings. These can be 
summarized as follows: 

1. Code Access Security is implemented using 
dynamic checks, which can have a 
substantial impact on performance. 
Moreover, being based on stack inspection, 
Code Access Security can hinder 
optimizations that affect the execution stack. 

2. Security checks are typically part of the 
implementation of a method and as such, 
their effect is not visible in the signature of 
the method: the (informal) documentation 
has to specify under what circumstances 
security exceptions will be thrown. Writing 

and maintaining precise documentation is 
error-prone. 
While declarative security demands partly 
deal with this problem, they do not have the 
same expressive power as imperative 
demands, and our analysis of the Rotor BCL 
shows that approximately 60% of all 
demands are imperative demands. 

3. Not only are security checks part of the 
implementation, they are scattered 
throughout the BCL. Our analysis of the 
Rotor BCL found 183 demands scattered 
across 40 classes. This makes it very hard to 
understand what the Code Access Security 
system actually enforces. 

4. Finally, stack inspection tries to protect 
against luring attacks, where partially trusted 
code uses trusted but naive code to 
accomplish an attack. But stack inspection 
only addresses luring attacks based on 
method calls from semi-trusted to trusted 
code, and does not deal with other potential 
interactions, such as the reliance on results 
from semi-trusted code, or exceptions 
thrown from such code. 

Many researchers have recognized these 
shortcomings of sandboxing based on stack 
inspection, and have proposed partial solutions 
[Pot01a, Aba03a,Wal00a, Fou02a, Bes04a]. We refer 
to the related work section for a detailed discussion. 

This paper builds on these existing solutions and on 
the Spec# specification and verification infrastructure 
to propose a new solution that addresses (at least in 
part) the first three disadvantages identified above. In 
the discussion section, we also briefly indicate how 
our approach could be extended to deal also with the 
last disadvantage. 

Goal 
Our goal is to define method contracts for CAS that 
support modular static verification of an assembly 
with a known static permission set.  

Figure 1 concretizes this goal in the form of a tool 
called casverify. To verify an assembly (i.e. verify 
whether it could ever throw a Security-
Exception) for a given set of static permissions, 
we input that assembly, together with the 
specifications of all referenced assemblies, to 
casverify. The tool then determines whether 
execution of the given assembly could ever cause a 
demand to fail. 
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Note that we use the term Spec#perm to indicate that 
the input consists of assemblies annotated with the 
permission-preconditions proposed in this paper. 

Our tool casverify is sound, but incomplete. In order 
to be useful, it requires method contracts and hence 
introduces annotation overhead.  

 

casverify 

Spec # perm  specs of  
referenced 
assemblies 

Spec # perm  assembly 

Error messages 

Static Permissions 

 
Figure 1: casverify 

We envision three use cases: 

Library developers must invest the effort to write 
precise method contracts. These contracts can be seen 
as a formal kind of documentation. A successful 
static verification ensures that the documentation is 
correct, in the sense that any method in the library 
assembly will never throw any security exceptions if 
it is called with a dynamic permission set that 
respects the preconditions. 

Developers of client code need not invest the effort of 
writing precise method contracts. We assume they 
just specify the requested minimum permission set for 
each assembly, using assembly level declarative 
security attributes. Each method in the assembly then 
gets a (overly conservative) precondition that requires 
this declared minimum permission set. If client 
assemblies can be statically verified under these 
method contracts, one can be sure that no security 
exceptions will be thrown at run time. 

At assembly load time, the CLR can input an 
assembly (together with its corresponding static 
permissions and referenced assemblies) to casverify 
to determine whether it is safe to turn off run time 
checking for that assembly. 

4. APPROACH 
To verify an assembly for a given set of static 
permissions, we first input that assembly, together 
with the specifications of all referenced assemblies, 
to a program transformer. This program transformer 

implements a transformation similar to Wallach’s 
Security-passing Style (SPS) transformation 
[Wal00a]. The output of this transformation is a 
Spec# assembly (plus corresponding specifications 
for referenced methods) that can be verified by 
Boogie. If Boogie can show that the transformed 
assembly is correct, the original assembly will never 
raise a SecurityException when executed with 
the given static permissions (or more). Figure 2 
shows how all this translates to an implementation for 
casverify. 

casverify

Spec#perm specs of 
referenced 
assemblies

Spec#perm assembly

Error messages

Static Permissions

(SPS) Program Transformation

Boogie

 
Figure 2: Implementation of casverify 

In this section we first illustrate the basic idea behind 
our approach using a very simple example. Secondly, 
we show how to extend this idea towards more 
complex scenarios. 

The Basic Idea 
To keep our explanation as clear and simple as 
possible, we make some assumptions about the 
programs we consider in this subsection. First of all, 
we assume that only one permission type is used, 
namely XPermission. An assembly either has this 
permission or has no permission at all. Secondly, we 
do not consider permissions that take parameters, so 
XPermission objects have no parameters. 

To be able to prove that for a given policy no 
permission demand will ever fail in a certain 
assembly, we require each of its methods and all 
referenced methods to be annotated using 
preconditions specifying the minimal required 
dynamic permission set of the method’s callers. For 
libraries, we expect developers to write these 
annotations; for client code, these preconditions 
correspond to the requested minimum permission set.  
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A method execution may (directly or indirectly) raise 
a SecurityException if its caller violates a 
permission-precondition1, i.e. if the dynamic 
permission set of its caller does not include the 
minimal dynamic permission set specified in the 
precondition. In order to prove that no method in a 
certain assembly will ever throw such an exception, 
we have to show that 1) no method implementation 
violates a callee’s permission-precondition and that 
2) each method’s permission-precondition is 
sufficiently strong to make every demand in its body 
succeed.  

In a Spec# program, the dynamic permission set is 
not represented explicitly in the CLR in a separate 
data structure, but is computed by stack inspection. 
However, to be able to mention it in our 
specifications, we assume every method has access to 
a variable s2 that represents the dynamic permission 
set of its caller. Because we assumed that the 
programs we are verifying use only one permission 
type, namely XPermission, it suffices to give s 
the type bool. s is true if and only if the dynamic 
permission set includes XPermission. 

Figure 3: Class LibraryClass 
Consider the class LibraryClass of Figure 3. 
This class contains two methods: DoSensitive 
and SafeDoSensitive. The former method 
performs a sensitive operation after demanding 
XPermission. The sensitivity of the operation 
depends on the parameter level: if level is large, 
the operation becomes more “dangerous”. The latter 
method, SafeDoSensitive, allows any code, 
even code that doesn’t have XPermission in its 

                                                           
1 From now on, we will use the term permission-

precondition to refer to any precondition that constrains 
the caller’s dynamic permission set. 

2 This variable is only needed for verification purposes and 
is not present at run-time. 

static permission set, to perform the sensitive 
operation, but only for level equal to two. We 
assume that LibraryClass is part of a trusted 
library and that the static permission set of that 
library contains XPermission. The developer of 
that class has annotated the method DoSensitive 
with a precondition, specifying that it should only be 
called when s is true. In other words, the developer 
specified that the dynamic permission set of callers of 
DoSensitive should contain XPermission. 
Note that giving XPermission to a piece of code, 
allows it to perform the sensitive operation for any 
value of level. SafeDoSensitive has no real 
precondition: it can be called by any code, in any 
context. 

Figure 4: (SPS) program transformation 
Next, we discuss the SPS program transformation. 
Operations that modify the call stack, such as method 
calls and permission assertions, also (potentially) 
modify the dynamic permission set. For example, 
when XPermission is successfully asserted, s 
becomes true. To make these modifications 
explicit, the SPS program transformation inserts 
additional operations to update s. Figure 4 shows 
what transformations have to be applied to each part 
of the program3. Note that the transformed program is 
used only for static verification; the original program 
is executed. Furthermore, note that this 
transformation can be entirely automated and that no 
user interaction is required. When reading the 
transformation rules, keep in mind the difference 
between Assert() (i.e. calling the Assert() method on 
a permission object), and assert (the assertion of a 
boolean invariant that the static verifier will have to 
prove). For instance, rule (3) says that at a program 
point where a Demand() is done, the verifier should 
prove that s is true (i.e. XPermission is in the 
dynamic permission set).  

                                                           
3 Note that the SPS-transformation shown in Figure 4 

could be applied to IL-code to make it language 
independent. 

class LibraryClass{ 

 void DoSensitive(int level) 

   requires s==true; 

 { 

   new XPermission().Demand(); 

   //do sensitive operation 

 } 

 void SafeDoSensitive() 

   requires true; 

 { 

   new XPermission().Assert(); 

   DoSensitive(2); 

 } 

} 

SPS(m(a1,…,an){Body}) �   (1) 

 m(a1,…,an,bool s){ 

   s = s && StaticPerm(); 

   SPS(Body) 

 } 

SPS(o.m(x1,…,xn);) �     (2) 

o.m(x1,…,xn,s); 

SPS(p.Demand();) �    (3) 

assert s; 

SPS(p.Assert();) �    (4) 

assert StaticPerm(); 

 s = true; 
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Figure 5: LibraryClass after transformation 
Figure 5 shows the result of the program 
transformation for LibraryClass. During 
verification, we assume that the policy assigns 
XPermission to this class. This is encoded via the 
method StaticPerm: this method returns true if 
the static permission set of its class contains 
XPermission; otherwise, it returns false. 

Figure 6: Class ClientClass 
Using a static program verifier, such as Boogie, we 
can verify LibraryClass. Boogie checks (among 
others) that preconditions hold at every call-site and 
that every assert-statement will succeed at run time. If 
we can prove the correctness of the transformed class, 
we know that using the original class under a 
dynamic permission set that satisfies the precondition 
will never result in a SecurityException. In 
other words, clients can provably rely on the formal 
method contract. If, for instance, the developer would 

leave out the precondition on the DoSensitive() 
method, verification would fail. 

After having verified the correctness of 
LibraryClass, we can write a client for it. The 
class ClientClass of Figure 6 is a client of 
LibraryClass: it calls methods of the library in 
its implementation.  

For client code, we cannot (always) expect 
developers to write permission-preconditions. We 
assume they just specify the requested minimum 
permission set for each assembly, using assembly 
level declarative security attributes. Each method in 
the assembly then gets an (overly conservative) 
precondition that requires this declared minimum 
permission set. The PermissionSetAttribute 
for ClientClass indicates that the developer 
expects that its code can potentially be executed 
without any static permission (except for the 
permission to execute, which we ignore for this 
example). So, for ClientClass methods, 
permission-preconditions default to true (i.e. no 
conditions on s). Therefore, anyone can call 
ClientClass’s methods without needing to hold 
XPermission. 

Figure 7: ClientClass after transformation 
After (automatically) adding preconditions, the 
program transformation described in Figure 4 is 
applied to ClientClass. The result of this 
transformation is shown in Figure 7. Note that 
StaticPerm returns false this time because the 
static permission set of ClientClass does not 
contain XPermission. 

class LibraryClass{ 

 void DoSensitive(int level, bool s) 

   requires s == true; 

 { 

   s = s && StaticPerm(); 

   assert s; 

   //do sensitive operation 

} 

 void SafeDoSensitive(bool s) 

 { 

   s = s && StaticPerm(); 

   assert StaticPerm(); 

   s = true; 

   DoSensitive(2, s); 

} 

 static bool StaticPerm() 

   ensures result == true; 

 { 

   return true; 

 } 

} 

class ClientClass{ 

 LibraryClass! t; 

 void m1(bool s) 

   requires true; 

 { 

   s = s && StaticPerm(); 

   t.DoSensitive(5, s); 

 } 

 void m2(bool s) 

   requires true; 

 { 

   s = s && StaticPerm(); 

   t.SafeDoSensitive(s); 

 } 

 static bool StaticPerm() 

   ensures result == false; 

 { 

   return false; 

 } 

} 

[assembly:PermissionSetAttribute( 

RequestMinimum, Name = "Execution")] 

class ClientClass{ 

 LibraryClass! t; 

 void m1() 

 { 

   t.DoSensitive(5); 

 } 

 void m2() 

 { 

   t.SafeDoSensitive(); 

 } 

} 
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The transformed program and the specification of 
LibraryClass (a referenced assembly) are then 
“fed” to Boogie: 

• The static verifier detects that m1 violates 
the precondition of DoSensitive. This 
indicates a SecurityException might 
be thrown as part of the execution of m1 
(where a method execution includes nested 
method executions). 

• The static verifier proves that m2 will never 
raise a SecurityException because it 
does not violate a precondition or assert. 

Extending the Basic Idea 
In the previous section we discussed the basic ideas 
behind our approach. However, we considered only 
programs using a single, atomic permission. In this 
section we show how programs using multiple, 
parameterized permissions can be verified. 

Figure 8: (SPS) program transformation- revised 
When considering programs using multiple 
permissions, a dynamic permission set can no longer 
be represented by a Boolean variable. Instead we will 
represent dynamic permission sets by objects of the 
class PermissionSet4. This modification makes 
the rules for program transformation a bit more 
complex: instead of manipulating simple boolean 
variables, we now have to interact with dynamic 
permission sets by means of PermissionSet 
methods (see Figure 8).  

                                                           
4 The class PermissionSet used in this paper differs 

slightly from the one in the BCL in order to make it more 
amenable to static verification. The details of the 
differences are irrelevant for this paper, and hence are not 
discussed. 

We illustrate the extended approach using the trusted 
library method ReadUri of Figure 9. This method 
creates a stream to read from a given universal 
resource identifier (uri). Firstly, notice that the 
parameter uri determines which permissions are 
required: if the uri refers to a file, we need permission 
to access the file system; if it refers to a website, we 
need permission to access the web. Using 
preconditions, we can clearly state this in the 
interface of the method. Secondly, our approach 
supports permissions with parameters, given their 
precise specification.  

Figure 9: Method ReadUri 
In general, to verify a method, the verifier needs a 
precise specification of PermissionSet and of all 
involved permissions, in particular the constructor 
and the methods Equals, Intersect, Union and 
IsSubsetOf need to be carefully specified for each 
permission type. In the appendices we give detailed 
specifications for PermissionSet and for a 
permission class. Furthermore, we show what 
ReadUri looks like after program transformation in 
appendix C. 

5. DISCUSSION AND FUTURE WORK 
Our system partially addresses the first three 
disadvantages of CAS discussed in section 3.  

If static verification of an assembly succeeds, run 
time checks can be turned off, improving 
performance.  

SPS(m(a1,…,an){Body}) �   (1’) 

 m(a1,…,an, PermissionSet! s){ 

   s = s.Intersect(StaticPerm()); 

   SPS(Body) 

 } 

SPS(o.m(x1,…,xn);) �     (2’) 

o.m(x1,…,xn, s.Copy()); 

SPS(p.Demand();) �    (3’) 

assert SPS(allows(s,p)); 

SPS(p.Assert();) �    (4’) 

assert SPS(allows(StaticPerm(),p); 

 s = s.AddPermission(p); 

SPS(allows(s,p)) �    (5) 

 p.IsSubsetOf( 

    s.GetPermission(p.GetType())); 

public Stream ReadUri(Uri! uri) 

  requires uri.Scheme == "file" ==>  

           allows(s, newFileIOPermission( 

             uri.AbsolutePath)); 

  requires uri.Scheme == "http" ==>     

          allows(s, 

            newWebPermission(uri.Host)); 

 { 

   String p = uri.AbsolutePath; 

   String h = uri.Host; 

   Stream stream = null; 

   if(uri.Scheme == "file"){ 

     stream =  File.Open(p); 

   } 

   if(uri.Scheme == "http"){ 

     new WebPermission(h).Demand(); 

     new SocketPermission(h,80).Assert(); 

     Socket socket = new Socket(h, 80); 

     stream = new NetworkStream(socket); 

   } 

   return stream; 

} 
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By making security requirements explicit as 
preconditions, formal documentation for the CAS 
related behavior of methods is provided, and if the 
method verifies, one can be sure that the 
documentation is correct in the sense that if the client 
security context satisfies the precondition, there will 
definitely be no security exceptions. 

The declarative nature of the preconditions makes it 
easier to understand what a library actually enforces: 
one does not need to look at the implementation to 
understand the security requirements of a method. 

Hence we believe the proposed system is valuable as 
it stands. Still, we envisage a number of adaptations 
and extensions that have not yet been explored 
completely, and will be the subject of future work. 

Supporting history based access control 
To deal with the fourth disadvantage listed in section 
3, our system could be adapted to verify history based 
access control [Aba03a] instead of standard stack 
inspection. To support history based access control, 
the SPS transformation needs small changes, and 
methods do not only need preconditions on the 
security context, but also postconditions: every 
method might potentially influence the dynamic 
permission set even after it has returned. It is not 
clear to us yet whether this additional annotation 
overhead would be workable in practice. 

Trading off annotation overhead for 
precision 
Our system supports a tradeoff in annotation 
overhead versus precision of the analysis. A library 
developer has to annotate methods with 
preconditions, but the weakest precondition that 
guarantees that no security exceptions will be thrown 
can be complex to write and will in general not be 
computable automatically.  

By writing stronger but simpler preconditions 
soundness is maintained, but some valid programs 
might be rejected. Finding the right balance between 
complexity of annotations and precision of the 
analysis can only be done by building up practical 
experience. 

Reducing annotation overhead by 
inferring preconditions 
While computing the weakest precondition that 
ensures no security exceptions will be thrown is 
infeasible in general, in many cases it is actually quite 
easy. 

An analysis of the use of CAS in the Rotor BCL 
shows that most occurrences of permission demands 
are instances of the following pattern: a method 
validates parameters, creates an appropriate 

permission possibly based on method parameters, 
demands that permission and subsequently asserts 
sufficient permissions to make sure the rest of the 
method will not throw further security exceptions. 
For methods that follow this pattern, inferring an 
appropriate precondition automatically is fairly easy. 
In particular, if the demand is specified declaratively 
(40% of the demands of the Rotor BCL are 
declarative), inferring the corresponding precondition 
is trivial. So there is hope that annotation overhead 
can be kept small. 

The hardest cases are probably methods that do not 
themselves demand or assert permissions, but instead 
call other methods that do so. 

A full assessment of the feasibility of inferring 
preconditions is future work. 

6. RELATED WORK 
Static analysis of stack inspection has been discussed 
extensively in the literature. 

Pottier, Skalka and Smith [Pot01a] developed a 
security typing system and showed that in a type-safe 
program, no demand ever fails at run-time. Our 
preconditions are more expressive, and consequently 
less conservative, than their typing system. As 
opposed to Pottier, our analysis is path-sensitive. For 
instance, for  

if(i+j != j+i){ 

   new DnsPermission().Demand(); 

} 

Pottier requires DnsPermission to be in the 
dynamic permission set before execution of the 
example, whereas we do not.  

A second difference is that [Pot01a] considers 
permissions to be atomic: a piece of code either has 
the permission (PermissionState.Unrestricted), or 
does not have the permission at all 
(PermissionState.None). For some types of 
permissions, such as FileIOPermission, this is too 
restrictive. Our approach can handle parameterized 
permissions. For instance, consider the following 
example: 

new FileIOPermission("/tmp"); 

Our approach allows client code that only has 
permission to access to the temporary directory, to 
call methods containing this statement. Atomic-
permission approaches would reject such programs. 

However, the increased expressiveness of our 
approach comes at a price: [Pot01a] can 
algorithmically infer the type of each method, while 
we require programmers to write preconditions. 
Moreover, to benefit from the path sensitivity of our 
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approach, one potentially needs specification and 
verification of the functional correctness of code on 
the path to a permission demand. For now, we reduce 
the annotation overhead by using sensible defaults. In 
the future, we hope to find a way to automatically 
infer or safely approximate these preconditions. 

In [Bes04a], Besson, Blanc, Fournet and Gordon 
propose a technique for analyzing the security of 
libraries for systems that rely on stack inspection for 
access control. Their tool generates a permission-
sensitive call graph, given a library and a description 
of the permissions granted to unknown client code. 
This graph can then be queried to detect anomalous 
or defective control flow in the library.  

Bartoletti, Degano and Ferrari [Bar01a] use safe 
approximations of the permissions granted/denied to 
code at run time to reduce some of the overhead due 
to stack inspection. Their analysis requires the entire 
program as input; it cannot handle virtual calls to 
unknown code. 

Koved, Pistoia and Kershenbaum [Kov02a] present a 
technique for computing the set of required access 
rights at each program point. Their technique uses a 
context sensitive, flow sensitive, interprocedural data 
flow analysis. We are currently investigating this 
technique for automatically inferring the permission-
preconditions at each program point. However, 
because of path insensitivity, this technique is overly 
conservative. 

The program transformation described in this paper is 
based on the Security-passing Style transformation 
first proposed by Wallach. In [Wal00a], Wallach 
explains how the performance of stack inspection can 
be improved using this transformation. 

7. CONCLUSION 
This paper proposes a system for static verification of 
compliance to a Code Access Security policy. It 
relies on expressive method contracts to specify the 
dynamic permission set that a method requires the 
caller to have in order to execute without security 
exceptions. 

The system supports modular verification of methods 
annotated with such contracts. Verification of such a 
single method is useful in the context of library 
development, and ensures consistency of the contract 
with the implementation of the method, essentially 
showing that the (formal) documentation of security 
related behavior of the method is correct. 

If all assemblies that make up a program verify, one 
can be sure there will be no security exceptions, and 
hence run time stack inspection can be turned off. 
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Appendix A: PermissionSet 
 
Below, we give the specification of the class PermissionSet. The definition given below differs slightly from 
the one given in the BCL: 

• AddPermission does not modify this, but instead creates a new permission set. 
• Intersect does not return null when the intersection is empty. Instead it returns an empty permission set. 
• GetPermission never returns null. If a permission is not present in the set, GetPermission 

returns a permission with PermissionState.None. 
In Spec#, non-null types (see [Bar04a]) are denoted by T! (where T is an ordinary reference type). 
 
 
class PermissionSet{ 
 
 public IPermission! GetPermission(Type! t) 
   ensures result.GetType() == t;  
 
 public PermissionSet! Intersect(PermissionSet! other) 
   ensures Forall {Type! t;  
                   result.GetPermission(t).Equals( 

             this.GetPermission(t).Intersect(other.GetPermission(t))) 
            }; 

 
 public PermissionSet! AddPermission(IPermission! p) 
   ensures Forall {Type! t;  
                   (t != p.GetType())  
                     ==>     
                    result.GetPermission(t).Equals(this.GetPermission(t) 
                  }; 
   ensures result.GetPermission(p.GetType()).Equals( 
           p.Union(old(GetPermission(p.GetType())))); 
} 

 

Appendix B: IPermission and SocketPermission 
 
Below, we give the specifications of IPermission and of (a simplified version of) SocketPermission. 
The definitions given below differ slightly from the ones given in the BCL: 

• Intersect will never return null, not even when the intersection is empty. Instead it will return a permis-
sion with PermissionState.None. 

 
 
public interface IPermission { 

 bool IsSubsetOf(IPermission! other) 

   requires other.GetType() == this.GetType(); 

 

 IPermission! Intersect(IPermission! other) 

   requires other.GetType() == this.GetType(); 

   ensures result.GetType() == this.GetType(); 

 

 IPermission! Union(IPermission! other) 

   requires other.GetType() == this.GetType(); 

   ensures result.GetType() == this.GetType(); 

} 
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public sealed class SocketPermission : IPermission { 

 

 public bool Includes(EndPointPermission p); 

 

 public SocketPermission(PermissionState state) 

   ensures state == PermissionState.Unrestricted ==> 

           Forall{EndPointPermission! p; Includes(p)}; 

   ensures state == PermissionState.None ==> 

           Forall{EndPointPermission! p; !Includes(p)}; 

 

 public SocketPermission(string host, int port) 

   ensures Forall{EndPointPermission! p; 

           Includes(p) == (p.Host == host && p.Port == port)}; 

 

 public bool IsSubsetOf(SocketPermission! other) 

   ensures result == Forall{EndPointPermission! p; 

           Includes(p) ==> other.Includes(p)}; 

 

 public SocketPermission! Intersect(SocketPermission! other) 

   ensures Forall{EndPointPermission! p; result.Includes(p) ==    

           (this.Includes(p) && other.Includes(p))}; 

 

 public SocketPermission! Union(SocketPermission! other) 

   ensures Forall{EndPointPermission! p; result.Includes(p) ==   

           (this.Includes(p) || other.Includes(p))}; 

 

 public bool IsSubsetOf(IPermission! other) 

   ensures result == IsSubsetOf((SocketPermission!) other); 

 

 public IPermission! Intersect(IPermission! other) 

   ensures result == Intersect((SocketPermission!) other); 

 

 public IPermission! Union(IPermission! other) 

   ensures result == Union((SocketPermission!) other); 

} 
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Appendix C: ReadUri after (SPS) program transformation 
 
class ClassName{ 
 
 public Stream ReadUri(Uri! uri, PermissionSet! s) 
   requires uri.Scheme == "file" ==> 
       new FileIOPermission(uri.AbsolutePath).IsSubsetOf( 
        s.GetPermission(new FileIOPermission(uri.AbsolutePath).GetType())); 
   requires uri.Scheme == "http" ==>  
       new WebPermission(uri.Host).IsSubsetOf( 
        s.GetPermission(new WebPermission(uri.Host).GetType())); 
 { 
   s = s.Intersect(StaticPerm()); 
   String p = uri.AbsolutePath; 
   String h = uri.Host; 
   Stream stream = null; 
   if(uri.Scheme == "file"){ 
      stream =  File.Open(p, s.Copy()); 
   } 
   if(uri.Scheme == "http"){ 
      assert new WebPermission(h).IsSubsetOf( 
        s.GetPermission(new WebPermission(h).GetType())); 
      assert new SocketPermission(h, 80).IsSubsetOf( 
        StaticPerm().GetPermission(new SocketPermission(h, 80).GetType())); 
      s = s.AddPermission(new SocketPermission(h, 80)); 
      Socket socket = new Socket(h, 80, s.Copy()); 
      stream = new NetworkStream(socket, s.Copy()); 
   } 
   return stream; 
 } 
 
 public static PermissionSet StaticPerm() 
   //---> for every statically assigned permission p 
   ensures p.IsSubsetOf(result.GetPermission(p.GetType())); 
 
} 
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ABSTRACT

Long living objects lengthen the trace time which is a critical phase of the garbage collection process. However, it
is possible to recognize object clusters i.e. groups of long living objects having approximately the same lifetime
and treat them separately to reduce the load on the garbage collector and hence improve overall performance.
Segregating objects this way leaves the heap for objects with shorter lifetimes and now a typical collection can find
more garbage than before.

In this paper, we describe a compile time analysis strategy to identify object clusters in programs. The result of
the compile time analysis is the set of allocation sites that contribute towards allocating objects belonging to such
clusters. All such allocation sites are replaced by a new allocation method that allocates objects into the cluster
area rather than the heap. This study was carried out for a concurrent collector which we developed for Rotor,
Microsoft’s Shared Source Implementation of .NET. We analyze the performance of the program with combina-
tions of the cluster and stack allocation optimizations. Our results show that the clustering optimization reduces
the number of collections by 66.5% on average, even eliminating the need for collection in some programs. As a
result, the total pause time reduces by 62.8% on average. Using both stack allocation and the cluster optimizations
brings down the number of collections by 91.5% thereby improving the total pause time by 79.33%.

Keywords
Static analysis, compiler-assisted memory management, effective garbage collection, object clustering

1 INTRODUCTION
Garbage collection has come a long way since the time
it was introduced for collecting lists in LISP. Now it
has become a necessity in modern object oriented lan-
guages, since it successfully abstracts the problem of
memory management from the user. Advances like
collecting generations and concurrent collection were
successful in bringing down the collection overhead
and thereby making garbage collection practically us-
able in runtime systems.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

.NET Technologies’2005 workshop proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

All said and done, the program incurs performance
penalty if it is garbage collected. So it becomes essen-
tial to keep the overhead at a minimum. This is pos-
sible if we reclaim the maximum amount of garbage
with the least number of effective collections. Sev-
eral previous work have tried to achieve this goal in
their own way by looking at different object proper-
ties like connectivity [Hay91, Hir02, Hir03, Sam04],
object types [Shu02], age [McK99] other than object
traceability alone.

Our goal is to make each collection effective and
thereby reduce the total number of collections required
to reclaim garbage in the program. We achieve this by
identifying long living clusters of objects and allocat-
ing them in a separate mature object space that is not
subject to garbage collection. The idea is to avoid trac-
ing objects that are going to live till the end. Segregat-
ing objects this way leaves the heap for objects with
shorter lifetimes and now a typical collection can find
more garbage than before, making collections more ef-
fective. Although we have studied clustering in a gen-
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erational setting this elementary concept is applicable
to incremental collectors too.

This paper describes a compile time clustering analy-
sis algorithm based on the compositional pointer and
escape analysis framework proposed in [Wha99]. The
clustering algorithm makes use of the lifetime in-
formation of objects computed by the points to es-
cape analysis algorithm, that is constructed for every
method. The objects that do not escape the longest
living methods are designated as the root of the clus-
ter. The objects that are reachable from the root are
treated as cluster objects. All such cluster objects are
statically allocated in a separate mature object space.
When the stack frame of the method binding the life-
time of the root object is popped, the entire cluster is
garbage and hence the mature object space can be re-
claimed in its entirety.

The clustering scheme is evaluated using a base-
line collector that can run in both stop-the-world and
concurrent modes that we developed for Rotor, Mi-
crosoft’s shared source implementation of .NET. The
baseline collector has two generations and uses the
copying scheme to collect both. We analyze the per-
formance of the collector and the program with the
cluster and the stack allocation optimizations. Our re-
sults show a marked decrease in the total number of
collections and considerable improvement in the indi-
vidual collection performance. It is observed that a
combination of the clustering and the stack allocation
optimization improves the performance even further.

The remainder of the paper is organized as follows.
We begin by reviewing related work in Section 2. Sec-
tion 3 describes the concept of clustering and how we
extend the compositional pointer and escape analysis
to identify clusters. In Section 4 we describe the base-
line collector and the experimental platform. In Sec-
tion 5 we present and evaluate the results. Finally we
conclude in section 6 with possible avenues of future
work.

2 RELATED WORK
Hayes introduced the term object clustering [Hay91].
The main observation was that large clusters of ob-
jects, pointed to by key objects were allocated at
roughly the same time and lived for approximately the
same amount of time. When the key objects became
unreachable it indicated a good opportunity to collect.
Hayes identified the cluster as the program executed
and incrementally placed it in the mature object space.
Our work tries to identify the cluster at compile time
and statically allocates the cluster into the mature ob-
ject space. The compile time clustering algorithm is
used to find key objects. Unlike Hayes’s scheme where

the mature object space is collected, we do not sub-
ject the mature object space to garbage collection. We
combine the concepts of escape analysis and cluster-
ing to reclaim the cluster.

Pretenuring tries to solve the problem of repeated col-
lections of long living objects by directly allocating
such objects into the old generation by using static and
dynamic profiles [Bla98, Che98, Har00]. But the old
generation is still subject to collection, so in spite of
applying the pretenuring optimization, major collec-
tions might still occur. Our scheme tries to completely
eliminate major collections by allocating these long
living or immortal objects in a separate mature object
space that is not subject to collection.

Dynamic object colocation [Sam04] allocates objects
directly into the same area of an object that will ref-
erence it, by using a mix of compile-time and runtime
optimizations. Static compiler analysis is used to com-
pute connectivity information and the runtime compo-
nent involves an allocation routine which takes a colo-
cator object as an additional parameter and is respon-
sible for dynamic colocation. The dynamic colocator
can start placing objects into the mature object space
only when some initial set of colocators are present.
Hence it requires a warm up young generation collec-
tion to produce these initial colocators, whereas the
intention of our scheme is to reduce the number of
collections, even eliminating the need for collection
if possible. [Sam04] reports a considerable increase in
the number of intergenerational pointers for some of
its programs. Our results indicate that clustering only
reduces the number of intergenerational pointers but
never increases it.

Connectivity based garbage collection makes use of
the observation that connected objects die together.
Based on this hypothesis it allocates objects that are
connected together into a statically determined parti-
tion so that collecting a partition would be much faster
than collecting the heap. [Hir03] works by building
a hierarchy of partition dags and collects these parti-
tions such that an ancestor is collected together with its
descendants thereby eliminating the need for a write-
barrier.

3 CLUSTERING
The concept of data is fundamental to every program.
Programs feed on data, they build several data struc-
tures that assist them in performing their functional-
ity. In the object oriented paradigm, objects store data.
These data objects are seldom isolated, rather they are
related to one another in some way and hence linked
together to form clusters.

Most often a program is associated with a set of crit-
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ical objects that are bound to stay till almost the end
of the program. Such objects are said to be immor-
tal. If these objects are treated in the same way as the
default heap objects, they would unnecessarily be pro-
cessed by the garbage collector, resulting in increased
collection times. Figure 1 illustrates the impact of long
living objects on the total collection time, measured as
the fraction of time spent in scavenging live objects.
We observe that the scavenge time accounts for a sig-
nificant fraction of the total collection time (up to 83%
in 211 anagram). Further investigation reveals that
up to 88% of the objects were found to be live during
the collection. Hence tracing immortal or long living
clusters plays a major role in lengthening the total col-
lection time.

Figure 1: Proportion of Collection Time spent on
Scavenge.

If we can recognize the allocation sites in the program
responsible for creating long living clusters (high-
lighted in Figure 2) at compile time, we can statically
allocate them in a region that is not processed by the
garbage collector. The region can then be reclaimed
in its entirety at program termination. Such a strat-
egy allows the garbage collector to focus on objects
that are volatile and objects whose lifetimes cannot be
statically determined. We describe the clustering algo-
rithm which identifies long living clusters in the next
section.

Extending Compositional Pointer Analysis
To Identify Clusters
The algorithm to identify clusters in a program is
based on the compositional and pointer escape anal-
ysis proposed for Java programs by Whaley and Ri-
nard [Wha99]. The referencing behavior among ob-
jects and fields is abstracted in the form of a points-

Figure 2: Set of Allocation Sites that contribute to-
wards Cluster Objects in 211 anagram

to-escape or the PTE graph. Nodes in the PTE graph
represent objects allocated by the program and edges
represent references between them. Objects that are
created within the currently analyzed region are rep-
resented by inside nodes in the PTE graph, whereas
those created outside the currently analyzed region or
accessed via outside edges are represented by outside
nodes in the PTE graph. Similarly inside edges repre-
sent references created within the currently analyzed
region. References created outside the currently ana-
lyzed region are represented by outside edges in the
PTE graph. We restrict our analysis to programs that
are single-threaded.

The algorithm is compositional in nature i.e. meth-
ods can be analyzed independently of their callers and
callees. [Wha99] describes an intra-procedural algo-
rithm that computes individual PTE graphs for each
method and an inter-procedural algorithm that com-
putes precise points-to-escape information for each
method. The inter-procedural algorithm combines the
PTE graph for each method with the PTE graphs cre-
ated for all its callees.

The ultimate objective of the algorithm is to determine
for every allocation site A, the method M whose stack
frame will outlive the object created at A. In such a
situation, object created at A is said to be captured by
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M. If enough information is not available to ascertain
whether an object escapes or not, it is allocated in the
heap.

An object is said to have escaped a method M if it is
a formal parameter or if a reference to the object is
written into a static class variable or a reference to the
object is passed to one of the callees of M say N and
there is no information available about what N did to
the object. The object will escape if M returns it. If the
object satisfies none of the above conditions it is said
to be captured within M.

In essence, when a complete points-to escape analysis
graph is constructed for a method M it consists of the
nodes that were either created within the method M or
nodes created outside M but are reachable from within
M. The clustering algorithm makes use of this fact to
recognize a cluster.

3.1.1 Design
In this section we describe the clustering algorithm
in the form of pseudocode as shown in Figures 3
and 4. To begin with, we need to preprocess the
statements to include only those that will affect the
PTE graph [Wha99]. The csharp compiler invokes
CompileMethod for every method, that creates basic
blocks, while it translates the source code into op-
codes. We intercept at points where code is generated
for statements that we are interested in and save the
details of the statement in a separate data structure.

Once the code for the method is generated, we iter-
ate through the statements that we created to compute
the PTE graph. The graph is implemented as an adja-
cency list. Each node is a structure that stores the set
of incoming and outgoing edges, node kind and infor-
mation whether it was visited or not. Each edge is a
structure that stores the head and the tail node, edge
kind and the variable it represents.

During the intra-procedural analysis, when we en-
counter a call statement it is possible that the PTE
graph for that call is not yet computed. The status of
all such statements that have incomplete information
is marked as pending. During the inter-procedural
analysis we process only pending statements to com-
pute the complete PTE graph. Finally, we process the
PTE graphs of only those methods M that lie close
to main in the call graph, to compute cluster informa-
tion. This list of methods can be got by profiling. The
PTE graph for all such M would consist of only those
nodes that have escaped up to M, since they are reach-
able from within M. All other nodes that have been
captured within methods lying below M would not be
visible in the PTE graph for M. Hence the cluster al-
gorithm correctly identifies only those objects that are
going to live till the stack frame of M has been popped

off and is bound to benefit the collection process.

The marked nodes in M which are not pointed to by
any other node in the PTE graph of M are said to be
the roots of the cluster. They serve the same function
as the key objects because they are the only way to
reach a cluster. When the key object is garbage, all
the objects connected to it are dead. Hence when the
stack frame for method M is popped, the root object
and hence the entire cluster associated with it is dead
and can therefore be reclaimed.

The clustering analysis algorithm is conservative in
the sense that some of the objects belonging to the
cluster might die before the stack frame containing the
root of the cluster is popped. This is especially true
in cases where a dynamically growing structure like
a stack or a list is part of the cluster. However, we
shall shortly see that even this naive approach of iden-
tifying a clusters performs reasonably well for most
programs.

Figure 3: Pseudocode for Inter and Intra procedu-
ral analysis

3.1.2 Example
Figure 5 shows the local PTE graphs for two of the
methods in 211 anagram. In the PTE graph for
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Figure 4: Pseudocode for identifying Clusters

Figure 5: Identifying clusters using PTE graphs.

read file, sif is captured. Despite being a local ob-
ject, istr is linked to the dict variable by the library
call dict.Add and hence becomes a part of the clus-
ter. Since the reference is added outside the method,
it is indicated as an outside edge. The intra-procedural
analysis for read file deems all nodes except sif as
escaped. The dotted line in Figure 5 indicates how
the nodes in run will be mapped onto the nodes of the
callee read file during inter-procedural analysis.
Interprocedural analysis is followed by the application
of the clustering algorithm as described earlier, that
marks all the nodes in the graph that corresponds to the
cluster allocation sites. In this particular example, the
clustering algorithm accesses the complete PTE graph
of run and marks all nodes reachable from the node
representing agm as cluster nodes. agm is designated
as the root of the cluster. Since by definition each node
is associated with an object and hence with an alloca-
tion site producing that object, one can output the set
of allocation sites responsible for cluster allocation.

The fact that the analysis is compositional makes it

possible to analyze libraries independently of the ap-
plication. When analyzing an application, we use pre-
computed results for any library calls that it may make.
Since the clustering algorithm can access the precom-
puted results for the library calls, it is possible for
the algorithm to come up with cluster allocation sites
within the library code, as we saw dict.Add in Figure
5. To support clustering completely, we create a new
library that consists of additional functions to support
cluster allocation.

Other changes to Rotor for implementing the cluster-
ing scheme include the introduction of two new op-
codes newclus and newst that are wired to perform al-
location in the cluster and in the stack respectively. In
this implementation, we have simulated the allocation
on the stack using a separate area apart from the heap
and the cluster area. To measure the impact of sim-
ulating the stack allocation we ran the programs with
a maximum heap size (so that there was no garbage
collection) and compared the elapsed times with the
baseline which has no stack allocation implemented.
On average, the overhead of stack implementation was
found to be -2.1%.

3.1.3 Issue with Boxing
In any implementation of CLI, when an instance of a
value type is passed as a parameter to a method that
expects a reference parameter, boxing is performed
[Ecm03]. Boxed objects are implicit and are not ev-
ident in csharp source code. Since the clustering algo-
rithm works on the source code, it does not have a han-
dle to the boxed objects. Our implementation tackles
this problem by converting implicit boxing to explicit
boxing. We overload the existing methods that take
a reference as a parameter, to take value types also.
These additional methods now include code that per-
forms explicit boxing. So now the clustering algorithm
can access the boxed objects and include them in the
analysis.

4 METHODOLOGY
Baseline Collector
The baseline collector is designed to work on the prin-
ciples of concurrent replication collection [Too93].
It consists of two generations. The young genera-
tion is also known as newspace. This is where all
the new objects are allocated. The old generation
is comprised of two semispaces- fromspace and the
tospace. Copying collection is used to collect both
generations. When allocation in the newspace crosses
a particular threshold, a minor collection is invoked
that scavenges the live objects into fromspace. Even-
tually the fromspace gets filled up to its threshold
value which invokes a major collection that collects
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Figure 6: Baseline Collector Organization with
Clustering Incorporated.

the entire heap.

Scavenging is a concurrent operation, hence the pro-
gram and the collector thread need to be synchronized
to ensure that things work correctly. Our approach for
synchronizing the program and the collector is an ex-
tension of the Dijkstra’s tricolor scheme. We associate
each object with a color that is used to indicate ob-
ject state information to both the collector and the pro-
gram. The details of the synchronization scheme can
be found in [Rav05].

All generational collectors are associated with a write
barrier [Hos92], that is a piece of code executed with
every pointer write. We add the synchronization code
to the write barrier to support concurrency in the col-
lector. The baseline collector supports finalization,
weak pointers and interior pointers. However, unlike
the rotor garbage collector, it does not support large
objects allocation and pinning. Incorporating cluster-
ing into the garbage collector adds a new mature object
space to the existing heap. The baseline collector can
also run in the stop-the-world mode. The final memory
model of the collector is as shown in Figure 6.

Experimental Platform
This study was conducted on Rotor version 1.0 [Rot01].
We ran the programs on an Intel pentium III 450 Mhz
processor with 128MB of main memory and a 512KB
cache, running Free BSD 4.5.

5 RESULTS
In this section, we evaluate the baseline collector by
comparing its performance with Rotor’s garbage col-
lector. We evaluate the clustering optimization w.r.t.
the collector and program performance. We also study
the impact of the stack allocation optimization along
with the clustering optimization. To carry out this
study, we used the C# versions of the Java programs
from Spec JVM98 [Spc98], Java olden [Jolden], Java
grande [Jgrande] and the gc test suite provided with
Rotor [Rot01]. The benchmarks and their runtime pa-
rameters are summarized in Table 1.

Performance of the Concurrent Collector
In this section we describe the performance of the
baseline collector w.r.t. pause times and elapsed times.
The results for both the stop the world and concurrent
modes are presented. The heap sizes are chosen such
that both the Rotor garbage collector and the baseline
collector have the same number of collections.

5.1.1 Pause Time
The main objective for choosing a concurrent gc algo-
rithm for the baseline collector was to reduce the pause
times. Almost all the programs report significant re-
ductions in pause times for the concurrent mode, ex-
cept for raytrace which shows an increase of 4.62%.
The average reduction in pause times for the concur-
rent mode is 36.24%. However pause times increase
by 2.14% on average when the collector is run in the
stop-the-world mode.

5.1.2 Elapsed Time
The baseline collector introduces a very small over-
head of 1.11% when run in the stop-the-world mode.
However, the overhead is slightly worse in the concur-
rent mode. That is because of the additional synchro-
nization code that needs to be executed. The average
overhead on the elapsed time is 1.75% for the concur-
rent mode. It can be observed that in spite of a substan-
tial improvement in the pause time, the elapsed times
do not change by much. That is because the collection
time constitutes a very small portion of the elapsed
time.

Performance of Clustering
In this section we describe the performance of the pro-
grams when the clustering optimization and the stack
allocation optimizations are performed. The programs
are run with the heap sizes as shown in Table 2. Clus-
tering reduces the total heap requirement by 12.6% on
average.

5.2.1 Reduction in the Number of Collections
Both clustering and the stack allocation optimizations
are geared towards reducing the load on the garbage
collector. For certain programs where the total popula-
tion of objects is dominated by clusters, clustering op-
timization yields a lot of benefit. For programs where
volatile objects dominate, stack allocation yields sim-
ilar benefit. The average reduction in the number of
collections for programs where only the stack allo-
cation optimization and the clustering optimization is
used is 75% and 66.5% respectively. A combination
of the stack and cluster allocation yields the highest
reduction of collections at 91.56%. The results are the
same for the collector when operated in the concurrent
mode.
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Source Program Runtime parameters
Rotor gc test suite directedgraph No. of vertices=100

Spec JVM98 208 cst No of iterations=1, speed=1
209 db No. of iterations=1, Speed=10

211 anagram Speed=1
210 si Speed=10

Java Olden bisort No of nodes=4, size=2500
jhealth MaxLevel=5, MaxTime=100, seed=23
power No of feeders= 5, No of laterals= 10,

No of branches= 3, No of leaves= 5
tsp Size= 600

treeadd No of levels=16
Java Grande raytrace Width= 25, height= 25

Table 1: Set of Benchmarks used and their Configuration

Program Young gen Old gen Young gen Old gen Max Cluster Size
size (MB) size (MB) with clustering (MB) with clustering (MB) (MB)

211 anagram 2 8 0.7 1.4 3.8
209 db 1 10 1 2 2.5
210 si 1 2 1 2 0.9
bisort 1 2 1 2 0.05
jhealth 1 2 0.3 0.6 2.6
208 cst 1 40 0.7 1.4 12.7
power 1 2 0.3 0.6 0.07

tsp 1 2 0.7 1.4 0.05
raytrace 0.8 1.6 0.8 1.6 3.6

directedgraph 1 2 1 2 0.15
treeadd 4 8 0.19 0.38 1.4

Table 2: Heap and Mature Object Space sizes

5.2.2 Reduction in Collection and Pause Times
One of the direct consequences of the reduction in the
number of collections is the reduction in the total col-
lection time and the total pause time. Reduction in the
number of objects scavenged also contributes to reduc-
tion in the collection time. The average reduction in
the total collection time using only the stack allocation
optimization is 60.9%; with only the cluster optimiza-
tion it is about 60.6%; with both optimizations on, the
reduction is about 79.27%. The corresponding average
reductions in the pause times are 63.55% with only the
stack allocation optimization, 62.82% with only the
cluster optimization and 79.33% with both optimiza-
tions applied.

When the collector operates in the concurrent mode,
the average reductions in pause times are 60.09%,
60.9% and 79.27% with only the stack allocation, only
the clustering optimization and both optimizations ap-
plied respectively.

5.2.3 Reduction in Copycounts

Once the clustering optimization is done, there is
greater chance for a collection to find more garbage
than earlier. Since the long living clusters are ex-
empted from collection, only those objects that are rel-
atively volatile remain in the heap. This causes a re-
duction in the number of objects copied. Copy counts
can also reduce due to the reduction in the number of
collections as we saw in the previous section. Copy
counts reduce by almost 60.11% with only the stack al-
location optimization applied and by 91.37% with the
cluster optimization applied. A combination of both
reduces the copy counts further by 94.02%. The re-
sults are almost the same for the collector when oper-
ated in the concurrent mode.

5.2.4 Impact on Inter-region References
A profile of the inter-region references indicate very
minimal interaction between the cluster objects and
the heap objects (Table 3). The number of such clus-
ter to heap pointers is critical to the success of cluster-
ing. The cluster is reclaimed in its entirety and not col-
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Program Total No. of cluster Total interregion Total interregion % Reduction % Garbage
to heap references pointers without clustering pointers with clustering in barriers in cluster

211 anagram 5 - - - 25
209 db 1 6916 14 99.79 11.2
210 si 2 44731 39324 12.08 19.38
bisort 0 7 7 0 0
jhealth 0 - - - 77.5
208 cst 6 403912 169319 58.08 33.3
power 0 1 1 0 0

tsp 0 8 8 0 0
raytrace 3 163798 293 99.82 99.5

directedgraph 0 - - - 0.02
treeadd 0 - - - 0

Table 3: Interregion References and Effectiveness of the Clustering Scheme

Figure 7: Impact on the Number of Collections

lected as in the case of the heap that is collected from
time to time. Just as we track inter-generational point-
ers to ensure complete collection, we need to track
cluster to heap pointers. Hence, if the number of such
cluster to heap pointers are large, the collection time
is bound to increase. The average number of cluster to
heap references that the clustering algorithm achieves
is 1.54. Clustering is also found to reduce the total
number of inter-region pointers as shown in Table 3.
The impact on the number of inter-region pointers is
studied only for those programs in which the number
of collections are reduced to a non-zero value with the
application of clustering. The average reduction in the
number of interregion pointers is found to be 33.72%.

5.2.5 Reduction in Allocation times
The cluster allocation routine is straightforward and
need not populate objects with extra header informa-
tion which would otherwise be required for heap ob-

Figure 8: Total Collection times with Clustering
and Stack Allocation Optimizations

jects. So the time required to allocate a cluster object
is less than the time required to allocate a heap ob-
ject. Clustering improves the total allocation time by
14.99% on average. Stack allocation improves the to-
tal time by 12.61% on average. A combination of both
optimizations results in an improvement of 20.63%.

5.2.6 Impact on Elapsed Time
Clustering has little effect on the total elapsed time,
on average it increases the elapsed time by 0.44%. Us-
ing only the stack allocation optimization improves the
elapsed times by 1.75% on average. A combination of
both the optimizations improves the elapsed time by
1.018%. The main reason for this is that the collection
time is only a small portion of the overall elapsed time.
Only if there is a drastic improvement in the collection
time, elapsed times improve visibly, for example the
number of collections in 208 cst with the clustering
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Figure 9: Total Copy Counts with Clustering and
Stack Allocation Optimizations

optimization decreases from 23 to 11. Hence, in this
case the elapsed time reduces by 12.19%. The other
reason is that the addition of a separate cluster area in-
troduces overheads w.r.t. the elapsed time. Since an
object can now reside in the cluster area apart from the
heap, the garbage collector code needs to recognize
objects in the cluster area and also in the stack, if the
stack allocation optimization is applied.

Additional barrier code to keep track of cluster to heap
pointers also contributes to increased elapsed times.
The effect on elapsed time is more or less the same for
the concurrent mode. Using just the escape analysis
optimization, the average elapsed times decrease by
only 0.377%; clustering increases the elapsed times by
1.19%. Using both optimizations the average elapsed
time decreases by 0.59%

Figure 10: Impact of the Clustering and Stack Al-
location Optimizations on the Elapsed Time

5.2.7 Effectiveness of the Clustering Algorithm
To evaluate the effectiveness of the clustering algo-
rithm and to verify its claim of retaining genuinely
long living objects right up to the end, additional in-
strumentation is added to the code. At the time of
reclamation of the cluster area, instead of freeing it
up, the cluster area is collected to find the amount
of garbage generated within itself. The amount of
garbage generated in the cluster using our algorithm
is found to be 24.17% on average. Ideally it should be
0%.

The clustering algorithm presented here does not cap-
ture dynamic growth of clusters. More complex
pointer analysis is required to come up with an ideal
cluster. Since the clustering algorithm is by nature
static, Allocation site homogeneity is an issue. For
example raytrace includes an allocation site that is
called in two different contexts. In one it creates a cap-
tured object, in the other it creates a cluster object. If
we decide to allocate the object in the heap, the num-
ber of cluster to heap references shoot up, thereby de-
grading the performance of the collector. On the other
hand, if we decide to cluster allocate the object, huge
amount of garbage would be generated within the clus-
ter area due to the volatile nature of the object. In such
cases dynamic object colocation [Sam04] might per-
form better since it makes colocation decisions on the
fly at runtime.

6 CONCLUSIONS
For a garbage collector to work effectively, it has to be
aware of object properties and not just object traceabil-
ity. The compiler plays an important role in provid-
ing valuable information about object properties to the
garbage collector. This paper describes and evaluates
a compile time technique that recognizes clusters in a
program and statically allocates cluster objects sepa-
rately. Our results demonstrate that the clustering op-
timization reduces the number of collections consider-
ably and also improves the individual collection times
by a fairly large amount. When applied along with the
stack allocation optimization it produces even better
results. Clustering also improves the total number of
interregion pointers. However, elapsed times do not
improve in the same vein as the collection times. Only
those programs in which there is a drastic reduction
in the number of collections show a considerable im-
provement in the elapsed time.

Future Work
Our work can be extended in several directions. The
current clustering algorithm identifies clusters that are
created only in those methods that have the longest
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lifetimes. One can extend the clustering concept to
all other methods to discover scoped memory regions.
The current compiler analysis itself can be made more
sophisticated so that it not only outputs the allocation
sites but also provides information to the programmer
whether the cluster optimization would prove benefi-
cial for that program or not. Several parameters are
indicative of whether a cluster would prove as an ad-
vantage or as a penalty. Some of them are the num-
ber of cluster to heap references, allocation site homo-
geneity, the fraction of the objects that are allocated
in the cluster, dynamic growth of clusters that might
contribute garbage within the cluster area. However,
the compiler would require complex pointer analysis
to infer some of this information. Allocating cluster
objects in a separate area brings in the need for addi-
tional barrier code to track cluster to heap references.
Static analysis can be used to eliminate the write barri-
ers wherever unnecessary and hence improve elapsed
times.
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ABSTRACT 
Platform independence is an illusive goal when a system includes libraries which have hardware or low-level 
software dependencies. To move such code to a different platform, the developer is faced with rewriting several 
sections to interface directly with a different library or toolkit. We propose an approach where the code remains 
the same, and the library is replaced ab initio by a machine-independent engine which is retooled into a front 
end and a back end, of which only part of the backend needs to change for each platform. Our starting point is 
the .NET framework’s SSCLI platform, Rotor, and the Views GUI engine, which initally ran only on Windows. 
Views is an XML-based windowing system which provides the functionality of the System.Windows.Forms 
library, missing from Rotor. ViewsQt is a conversion of the original Views project to support a retargetable 
back-end. Experiments have shown that the ViewsQt code is portable, with only a few changes to the C++ 
classes required to compile and execute the code on the Linux and Mac OS X operating systems. On the 
Windows platform, ViewsQt works well with both the .NET Framework and Rotor. This paper describes the 
methodology we developed for porting libraries in general, discusses the case study of ViewsQt, and indicates 
where such work would be applicable for other technologies. Comparison is made with multi-platform toolkits 
such as Gtk+, and .NET’s new XAML notation. 

Keywords 
Platform independence, GUI toolkit, .NET, Qt, Rotor, retargeting methodology, Linux port, Views, XAML 

 

1. INTRODUCTION 
The innovative move of Microsoft to undergo a 
standards process for their .NET framework and C# 
language raised hopes of platform interoperability 
being added to the language interoperability already 
supported by .NET [9]. Apart from portability, 
Microsoft’s implementation of the CLI (Rotor) was 
intended as a basis for experiment and Microsoft 
itself used it in order to test out its ideas on generics, 
which are available in the Gyro add-on, and are now 
planned for the next release of Windows, codenamed 
Longhorn [10].  
The CLI (Common Language Infrastructure) 
included the definition of the C# language and many 

of its key libraries, such as System and 
System.Collections. However, not all .NET libraries 
are included in the standard, with a notable omission 
being System.Windows.Forms, which provides GUI 
capability. This means that developers cannot 
express GUI functionality in their programs (since it 
will not compile) and there is no way, in the 
standard, to hook into the operating system to render 
and handle GUIs even if they could. GUIs are a 
primary need of many programs, but the issue of 
portability extends to third-party libraries as well: 
how would they piggy-back on Rotor? 
Standing back, one can see that the problem is one of 
having invested in developing a program based on a 
particular library, and then finding that the program 
cannot migrate to a new platform, because of the 
library’s reliance on hardware or low-level software. 
If the library is a large and critical one, such as a 
GUI, then any alternative to a complete re-
implementation would be desirable. 
Although this paper will concentrate on GUI 
libraries, other emerging hardware-oriented 
technologies have the same problem of portability. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
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to lists, requires prior specific permission and/or a fee.  
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Among these are tangible user interfaces (TUIs) and 
mobile applications. TUIs integrate digital 
information with everyday physical objects such as 
electronic tags and barcodes. Papier-Mâché [11] is an 
open-source toolkit for building TUIs with a high-
level event model to facilitate portability. CrossFire 
[12] is a third-party product built on top of .NET. 
Crossfire uses a booster to the CLR to enable code in 
VB to run on the compact frameworks used by a 
variety of mobile devices, such as cell phones and 
palmtops. In this way, Crossfire also enhances 
portability.  
Multi-platform GUI toolkits have long been popular 
for enhancing the capabilities of languages and 
packages lacking built-in GUI facilities. Recent 
examples are RAPID for Ada [6], FranTk for Haskell 
[9] and SMLTk for ML [10]. Because these 
languages have no UI capability of their own, they 
adopt the interface of the toolkit, and the programmer 
inserts code to interact with the toolkit directly.  
In the .NET world, there have been similar projects 
to port GUI toolkits onto the CLI. Gtk# is a 
translation by the Mono project of the Gtk+ toolkit 
into C# [1]1. The programmer familiar with Gtk will 
feel comfortable calling the well-known methods, but 
a .NET programmer with a Windows program to port 
could be at a loss. For example, creating a label, 
textbox and button in Gtk# is done with: 
Label label = new Label("Password"); 
Entry entry = new Entry(); 
Button button = new Button("Submit"); 
 
which is quite different to the Windows equivalent 
of: 
Label label = new Label(); 
label.Text = “Password”; 
Textbox entry = new Textbox(); 
Button button = new Button(); 
button.Text = “Submit”; 
 
In other words, Gtk# is not a means for porting 
existing Windows programs via the CLI to the Linux 
platform. Qt# is a similar project intended to provide 
a binding of Qt to C#, and is still under development. 
And of course there is PIGUI which is based on Tcl’s 
TK and is distributed with Rotor. 
This paper addresses the issue of retargeting a library 
across languages and platforms, without rewriting it 
or creating a new wrapper for its programming 
interface. Our contribution is in providing a 
methodology that can be followed for other libraries, 
as well as in identifying potential stumbling blocks 
on the .NET framework, and proposing solutions. 
                                                           
1 Throughout this paper, projects and products whose 

primary source of information is a website are listed at 
the end of the paper, but not referenced in the text.  

The methodology is explained via a case study of the 
life cycle of our platform-independent GUI engine 
Views. We show how we were able to take a library 
dependent on Windows and. via a combination of 
Rotor, Views, our retargeting methodology and the 
Qt toolkit, to  achieve the same GUI functionality on 
other platforms, including Mac OS X and Linux. 
The rest of the paper is structured as follows. In 
section 2 we introduce the retargeting methodology. 
Section 3 briefly describes Views, which is the basis 
for the case study. Sections 4 and 5 look at the 
retargeting process in detail. In Section 6 we evaluate 
the outcome, and in Section 7 discuss related work. 
Views is an ongoing project, so the conlusions in 
Section 8 include mention of late-breaking projects 
and future work.  
 

2. RETARGETING METHODOLOGY 
2.1 Overall plan 
The retargeting methodology we developed is 
explained in the stages shown in Figure 1.  
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(a) Normal operation of a library 

(b) Introduction of GUI specification and engine 

(b) Library replaced by OS-independent toolkit 
 

Figure 1 Stages of the retargeting methodology  
We start off with a program P using a library L 
running on a given runtime R (virtual rachine) and 
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operating system OS which supports L’s low-level 
activity. An example would be a program in C# (P) 
using System.Windows.Forms (L) on the CLR (R) 
on Windows (OS).  
In the first step towards gaining independence of the 
operating system, we introduce a GUI specification S 
(in XML notation) to specify the function of the 
library, in other words the programmer’s interface. 
Instead of the label, textbox and button code: 
Label label = new Label(); 
label.Text = “Password”; 
Textbox entry = new Textbox(); 
Button button = new Button(); 
button.Text = “Submit”; 
 
we would write the XML specification: 
<Label text=’Password’/> 
<Textbox name=entry/> 
<Button name=button text=“Submit”/> 
 
We then replaced the GUI creation and handling 
functions of System.Windows.Forms by this XML 
interface plus the Views engine E. Although this 
phase could run on an alternative runtime R’, such as 
Rotor, it still needs the rendering ability of the 
Windows dll. Thus stage (b) can still only run on the 
Windows OS. This work is discussed in [4]. A 
welcome side effect of the XML notation is that the 
existence of the library becomes program- (and 
therefore language-) independent.  
In the third stage, which is the subject of this paper, 
we take the engine and split it into a front and back 
end, Ef and Eb. The interface between the two parts 
is chosen so that it can operate with an existing 
cross-platform toolkit TK. The system can now run 
on any platform OS’ on which the toolkit runs. In our 
case, we inserted Trolltech’s Qt (TK), which runs on 
the same operating systems that Rotor does, but also 
on Linux (OS’). Thus the retargeting is complete. 

2.2  General retargeting steps 
The methodlogy can be applied in other spheres. The 
three steps to be followed in the process of achieving 
stage (c) platform independence are: 
1. Understand the design and implementation of 

the original system. In our context, the original 
system is the version of Views that relies on the 
Windows dll. In this step our objective is to 
model the contractual agreement between the 
existing components of the Views system, and in 
so doing provide a point of reference for 
implementing this interaction in the retargeted 
version. For example, when the system is given 
the instruction to render a button, positioned 
relative to a textbox, we not only have to ensure 
that a button and a textbox are rendered, but also 
that their relative positioning remains intact. 

2. Extract the common components from the 
original system, and put them into an interface. 
The model of contractual interaction developed 
in the first step needs some (similarly) abstract 
representation in the code. An interface is ideal 
for this purpose, as it allows any appropriate 
implementation to take its place in the run-time 
environment, yet provides enough structure and 
usage information to limit the breaking of the 
contract between the user of the interface and its 
implementer. Typical common components in 
GUI systems would be the XML parser and the 
window and control manipulation mechanisms. 

3. Write a toolkit-specific implementation of the C# 
interface which pulls in the services of the 
extracted common components. Here we take the 
toolkit and translate (or aggregate) its 
functionality to the expectations of the model 
and its interface. It is here that we make sure that 
when the user wants a button, they get a button, 
so to speak. 

We now make this methodology concrete by 
considering our case study, the retargeting of 
System.Windows. Forms to Linux. 
 

3. THE CASE STUDY - VIEWS 
3.1  The objective 
The intent of the Views project is to provide a GUI 
system for the Rotor platform that would share 
Rotor’s platform independence, and enhance it by 
offering programmers the much-needed support to 
provide GUIs with their Rotor applications [3]. We 
were not in the business of duplicating large effort, 
so the intention was always that Views would rely on 
an existing underlying GUI renderer to actually 
display the GUI. When running on Windows, or on 
Rotor on a Windows platform, Views makes use of 
the System.Windows.Forms dll to perform this 
function.  
From the outset of the Views project, it was 
envisaged that this reliance on one platform would be 
removed by refactoring the Views code so that an 
independent toolkit (e.g. Tcl/TK or Qt) could be 
plugged into the system, allowing it to run on the 
platforms these toolkits support (which, in most 
cases, are also the platforms that Rotor supports). In 
terms of the user's code, the interface would remain 
the same (including the XML notation). 

3.2  Overview of Views 
Views allows the user to specify a GUI in a simple 
and easy-to-learn XML notation, and then to 
integrate the application with this GUI through an 
elementary interface to the core engine. No code 
generation takes place, and the GUI specification can 
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be stored in an external file so that it will not 
obfuscate the application's logic. A side effect of 
keeping the GUI specification and application logic 
separate is that the programmer can make simple 
changes to the controls in the specification (e.g. their 
layout, or even substituting a drop-down list for a 
collection of radio buttons) without having to 
recompile the program. From the opposite 
perspective, the GUI can be reused by a number of 
applications that require a similar front-end while 
presenting different results (e.g. a calculator program 
that prints out expressions in either standard 
algebraic or reverse Polish notation). More 
information about the use and implementation of the 
Views project can be found in [2,3,4]. 
The Views interface consists of two parts, namely  

• the Views notation for specifying a GUI in 
XML, and notation, and 

• the Views engine which provides an 
interface to the programmer. 

We now take a brief look at each of these, to give an 
idea of the scope of work involved in transforming 
the interfaces to abstractions of an arbitrary 
windowing toolkit. 

3.3 The Views notation 
A typical GUI specification in Views consists of two 
types of tags – grouping and control. A third type, 
position tags, can also be used for finer layout 
control. Grouping tags may contain nested groupings 
and controls, and dictate a specific layout of these 
sub-groups or controls.  
 

static string specEn = 
  @"<form Text='Currency calculator'> 
  <horizontal> 
    <vertical> 
      <Label text='Paid on hols'/> 
      <Label text='Charged'/> 
      <Label text='Exchange rate is'/> 
      <Button name=equals text='='/> 
    </vertical> 
    <vertical> 
      <Textbox name=eurobox/> 
      <Textbox name=GBPbox/> 
      <Textbox name=ratebox/> 
      <Button name=clear text='Reset'/> 
    </vertical> 
  </horizontal> 
</form>"; 

 
Figure 2 A Views specification 

  
For example, the <horizontal> group specifies 
that all groups and controls contained within it be 
placed side by side from left to right. Each tag has 
some valid attributes, among which are numeric 
values, strings, colors, alignment values and size 

measures. Figure 2 shows a typical Views 
specification. 
To create a GUI, the programmer passes the 
specification to an instantiation of the Views Form 
class, as in:   
Views.Form f = new Views.Form(specEn); 
 
Figure 3 shows the corresponding GUI as drawn by 
the Windows renderer.  
 

 
 

Figure 3  A GUI produced by Views 

 
3.4 The Views programmer interface 
Views presents a small, yet complete number of 
functions the user can use to query and alter the 
controls defined in the specification, and to react to 
simple “clicked” or “moved” events.  
There are three variations of Get methods, namely 
GetControl, GetText and GetValue. The GetControl 
method is the means through which the application is 
informed of events occurring in the GUI. GetControl 
blocks until an event occurs, upon which it returns 
the name of the control where the event occurred. 
The GetText method accepts the name of a control 
that can display text (e.g. labels, buttons, textboxes), 
and returns the text that control is currently 
displaying as a string. GetValue is similar, and is 
used for trackbars, checkboxes etc. Two of the three 
types of Put methods, PutText and PutValue, are the 
logical counterparts of the Get methods. Views also 
provides a PutImage method. Part of the program 
associated with the specification above is shown in 
Figure 4. 
A feature of Views is that is not “black box”: any of 
the controls can be accessed by name, and their 
attributes changed. For example, to change the text 
of the equals button in the form f from “=” to 
“equals”, and colour it yellow, we use: 
Button b = f["equals"];  
b.Text = "Compute"; 
b.BackColor = Color.Yellow; 
 
Using the C# implicit operator facility for 
overloading parenthesees, implicit conversions are 
defined for all controls that may be used inside a 
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Views form, so that casting to the data type of the 
extracted control is unnecessary. 
 
 for (string c = f .GetControl();     
     c!=null; c = f .GetControl()) { 
  switch (c) { 
  case "reset": 
    euro=1; GBP=1; 
    f.PutText("eurobox", 
              euro.ToString("f")); 
    f.PutText("GBPbox", 
              GBP.ToString("f")); 
    break; 
  case "equals": 
    euro=double.Parse( 
         f.GetText("eurobox")); 
    GBP=double.Parse( 
         f.GetText("GBPbox")); 
    f.PutText("ratebox", 
         (euro/GBP).ToString("f")); 
    break; 
   default: break; 
  } 
} 

 
Figure 4  Event handling in Views 

 
3.5 Why Views? 
If the goal is to retarget existing programs based on 
Windows, why is a new library such as Views a good 
idea? Firstly, the XML front-end achieves language 
portability, and its notation is quicker and easier to 
write and modify than the equivalent method calls 
and property accesses of a traditional GUI library. 
An alternative to coding GUIs by hand is to use a 
GUI builder to lay out the window, and have it 
generate the embedded program code, as Visual 
Studio does. However, large amounts of generated 
and embedded code are considered to be both 
confusing and error-prone. 
An alternative is to have the GUI builder generate the 
XML, and we have such a system for Views in 
prototype. XAML takes this approach too, as does 
RAPID [5]. A comparison of Views with other XML 
based systems is undertaken in section 7.  
Although Views was primarily aimed at beginning 
programmers [3], its methods and appeal extend 
wider, as does its use as a case study for retargeting. 
 

4. FRONT-END FACTORIZATION 
In the original, Windows-specific, implementation of 
Views, the process of converting a GUI specification 
to a visible window proceeded along the lines shown 
in Figure 5. The original design of Views 
incorporated many modular elements, the majority of 
which are toolkit independent. These modules 
represent important aspects of the system's 

behaviour, and should therefore be carried across to a 
portable version.  
However, there are elements of the programmer 
interface to the engine that are very tightly coupled to 
the Windows Forms library, and cannot be migrated 
without change. For example, steps 1-3 in the 
diagram that involve processing the XML and 
building a tree, are platform-independent. However, 
laying out and displaying the GUI will depend on the 
renderer and, while GetControl is free of any 
reference to the Windows Forms Library classes, it is 
indirectly dependent on synchonizing with their 
event-triggering. 
 
 Application 
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Figure 5  Control flow in Views 

 
When considering cross-platform realization of 
Views, we can see that there are components that 
straddle the imaginary line between the front-end and 
the back-end. For example, the methods defined in 
the programmer interface are accessible to the 
application, yet are dependent on the toolkit. In order 
to successfully implement a toolkit-independent 
version of Views, we need to divide these grey-area 
components in such a way that the overall separation 
between the front- and back-end is solid. This will 
allow the back-end to be interchangeable, effectively 
enabling us to run Views on top of any toolkit. 
The way we chose to implement this separation was 
to create a C# interface, called IForm, which declares 
all the Views API methods accessible to the 
application, as in Figure 6.  
In the Windows.Forms implementation of Views, the 
XML-tree traversal builds the window by 
instantiating the controls, placing them and hooking 
up the event handlers.  
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namespace Views { 
  public interface IForm { 
    void HideForm(); 
    void StartApplication(); 
    String GetControl(); 
    String GetText(String name); 
    String GetText(String name, 
         int index); 
    void PutText(String name,  
         String text); 
    void PutText(String name,  
         int index, String text); 
    void PutImage(String name,  
         String filename); 
    int GetValue(String name); 
    void PutValue(String name,  
         int value); 
  } 
} 

 
Figure 6 The IForm interface 

 
In the toolkit independent version, we do not rely on 
the back-end to parse or traverse the XML, so there 
is a requirement to construct a tree comprising 
toolkit-agnostic nodes which the back-end can 
traverse and interpret. The nodes are instances of a 
new class, Ctrl, which encapsulates information 
regarding the name, value, attributes and children of 
a tag in the XML specification. The tree of Ctrl 
nodes is built by another new class, Parser, which 
reproduces all the XML-processing code from the 
original Views.Form class.  
Iform replaces Form as the class used to construct a 
GUI window, as in: 
Views.Iform f =  

new QtForm.QtForm(specEn); 
 

An implementation of the IForm interface can use the 
Ctrl tree to construct control instances specific to the 
toolkit, without having to be aware of the original 
XML tree. Thus we have successfully separated the 
front-end and back-end of Views. The XML has 
been cleared of all references to toolkit classes, and 
the programmer interface has been placed behind a 
clean interface that deals only in names and integer 
values.  A reusable abstraction of the controls and 
their attributes was created to purge the back-end 
code of any references to the XML structure. 

 
5. BACK-END IMPLEMENTATION 
For our test implementation of the retargetable Views 
framework, we chose Trolltech's Qt toolkit. Qt is a 
complete application development library for C++, 
including APIs for GUI rendering, XML parsing, 
database connectivity and much more. Full details of 
our implementation are given in [17]. Some of the 

issues that relate specifically to .NET with Qt are 
mentioned here. 

5.1   Language interoperability 
Since Qt is written for, and in, C++, an 
interoperability layer (written in C#) that implements 
the interface is required.  Thus we have a C# class, 
QtForm, that implements IForm, but delegates most 
of its functionality to a wrapper class, QtWrapper.  
The latter consists of a set of simple wrapper 
methods that correspond with the methods defined in 
IForm, and a set of private, static methods that link 
with externally defined C++ methods.   
Two additional issues were solved at this point. First, 
because C# and C++ have different mechanisms for 
dealing with strings, it was necessary to write 
marshalling methods that convert between the two.  
The second aspect is the entry-point specification in 
the DllImport attribute attached to the GetText 
method. The C++ linker provides a specially encoded 
string for every method declared to be externally 
visible in the source code, called its entry-point. This 
string can be used by other languages to discover the 
method within the dll that is produced from the C++ 
source code. Unfortunately the entry-point is 
compiler-specific, and also differs from OS to OS. 
Thus, until a truly platform independent entry-point 
specification mechanism is found, the QtWrapper 
class will require adjustment for every 
platform/compiler combination to which ViewsQt is 
ported. 
Returning briefly to the implementation of the IForm 
interface, QtForm, we can now easily invoke the 
methods of the C# QtWrapper class, blissfully 
unaware of the underlying C++ implementation: 
public String GetText( 
       String name, int index) { 
  return this.wrapper.GetText 
       (name, index); 
} 
 

5.2 Garbage collection 
When writing an interoperable program it is vital to 
ensure that references to elements in one language 
made in the other are kept valid for the lifetime of 
that reference. When one of the languages is 
managed (i.e. has built-in garbage collection), this 
task adopts an extra degree of complexity – the 
rearrangement of the heap will invalidate any 
references that weren't present on the stack during 
the collector's walk, which includes those held by the 
other program. In this case, the referenced object is 
still on the heap, indicating that a reference still 
exists within the managed program. More serious is 
the situation where the unmanaged program holds the 
only references to an object on the managed heap. 
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The garbage collector will happily free the heap 
space, once again invalidating the unmanaged 
reference. 
There are two areas of ViewsQt where careful 
memory management is necessary to prevent errors. 
The first is the passing of strings between C# and 
C++, which happens in the QtWrapper and QtCtrl 
twins. The second is the pointer to the C++ QtCtrl 
instance held by the C# QtCtrl instance. In the 
context of the string-passing, a string passed from C# 
to C++ must not be garbage collected before the C++ 
code has had enough time to copy the contents to its 
own heap. The QtCtrl issue is slightly trickier. In this 
case, we wish to prevent garbage collection on the 
C# side so that we can tidy up the C++ heap at the 
end of the program.  
In both cases, we stop the C# garbage collector from 
collecting the objects by obtaining instances of the 
System.Runtime.InteropServices.GCHandle class for 
each object. In doing so, the garbage collector treats 
the objects as if they had been pinned down in the 
heap – they cannot be moved or removed. We 
maintain a list of these GCHandle instances so that 
we can free them at an appropriate point in the 
execution. We don't mind the GCHandle instances 
themselves being moved around, as long as the 
objects they point to stay put. 

5.3  Handling Events 
There are two kinds of event handling which need to 
occur in an implementation of Views. The first is an 
internal mechanism that responds to the push-based 
events received from the GUI controls. A user of 
Views is shielded from this implementation by the 
second kind of handler, a pull-based (or polling) 
mechanism implemented in the GetControl method.  
These two event handler types are complementary – 
when the GUI triggers an event, the internal handler 
looks up the name of the source control and forwards 
it to the GetControl. The application can then handle 
the event suitably. Figure 7 illustrates the two kinds 
of event handling interacting with each other. 
In (1) the user’s program calls GetControl, which 
blocks indefinitely. In (2) the operating system’s 
windowing system interprets a user’s gesture with 
the mouse or keyboard as an event, and passes it onto 
the event queue. The toolkit, having registered with 
the queue to hear about such events, picks up the 
information, encapsulates it in an Event object and 
passes it onto views in (3).  Views extracts the name 
of the user-interface control (in this case button X) 
from the event information and passes it, in (4), to 
the user’s program as the return value of the 
GetControl method. 

In ViewsQt, we instrument push-based event 
handling by providing “slot” methods that are 
invoked when a control's “signal” is emitted. This is 
not unlike C#'s event implementation, where a multi-
cast delegate (slot) is associated with a specific event 
(signal) published by an object. (In both C# and Qt, 
any object may fire events.)  While it is possible to 
create a separate method for each kind of signal that 
each kind of control emits, we felt it a better 
abstraction to filter the events in such a way that a 
single eventHappened signal is emitted that contains 
a reference to the name of the control that originally 
emitted the event.  
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Figure 7  Event handling 

This brings us to the implementation of the pull-
based event handler. When a button is clicked, for 
example, the clicked method defined in QtWrapper is 
invoked. This method simply invokes a function 
pointer, listener, that is defined in the QtWrapper 
class. This function pointer references a method 
signature assigned to it in the SetListener method. 
The constructor for QtForm invokes the SetListener 
method defined in the C# QtWrapper class, passing it 
a variable called callback. This variable is in fact a 
C# delegate that refers to the ClickHappened defined 
in the QtForm class. The delegate is of type 
Delegate, which is declared in the C# QtWrapper 
class. The declaration of Delegate and the 
instantiation of callback are shown below: 
public delegate void Callback( 
    [In] IntPtr name); 
QtWrapper.Callback callback = new  
    QtWrapper.Callback(ClickHappened); 
 
The C# QtWrapper class imports the setListener 
method from its C++ equivalent as follows: 
static extern void setListener( 
    [In] IntPtr ptr,  
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    [In, MarshalAs( 
     UnmanagedType.FunctionPtr)]  
     Callback l); 
 

The MarshalAs annotation specifies that the 
reference to the Callback passed to setListener 
should be converted to a native function pointer. This 
amazingly simple mechanism allows native C++ 
code to easily invoke methods defined in C#. A 
proviso is that the method signature in C++ must 
specify its method-pointer argument using an 
equivalent descriptor.  

5.4  Matching the libraries 
In retargeting a library via a third party toolkit, it is 
inevitable that not all features offered in the original 
will be matched in the other. We were fortunate that 
there was only one such disparity between Forms and 
Qt, the DomainUpDown, which displays a single 
string from a list of strings, with up/down buttons to 
select other strings in the list. The closest equivalent 
in Qt is the QSpinBox, which by default displays a 
single integer in a range, with up/down buttons to 
select the next/previous value. We found it was 
possible to achieve a mapping by extending the class 
and overriding some methods. The code the user 
writes remains unchanged despite this underlying 
change, which meets the requirement that retargeting 
Views should not change the front-end syntax or 
semantics. 

5.5 The Linux port 
Since Linux has such a huge following, expecially in 
academia, it was a primary objective to get Views 
onto this platform. Once Views had been retargeted 
to Qt, thus eliminating the dependence on 
Windows.Forms, it could be run on Rotor (and all its 
platforms) as well as Mono (and its platforms). A 
group of students undertook the port to Linux, which 
involved writing the make files and resolving issues 
of paths and error messages. It was interesting that 
the port to Debian Linux did not work immediately 
on other Linux versions, such as Gentoo and 
Mandrake, and work is progressing on those.  
 

6. EVALUATION 
6.1 Example 
Figure 8 (a) and (b) show a GUI with a variety of 
controls as rendered by ViewsQt and Views, both 
running on Windows. The program is taken from 
Chapter 5 of [3]. The back-end abstraction can be 
seen to work, at least in the Qt case. That is, 
constructing an IForm instance that mediates 
between the Views front-end and objects specific to 
the back-end GUI toolkit is not difficult, and most of 

the retargeting effort lies in implementing the 
objects. 
Furthermore, these objects are not especially 
complex, but it is important to instrument all the 
functionality expected by the front-end, and to 
accommodate issues of interoperability between 
languages. 
As mentioned above, we tried as far as possible to 
keep the code that a user of Views would write the 
same across both implementations. This was not 
possible in the case of the main application thread, 
but in such cases a balance must be struck between 
that which we would rather not to do and that which 
we cannot do. Adding a single line of thread-related 
code to the application forms this balance.  

6.2 Other platforms and languages 
Using Rotor as the base CLI, ViewsQt was 
successfully run on BSD UNIX and MacOS X. It is 
also worth reiterating that because of the language 
interoperability of .NET, ViewsQt, although written 
C# and C++, is available to programmers writing 
applications in other .NET languages. Specifically, it 
has been tested with programs written in C++ and 
Visual Basic. So far, the programs run correctly, and 
no changes to Views have been required. 

6.3  Choice of toolkit 
A key component of our methodology is the straight 
use of an existing multi-platform toolkit, rather than 
any writing or re-tooling. Three commercially 
available toolkits are Tcl/Tk, Gtk+ and Qt. In the 
planning phase of the retargeting project, Tcl/TK was 
considered as a viable option for the implementation. 
However, we chose to use Qt as Tcl/TK involved not 
only a significant performance trade-off (Tcl is 
always interpreted), but also a steeper learning curve 
in order to become conversant with Tcl's syntax and 
semantics. Qt, being entirely based on C++ and 
presenting a very natural programming interface, was 
the better choice for our purposes. However, one 
disadvantage to using Qt is that a development 
license must be purchased for the Windows version 
(Qt/Windows) in situations not covered by an 
academic licence or where the 30-day trial period is 
insufficient. 
An important factor in choosing a toolkit is that it 
must be as multi-platform as possible. In this respect, 
Gtk+ would also have been a possibility. However, 
the toolkit is completely hidden from the developer, 
therefore there is nothing to be gained in repeating 
the exercise with a second toolkit. 
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Figure 8 A program in ViewsQT and Views 
 

7. RELATED WORK 
In looking at related work, we concentrate on how 
our methodology relates to other similar attempts to 
provide cross-platform libraries. Predictably, the 
major effort in this regard has centred on GUI 
interfaces and toolkits, thus this section focuses on 
efforts in this area..  

7.1 Declarative UI models 
A key component of the retargeting strategy is the 
introduction of XML for the specification of the 
GUI. Two examples of the genre of declarative user 
interface models are IUP/LED [12] and CIRL/PIWI 
[7]. In both cases, a declarative language (LED and 
CIRL) was provided to describe the user interface in 
terms of its controls and layout. On the API front, 
they contain functions for hooking events signaled 
by the interface to call-back methods defined in the 
user’s application, and functions to query and alter 
attributes of the controls displayed. The call-back 
event model is used so that the usual native 
windowing toolkit’s events are filtered down to those 
relevant to the application.  
Both CIRL/PIWI and IUP/LED were designed from 
the start to abstract the GUI description from the 
underlying platform’s toolkit, and to provide a 
similar look-and-feel across the various platforms. 
The creators of both projects, however, lament the 
absence of an existing toolkit that provided a 

common look-and-feel across various platforms 
(both projects were born in the pre-Java and before 
any widely-accepted platform-independent toolkits, 
such as Qt and Tcl/TK, were available). Our work on 
the ViewsQt project was not hindered by these 
concerns because of the high-quality, platform 
independent toolkits available to us today. 

7.2  XAML and XUL 
Views belongs to the concrete representation model 
subdivision of the declarative user interface models, 
which describes user interfaces in terms of the 
controls displayed to the user, their composition and 
their layout. Such declarative user-interface models 
are not new [8,14], and XML is broadly being 
adopted as the favourite notation for these languages. 
Two modern, XML-based models are XUL and 
XAML.  
XUL is the model used by the Mozilla family of 
browsers. A feature of XUL is the ability to create 
additional custom widgets using a related language 
called the Extensible Bindings Language (XBL). 
XUL is certainly cross platform, but its primary 
disadvantage is that it is tied to JavaScript for the 
event handlers. 
XAML is the model Microsoft is making available 
with Version 2 of the .NET Framework, and is also 
the foundation for the Avalon windowing system 
component of the Longhorn version of Windows. 
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XAML is very similar to Views in that rides on the 
language interoperability of .NET. Unlike Views, 
there are no push-based event methods, and all 
handlers are also indicated as method names in the 
XML. Of course, Microsoft does not intend that 
anyone would actually write XAML: it is more the 
output notation from the GUI-builder of Visual 
Studio. There is nothing intrinsically cross-platform 
in XAML, since it still relies on 
System.Windows.Forms for events and rendering. 
Thus XUL and XAML are variations of the stages 
represented by Figure 1(a) and (b). The big 
difference between them and Views is that both XUL 
and XAML allow (but do not compel) the 
programmer to embed event-handling code 
(JavaScript, and any .NET language, respectively) 
within the user interface declaration. The Views 
model, on the other hand, provides an engine that 
intercedes on behalf of the GUI to signal events to 
the host application. While the functionality offered 
by XUL and XAML is attractive, we contend that the 
separation of concerns evinced by Views’ engine-
based approach is cleaner and offers greater 
maintainability and ease-of-use to the programmer 
and designer. 

7.3  Other multiplatform toolkits 
We have already mention in Section 1 the efforts to 
extend platform independence beyond GUIs [11, 6] 
and the ports to Mono of Gtk# and Qt#. It will be 
interesting to see if the idiom of these toolkits 
becomes so entrenched with the .NET Linux 
community, that XAML will not in the end gain wide 
acceptance. 
 

8. CONCLUSION AND FUTURE WORK 
ViewsQt is a conversion of an XML-based GUI 
library to support a retargetable back-end. The 
project involved extracting the common front-end 
elements of XML checking, parsing, and abstract 
control creation from the original Views engine, and 
replacing references to the Windows Forms library 
classes with calls to a C# interface. This interface 
hides the toolkit-specific back-end components 
behind a small (and easy to learn) set of methods. 
Finally, we created an implementation of this 
interface for the Qt windowing toolkit, and provided 
a set of classes to delegate calls from the C# objects 
to their counterpart C++ objects. 
Experiments have shown that the ViewsQt code is 
portable, with only a few changes to the C++ classes 
(related to interface inclusion and entry-point 
specification) required to compile and execute the 
code on the Linux and Mac OS X operating systems. 

On the Windows platform, ViewsQt works well with 
both the .NET Framework and Rotor. 
Future work on ViewsQt will entail smoothing out a 
few wrinkles with regards to the colour and font 
properties of the controls, and perhaps adding 
support for more controls that the Views 
specification does not cater for (e.g. menus, status- 
and tool-bars). Possibly, an implementation using a 
second toolkit such as GTK+ will be undertaken to 
prove the actual retargetability of the front-end. 
It is also our intention to exercise the methodology 
here on libraries other than simple GUIs. Examples 
would be speech synthesis, or the tangible user 
interfaces, which are attracting attention.  
At the time of writing, an exciting development is the 
complete rewriting of Views in .NET 2, based 
entirely on reflection. The prototype system is 
operational, and is about one-sixth the length of the 
original because actual controls are picked up 
directly by name from the XML specification, rather 
than going through a program transformation. We 
will be investigating whether the same leverage can 
be obtained for Qt, and hence for any third part 
toolkit. 
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ABSTRACT 

With the growing popularity of powerful connected mobile devices (PDAs, smart phones, etc.), an opportunity to 

extend existing distributed applications with mobile clients emerges.  The Microsoft .NET Compact Framework 

offers a development platform for mobile applications but is lacking support for .NET Remoting, which is the 

.NET middleware infrastructure for inter-application communication.  The current version of the .NET Compact 

Framework (1.0, SP2) does support communication using web services.  Unfortunately this support cannot be 

used to seamlessly integrate with an existing .NET Remoting application.  In this paper, we propose an approach 

that leverages the present support for web services to make such integration possible.  Our solution dynamically 

maps back and forth between .NET Remoting and web service messages.  An implementation of this solution 

resulted in a set of tools and components that can readily be used to start developing mobile clients that interop-

erate with existing .NET Remoting applications. 

Keywords 

.NET Remoting, Web Services, .NET Compact Framework, Interoperability, Mobility 

 

1. INTRODUCTION 
.NET is a Microsoft brand name that encompasses a 

whole array of technologies.  A few key terms associ-

ated with this brand name are connected systems, 

smart devices and web centric computing.  These 

terms could be categorized under the more general 

denominator of distributed systems.  In short, .NET 

offers a complete package of tools and technologies 

for developing applications, especially targeted to-

wards distributed systems. 

The most important part of .NET is the .NET Frame-

work [Mic].  It consists of an execution environment 

for applications and a comprehensive class library.  

To support the development of distributed applica-

tions, .NET Remoting [Mcl03] was included.  This is 

an extensible middleware infrastructure intended to 

simplify the development of distributed systems.  It is 

comparable to Java RMI [Sun]. 

The .NET Compact Framework [Wig03] is a 

slimmed down version of the .NET Framework made 

to run on embedded devices like PDAs or smart 

phones.  To take into account the resource limitations 

of these devices, a dedicated execution environment 

was crafted and some classes and methods of the 

standard .NET class library were removed.  The en-

tire namespace of the Remoting classes was removed.  

As a consequence, the only high-level communication 

facility present in the .NET Compact Framework is 

provided in the form of a number of classes to sup-

port the invocation of web services. 

Web services can be interpreted in a broad sense as 

all means by which a service can be offered by one 

application and used by another by leveraging Inter-

net technologies.  When we refer to web services 

[W3c02], [Boo03], we specifically refer to SOAP 

(Simple Object Access Protocol) [Box00] over HTTP 

and WSDL (Web Service Description Language) 

[W3c03].  SOAP is the XML based protocol of the 

messages sent by a web service, while WSDL is the 

Permission to make digital or hard copies of all or part of 
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XML language used to describe the interface offered 

by such a service. 

The absence of .NET Remoting in the .NET Compact 

Framework puts some serious constraints on the de-

velopment of connected smart clients when these 

clients need to access remote objects on an existing 

server.  These constraints, which are further discussed 

in the next sections, cannot be overcome by using the 

standard web services support available in the .NET 

Compact Framework. 

In this paper, we focus on the problems that are asso-

ciated with the development of new smart clients that 

need to be integrated with existing .NET Remoting 

applications and we offer a solution to these prob-

lems.  The rest of the paper is organized as follows.  

Section 2 briefly introduces the .NET Remoting and 

web services infrastructure for the purposes of formu-

lating the problem in more detail and it ends with a 

list of requirements for a good solution.  Section 3 

gives an overview of the basic infrastructure that will 

be used to solve the problem, while Section 4 ex-

plains additional mechanisms employed to support 

distributed garbage collection and remote events.  

Section 5 gives an overview of the implemented con-

cepts and presents the results of a small test case.  In 

Section 6, some related work is presented and finally, 

Section 7 concludes the paper with suggestions for 

future improvements. 

2. DISTRIBUTED APPLICATIONS IN 

.NET 
As mentioned in the introduction, .NET offers .NET 

Remoting and web services for developing distrib-

uted systems.  This section introduces the parts of 

these two technologies that will be used further in the 

paper and it points out the constraints involved when 

using web services instead of .NET Remoting.  To 

conclude this section, a set of requirements for a solu-

tion that overcomes some of these constraints is 

given. 

.NET Remoting 

.NET Remoting simplifies the development of dis-

tributed systems by offering an extensible 

infrastructure that permits objects not residing in the 

same memory space (or even on the same host) to 

communicate with one another in a transparent fash-

ion.  This implies that every message sent to a remote 

object will have to be delivered through an alternative 

(non stack-based) mechanism.  Therefore, each mes-

sage from a local (client) object to a remote (server) 

object will be intercepted using a proxy pattern.  A 

message, which can for example represent a method 

or constructor call, will be transformed into an IMes-

sage object by the proxy.  This object contains all the 

necessary information needed to reconstruct the 

original call. 

After passing through the proxies (at this point there 

are two of them), the IMessage object is further 

propagated through the .NET Remoting infrastruc-

ture.  This part contains several so called sink chains, 

which are series of concatenated objects, each given 

the opportunity to modify the IMessage object as in a 

pipe-and-filter architecture. 

The sink chains provide the main extension mecha-

nism by enabling the insertion of custom sink objects.  

Some sink objects are provided by default.  They 

include a formatter sink to serialize the IMessage data 

and a transport sink to take care of the actual message 

transport. Each sink chain, containing instances of 

these two default sinks, is part of a channel.  The 

channels are the first components in the .NET Remot-

ing infrastructure that get to see incoming messages 

and the last to see outgoing messages. Each channel 

is named after its location and the transport mecha-

nism that it supports (e.g. TcpClientChan-

nel).

 

Figure 1. A limited overview of the .NET 

Remoting architecture 

Another set of sink chains exists besides the ones 

belonging to the channel sinks.  Depending on the 

chosen sink chain, different categories of IMessages 
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will be intercepted.  By choosing the server object 

sink chain, only IMessages originating from a speci-

fied object will be seen.  On the other hand one can 

choose a channel sink chain (discussed in the para-

graph above) to intercept every message from every 

object that uses that channel. 

The extension mechanism, using custom sink objects, 

can be used to add, for example, encryption or log-

ging facilities to the standard .NET Remoting 

functionality.  A more exotic extension could be one 

that provides a new serialization mechanism. 

A high-level overview of a limited part of the .NET 

Remoting architecture can be found in Figure 1.  It 

shows the possible flow of an IMessage through the 

sinks in a channel, when both client and server are 

using .NET Remoting.  An IMessage is created in the 

proxy on the client and travels through the infrastruc-

ture (full lines) until it arrives at the first Custom 

Channel Sink, which is a specialized version of a 

message sink.  Each custom sink shown in the figure 

actually represents either one custom message sink or 

a chain of custom message sinks (only one is shown 

to save space).  The message then moves further to 

the Client Formatter Sink, where it is serialized.  Af-

ter that, another series of Custom Channel Sinks and, 

at last, the Client Transport Sink are passed.  This last 

sink physically sends the message to the server using 

some kind of network technology.  When the message 

is received at the server, an equivalent chain of sinks 

is passed on the server until the call to the actual ob-

ject can be executed.  A response will, in turn, be 

represented by an IMessage that travels in the oppo-

site direction (dotted lines). 

.NET Remoting also offers solutions for considera-

tions such as object lifetime management and object 

activation, but these will not be discussed here. 

Web services 
One of the advantages of using .NET Remoting, be-

sides its extensibility with message sinks, is its direct 

support for offering web services through its infra-

structure.  Remote objects can be accessed – in a 

limited way – using web services, meaning that all 

.NET Remoting extension mechanisms can be used 

while handling a web service request.  This means 

that the whole client side in Figure 1 could be re-

placed by a web service client.  However, some 

functionality, as it is available when using a .NET 

Remoting client, will be lost due to the inherent limi-

tations of standard web services [Alm01]. 

The main limitation in this case is that they have a 

procedure oriented architecture instead of an object-

oriented architecture.  The full fidelity of an object 

graph at a server cannot be seen by a web service 

client because object references cannot be passed.  

When accessing a remote object through a web ser-

vice in .NET Remoting, the caller can only call 

methods that return primitive or structured data-types.  

As a consequence, he cannot get out of the scope of 

the initial object because any call to a method, which 

would normally return a reference to an associated 

object, will only return the data contained in the asso-

ciated object and not the object reference itself. 

In summary, when web services are used to access 

remote objects, the objects need to be published on 

well-known URLs in advance and they may not be 

removed during the application’s lifetime.  Other 

objects that are created during the operation of the 

system will not be accessible.  Consequently, an ap-

plication offered as a set of web services has to have 

a static object graph, at least for the objects published 

as web services.  More specifically an object that is 

published as a web service should not be deleted as 

this would result in, unanticipated, access faults.  In 

addition newly created objects cannot be directly 

accessed by web service clients.  Mind that data pre-

sent in newly created objects can be accessed 

indirectly through methods from another object that is 

published as a web service. 

A web service is generally accessed using a proxy in 

order to provide for some transparency and to keep 

the programmer from having to do al lot of cumber-

some coding.  There are standard tools available to 

generate these proxies for a remote object.  Whenever 

the tools encounter a method that returns or accepts 

an object, this object will be mapped to a complex 

SOAP data structure.  Consequently, for these prox-

ies the very notion of an object disappears. 

An additional restriction is the inability to let the 

server initiate communications, for example in the 

case of notifying the client of an event occurrence.  

Client and server are not peers as is the case with 

.NET Remoting. 

These limitations, along with the dynamic nature of 

most object graphs, make the web service support for 

.NET Remoting inadequate for developing smart cli-

ents with the same capabilities as full .NET Remoting 

clients.  This becomes even more important when 

extending an existing .NET Remoting application that 

was not originally designed for extension to web ser-

vices. The focus of this paper is on extending such 

applications. 

In the next subsection, we state the requirements that 

need to be fulfilled by a useful solution. 

Requirements 
Suppose a server running .NET Remoting is exposing 

some of its objects for remote access.  All .NET Re-

moting clients can access these objects as if they were 

local to them.  If one wants to port such a client to 
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run on a smart device, major problems will occur 

because, apart from web services (with their already 

discussed shortcomings), the .NET Compact Frame-

work lacks support for accessing these remote 

objects.  Therefore we have to figure out an alterna-

tive approach for interacting with remote objects that 

offers most of the .NET Remoting capabilities.  A 

concrete list of the requirements we expect a good 

solution to meet is given here: 

1. make the object graph on the server navigable 

from the client; 

2. enable the client to refer to a specific object on 

the server; 

3. enable method calls on remote objects (with ob-

ject references both as parameters and as return 

type); 

4. make interactions as transparent as possible and 

hide communication details; 

5. enable callbacks from the server; 

6. enable fast development of new clients; 

7. minimize the impact on existing applications. 

These requirements need to be fulfilled by reusing 

large parts of the already available infrastructure on 

both the client and the server platform.  The client 

implementation must take into account the typical 

limitations of embedded devices (small memory size, 

limited processing power, etc.).  This last requirement 

makes the porting of the whole .NET Remoting infra-

structure to the .NET Compact Framework an 

unrealistic option. 

3. USING WEB SERVICES TO 

ACCESS REMOTE OBJECTS 
In this section we explain the approach we take to 

making remote objects available to clients who run 

the .NET Compact Framework.  Requirements 1, 2, 3 

and 4 will be addressed here.  Requirement 5 will be 

discussed in Section 4 while requirements 6 and 7 

will be addressed throughout all the next sections and 

especially in Section 5. 

In the current section we will explain how URLs can 

be used as object references and web services to en-

able basic communication. 

Basic approach 
As mentioned before, .NET Remoting can publish a 

degenerated version of the public interface of a re-

mote object through a web service on a well-known 

URL.  We will use this capability and modify the way 

of using web services to overcome their inherent limi-

tations.  The envisioned idea in this paper is to make 

the publication of a remote object as a web service 

happen dynamically whenever a client requests an 

operation which returns a remote object.  Further-

more, to enable navigation to another object, the 

URL that uniquely identifies that remote object will 

be passed in SOAP messages.  This will in fact indi-

cate the web service of that object though it can be 

mapped one-to-one onto the actual object, effectively 

replacing the real object reference. The idea is visu-

ally represented in Figure 2. 

The figure presents a graph of three interconnected 

objects, objA, objB and objC.  The starting object 

objA will be accessible using a web service on a well-

known URL (1).  By invoking methods on this object, 

one can navigate to the other objects in the graph as 

follows.  Whenever the client calls a method that 

should return a reference to another object (which 

cannot be transported using standard web services), 

this object will be exposed through a web service.  

The URL to reach this service will instead be re-

turned to the client as a substitute for the real object 

reference.  Using this URL, the client can access the 

 

Figure 2. Dynamically exposing objects as web services. 
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new object (2).  In this way every object in the graph 

can be reached (3), effectively enabling navigability. 

To keep object access as transparent as possible to 

the client, each remote object will be represented by a 

proxy object to hide communication details.  In this 

way the client thinks it is working with local objects, 

which basically is what .NET Remoting is also ac-

complishing. 

This approach will require adjustments on both the 

client (proxies) and the server (.NET Remoting ex-

tensions).  In the next section, we present an 

elaboration of the general idea by using a method call 

scenario. 

Remote method calls 
To make invocations (made by the caller on the cli-

ent) transparent, two proxies will collaborate to 

represent a remote object on the client.  The first 

proxy, from here on called the transparent proxy will 

mimic the interface of the remote object.  The second 

proxy referred to as the real proxy, will hide commu-

nication details.  The names chosen for these proxies 

were inspired by the names of the proxies in .NET 

Remoting.  In this subsection we refer only to the real 

proxy.  These two proxies reside on the client.  The 

server side will also need an extension to be able to 

handle the client’s requests.  This extension will be a 

custom message sink object, inserted on top in the 

server channel sink. 

The real proxy can be partially generated by extract-

ing the interface of its corresponding class.  However, 

some modifications to this interface are necessary 

when generating the proxy.  These have to do with 

the limitations of web services concerning the trans-

portation of object references.  As mentioned in 

Section 1, web services cannot transport objects (or 

better: references to objects).  Only simple and struc-

tured value types can be transported directly.  Each 

time a non-transportable type is encountered in a 

method signature (the return type or a parameter 

type), it will be mapped to the transportable string 

type.  At runtime, this string will contain an object 

reference represented by a web service URL (see 

Figure 4). An example of the different possibilities is 

given in Table 1. 

real method signature mapped method signature 

int Sqrt(int a) int Sqrt(int a) 

Car GetCar(int id) String GetCar(int id) 

Car Clone(Car c) String Clone(String c) 

Table 1. Mapping an object's interface 

We use three different methods to marshal different 

types.  Objects that are normally marshaled by refer-

ence by the Remoting infrastructure are marshaled by 

reference using the URL representation as presented 

in Figure 4.  Primitive types are marshaled by value 

and can be transported directly using SOAP mes-

sages.  Complex value types (structs without methods 

in C# [Alb01]) can also be transported directly.  The 

last case occurs when a complex value type contains 

extra methods (also structs).  We chose to make a 

local copy of the instance on the server and then mar-

shal it by reference.  Another (maybe better) way to 

achieve a correct transport of these complex types is 

to transport only the data in the instance using mar-

shal by value.  The data can than be loaded into a 

corresponding type instance on the client that would 

act as a virtual proxy.  It does not communicate with 

the server but does represent a server type.  The latter 

solution would be more complicated to implement, 

while the first method can use the existing marshal by 

reference facility. 

If a method does not contain non-transportable types, 

it can be offered in the interface unmapped and in-

voked without special intervention.  On the other 

hand, if a method contains mapped parameters or 

return types, then the default mechanisms cannot be 

used and the invocation needs special care both on 

 

Figure 3. Invoking a method. 

http://145.34.67.10:1200/[type:MyClassLib.MyClass][853b9985] 

 server location object type unique object 

reference 

Figure 4 Our web service URL format 
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the client (handled in its proxies) and on the server 

(using a sink object). 

A case where the return type is mapped will be dis-

cussed here.  Suppose one wants to invoke the 

method MyClass GetMyClass() on a remote 

object that we can reach via a known URL.  Through 

the mapping mechanism this method will be exposed 

as String GetMyClass(), and will be available 

as such in the proxy on the client.  The sequence of 

steps that will take place when calling that method is 

shown in Figure 3. 

When calling the method, all the details of that call 

are serialized into a SOAP message and this message 

is sent to the known URL (1).  The method is actually 

called on a web service proxy that uses the standard 

class library of the .NET Compact Framework to hide 

the communication details from the caller.  The 

SOAP message then arrives at the server and is ac-

cepted by the .NET Remoting infrastructure, where it 

is automatically deserialized into an IMessage object 

containing the same information.  After that, it is in-

serted into the right sink chains.  This also means that 

our custom sink object will get a chance to process 

the IMessage.  In this case, the sink can just pass the 

IMessage further up the chain so that the call can 

eventually be invoked (2).  On the other hand, if the 

method contains mapped parameters, its arguments 

will contain URLs that indicate other objects.  These 

URLs should first be replaced by the actual object 

references (which are known on the server) before the 

IMessage is further propagated.  The result of the 

method call will also be intercepted by our message 

sink (3).  In response it will expose the returned ob-

ject as a web service and replace the object reference 

with the URL of the created web service.  Also, an 

extra reference to this object must be stored on the 

server to prevent it from being garbage collected (see 

Section 4).  Whenever the returned object is a (non-

primitive) value type (struct in C#), a local copy is 

stored to preserve the right semantics (see earlier in 

this section). 

The modified IMessage is now handed over to the 

next sink object to eventually be serialized to a SOAP 

message and sent back to the client (4).  When the 

SOAP message is received, it is deserialized.  The 

returned URL is then given to the proxy, which will 

give it back to the caller — which will in practice be 

the transparent proxy (see next subsection).  The 

caller can in turn start invoking methods on the re-

turned ‘object’ represented by the new web service.  

This will happen by instantiating a new proxy for the 

corresponding type, and initializing it with the given 

URL. 

The mechanism described above implies that proxies 

are available a priori for each type used.  This does 

not introduce any limitation in our case.  Proxy gen-

eration at design time will actually boost performance 

by taking away the processing cost of generating 

proxies at run time.  While it does enable basic com-

munications, the use of the real proxy directly does 

not provide for much transparency.  The caller does 

not see the real method signatures and has to manipu-

late URLs instead of real object references.  In the 

next subsection, the transparent proxy is added to 

solve this problem. 

Providing a transparent client interface 
To make the approach described above more trans-

parent to the caller on the client, an extra level of 

indirection is introduced by adding a transparent 

proxy that interacts with the real proxy.  The interface 

of the transparent proxy will mimic the object on the 

 
Figure 5. Using two proxies on the client to provide maximum transparency. 
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server that it represents, effectively providing trans-

parency.  Whenever a method invoked on a 

transparent proxy contains instances of other trans-

parent proxies in its arguments, the transparent proxy 

will translate these arguments into their correspond-

ing URLs and forward the call to the real proxy.  The 

reverse translation is done with returned values. The 

real proxy in turn hides the rest of the communication 

details as discussed in the beginning of this section. 

Figure 5 shows a general model of the structure. 

The scenario presented in Figure 5 starts when the 

transparent proxy objA* (indicating that it mimics the 

interface of the remote object A) receives a response 

from the real proxy after calling its GetObjectB() 

method. This is where the scenario presented in 

Figure 3 ended by returning an URL to the caller, 

which is represented by objA* in the current scenario. 

The returned value is the URL to the web service of 

object B. The rest of the scenario goes as follows: 

1. Upon receiving a URL, the transparent proxy 

needs to create the necessary proxy objects that will 

enable the client to transparently work with the new 

object’s web service.  It therefore sends a cre-

ate() message to the objectActivator. 

2. This objectActivator will check its cache to 

see if it already contains a transparent proxy that re-

fers to the given URL.  If none is found, it will create 

a new one and add it to the cache.  

3. A real proxy to directly interact with the web ser-

vice will also be created. 

4. Eventually the newly created transparent proxy 

objB* is given back to objA*, whichever object 

invoked its method caller. 

4. EXTENSIONS FOR LIFETIME 

MANAGEMENT AND EVENTS 
The previous section explained how references to 

remote objects can be obtained and how method calls 

can be carried out in a transparent fashion.  However, 

there should also be a mechanism to manage the life-

time of remote objects that are accessed in this way.  

The server needs to know which objects are still ref-

erenced in order to carry out meaningful garbage 

collection.  Requirement 5 also states that events on 

the server should be capable of being propagated to 

the clients.  The mechanisms for addressing these two 

issues are presented in this section. 

Distributed lifetime management 
Distributed garbage collection is all about keeping 

track of remote references to an object and letting 

them play a role in the life cycle of the object.  The 

goal is to prevent remote objects either from living 

forever or from being deleted when they are still in 

use.  Without further precautions being taken, the 

first case would apply to the approach explained so 

far.  Whenever a client gets a reference to an object 

on the server, the object’s local life cycle (the life 

cycle of its proxy on the client) will not be known to 

the server, which will result in an object that lives 

eternally.  Note that we will not address the inverse 

problem of managing the life cycle of objects on the 

client that are referenced by the server because until 

now this has not been capable of happening.  This 

client/server approach rules out the problem of deal-

ing with circular references, which can only occur if 

an object acts as both client and server. 

A method for solving this problem of having remote 

objects that live eternally is to just let the garbage 

collector on the client do its work on the proxies and, 

whenever a transparent proxy is destructed, to notify 

the server of this event.  This technique will work 

well in our specific case.  A survey of more elaborate 

techniques for distributed garbage collection is given 

in [Pla95].  [Vei03] presents a distributed garbage 

collector that improves the current mechanisms used 

in .NET.  The garbage collector is implemented in 

Rotor [Mic2] using the sink based extension mecha-

nism.  Our basic approach is illustrated in Figure 6. 

1. A transparent proxy on the client is not referenced 

anymore and is destroyed by the local garbage collec-

tor. 

2. This results in the invocation of the destructor of 

that proxy.  The transparent proxy will react to this by 

invoking the EndLife() method on a special gar-

bage collector proxy (GCProxy), giving its URL as 

argument. 

 
Figure 6. Simple distributed garbage collection. 
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3. The message is received at the server (using the 

mechanisms described earlier), where a special gar-

bage collecting object (WSGC) will remove a ref-

erence to the corresponding remote object. Hereafter 

the garbage collector of the server can proceed with 

its tasks.  Because the reference count of the object 

on the server is now lowered, it could possibly be 

removed in the next run of the garbage collector. 

Of course this method does not take into account the 

unexpected connectivity loss of a client.  The unex-

pected loss of a client will now result in the eternal 

life of its referenced objects because it cannot notify 

the server of object destruction.  Since wireless ac-

cess is common with portable devices and can suffer 

connectivity losses regularly, a complementary solu-

tion has to be added. 

The easiest way to prevent the creation of indestructi-

ble objects is to implement a simple leasing system 

where the client announces its presence to the server 

at regular intervals.  When the server does not get any 

life signs for a specified amount of time it can delete 

all the references associated with that client. 

So far, the requirement 5 is still missing.  It is not yet 

possible for the server to initiate contact with a client, 

for example to send a notification, as would have 

been done in an event based application.  A solution 

for handling such events will be proposed in the 

following section. 

Remote events 
Using the given descriptions, invocation from client 

to server becomes possible.  What is lacking here is a 

mechanism for notifying clients of events generated 

by a remote object.  This will require the client to act 

as a (web)server.  An easier solution would be for the 

client to use some sort of polling mechanism, but this 

will not be considered here since it is not a real event-

ing system.  Up to this point the solutions have been 

given in a more or less platform independent manner 

in the sense that they could be implemented either on 

a .NET or on a Java platform (using other mecha-

nisms at the server).  The way events are supported 

will be specifically targeted to .NET, using events 

and delegates. 

In C# (probably the most popular .NET language) the 

keywords event and delegate are provided.  A 

(multicast) delegate is a special object that can con-

tain pointers to methods in other objects, given that 

these methods have the same signature as the delegate 

declaration.  These methods can consequently be 

called all together by triggering the delegate.  The 

event keyword is actually an access modifier on a 

delegate to prevent external triggering of the dele-

gate.  Other objects can subscribe to an event by 

instantiating the delegate with one of their methods 

and adding it using the += operator.  How these 

events and delegates are integrated into the previous 

parts is discussed below (see Figure 7). 

In the same way that the transparent proxy mimics the 

interface of a remote object, it also mimics the events 

published by that object.  To subscribe to an event 

published by the transparent proxy objA* , one calls 

the subscribe() method with an instance of the 

appropriate delegate as its argument (1).  The stan-

dard += mechanism to subscribe cannot be used be-

cause it cannot be overridden.  As a consequence, this 

part cannot be made completely transparent.  Next, 

the transparent proxy objA* passes the request to 

 

Figure 7. Distributed events. 
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the client’s eventHandler object (2). The even-

tHandler is a transparent proxy that does the 

necessary translations of object references to URLs.  

The request is then passed to the real proxy (3) be-

longing to the eventHandler object, which sends 

the message to the server.  A delegate is identified by 

an ID number in this stage, so the server can find the 

right delegate.  When the message arrives at the 

server, the custom sink object (not shown in Figure 7) 

routes the request to the eventListener object, 

which subscribes itself to the event in place of the 

transparent proxy (4).  When the event occurs (5), the 

eventListener is notified.  The eventLis-

tener then calls its proxy to translate the event 

arguments and send them to the eventHandler on 

the client.  This is accomplished by running a simple 

web server [Pra03] on the client and publishing the 

eventHandler’s interface on a well-known URL.  

The eventHandler can, if necessary, call the cor-

responding delegate on the client to raise the event 

locally (6).  Thus it will seem that the event has oc-

curred locally. 

5. IMPLEMENTATION OF THE 

MODULES TO SUPPORT THE PRO-

POSED CONCEPTS 
An implementation of the basic ideas was carried out 

to prove the feasibility of the proposed concepts.  The 

results of the implementation can roughly be divided 

into two parts: a C# code generator for the client side 

proxies and an extension for the .NET Remoting in-

frastructure in the form of a sink object and 

supporting objects. 

The code generator was implemented in two steps.  

First a WSDL generator was developed.  It takes one 

or more existing classes (residing in compiled assem-

blies) as input and generates corresponding WSDL 

files as output.  It also takes care of the mapping of 

non-transportable types.  Next, this WSDL is auto-

matically transformed into real proxies using standard 

provided classes in the .NET Framework class li-

brary.  In a second phase a code generator for the 

transparent proxies was implemented.  This was ac-

complished using the excellent support for dynamic 

code generation and compilation of the .NET class 

library. 

All the functionality mentioned was then integrated 

into one tool which enables one-click generation of 

all the needed proxies.  The functionality needed by 

all proxies was split off into a separate common li-

brary module that has to be included with each client. 

The generator tool can be set to output a compiled 

assembly of proxies, ready to be used.  By importing 

this assembly into a project (in Visual Studio.NET), 

the programmer gets a view of all the classes as he 

would expect them on the server, thus fulfilling re-

quirements 6 and 7. 

Splitting the code generation into a few steps facili-

tates the adaption of the application to generate code 

for other (non-.NET) programming languages.  Espe-

cially the generation of the intermediate WSDL files 

opens up the possibility of using existing tools to 

generate real proxies in other languages without hav-

ing to re-code the entire logic. 

Extending the .NET Remoting behavior did not prove 

to be as easy as expected.  There turned out to be 

many more subtleties in choosing the right extension 

mechanism than one would expect.  The .NET Re-

moting introduction in this paper only touches on the 

many extension possibilities.  A suitable extension 

mechanism was finally found: a custom channel sink 

inserted above the predefined server formatter sink.  

This component is responsible for mapping the run-

time arguments and return values back and forth to 

URLs.  It therefore shares some functionality with the 

WSDL generator. 

Our channel sink undertakes four steps in intercepting 

messages: 

1. Check the input message.  Only accept IMethod-

Messages.  We do not treat constructor messages for 

example. 

2. Adapt the incoming message: 

•••• Search for references in the parameter list. 

•••• Skip simple messages (containing only primi-

tive types). 

•••• Convert the references into real object refer-

ences by searching the server’s hash table.  

Create a new writable IMessage, copy the data 

from the original message and replace the refer-

ences. 

3. Forward the newly created message to the next 

sink in the chain. 

4. Adapt the return message: 

•••• If the return type is primitive, the instance is 

marshaled by value and directly send back. 

•••• If the return type has to be marshaled by refer-

ence, a unique ID is generated to be able to 

construct a valid URL.  Next, the instance is 

published as a web service on this URL and the 

mapping between URL and real object refer-

ence is saved in a hash map, which also places 

an extra reference to the object on the server for 

use in the distributed garbage collection.  Fi-

nally the return message is changed with the 

marshaled return value. 

•••• In case of a complex value type with methods, a 

local copy of the instance is first created and 
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then, the mechanism of the former bullet is fol-

lowed. 

Inserting a channel sink in the server formatter sink 

chain can be accomplished by adding a few lines of 

code to the server application or even simply by add-

ing some configuration information to the 

applications standard configuration file.  This shows 

the low impact on the server, again supporting re-

quirements 6 and 7. 

The implementation was tested against an existing 

application of a company active in the warehouse 

automation sector.  This automation is accomplished 

using automated guided vehicles (AGVs).  To enable 

rapid application deployment they developed an inte-

grated designer suite offering the basic building 

blocks of a warehouse application.  The suite is fully 

written using the .NET Framework.  It includes ge-

neric building blocks for logging, scheduling 

transports and user interfacing.  The user interfacing 

building blocks communicate with the other parts 

using .NET Remoting. 

Our test case was a smart client application that acted 

as a simplified user interface to the warehouse appli-

cation.  Two objects were relevant in this application, 

namely Project and Agv.  The operations that 

were used to do some testing are summarized in 

Table 2.  The generated proxies for the two objects 

were compiled into an assembly of 20 KiB1.  The 

client’s common library requires 16 KiB.  The meas-

ured durations for operation executions are presented 

in Table 3 below.  The table contains measurements 

using our solution and using the Remoting-Remoting 

case (using the HttpChannel). 

Operation(s) functionality 

string GetName() Gets the name of the project 

agv[] GetAgvs() 
Gets an array of 4 AGVs from 

the project 

SetSpeed(int s) 
int GetSpeed() 

Sets the speed of one AGV and 

retrieves it thereafter 

Table 2. Test operations 

Operation(s) Time(ws-rem) Time(rem-rem) 

string GetName() 25 ms 455 ms 

agv[] GetAgvs() 25 ms 8 ms 

SetSpeed(int s) 
int GetSpeed() 

250 ms 24 ms 

Table 3. Performance measurements 

From these results we can conclude that the perform-

ance penalties are acceptable.  The large delay of the 

GetName() operation, in the Remoting-Remoting 

case is caused by the dynamic generation of proxies.  

This type of delay always occurs when invoking the 

first method on a remote object and has nothing to do 

with the type of its return value/parameters.  This 

                                                           
1 KiB is short for kibibyte, where kibi=210 (an IEC prefix). 

KB is short for kilobyte, where kilo=103 (an SI prefix). 

supports our early decision not to port the complete 

.NET Remoting infrastructure (see Subsection 2, 

Requirements) to the .NET Compact Framework. 

6. Related work 
The consuming of web services on mobile devices 

has only just recently been emerging due to the grow-

ing availability offering of Wifi-, or Bluetooth-

enabled PDAs and smart phones.  These web services 

have been mainly limited to simple services, such as 

obtaining weather or news information. 

To enable remote events, as discussed in Section 4, a 

mobile web server will be needed.  A proposal to 

implement such a server, keeping in mind the re-

source constraints, is given in [Pra03].  To lower the 

device’s requirements, some constraints were intro-

duced.  One of them is to allow only simple SOAP 

types.  This would not be a problem in integrating it 

with our solution, because we do not use complex 

SOAP types. 

In [Cam00], techniques for optimizing the perform-

ance of Java RMI are proposed.  The optimizations 

are made with wireless communication and resource-

constrained devices in mind, making Java RMI more 

suitable for mobile devices. 

An approach to optimizing the use of web services on 

resource-constrained devices by applying specialized 

code generation techniques is presented in [Eng].  

Also, some runtime optimizations are implemented 

using the gSOAP environment, which is portable to 

most platforms including Pocket PC (which can run 

the .NET Compact Framework). 

Middsol [Mid] provides standard CORBA inter-

process communication for the .NET Compact 

Framework.  This support is provided in the form of 

an assembly (520 KiB) that needs to be included on 

the mobile client.  While being very useful, this solu-

tion does not allow one to directly connect to .NET 

Remoting objects. 

An approach that enables communication between the 

.NET (Compact) Framework and long-lived embed-

ded devices is proposed in [She04].  It handles about 

isolating applications from the underlying wire proto-

col by using application-level bridges.  This is similar 

to what we are accomplishing by using independent 

proxies on the client. 

The approach in [Vei04] enables the .NET Compact 

Framework to communicate with a .NET Remoting 

infrastructure using bridges based on web services.  

The main focus of the paper is on object replication 

on mobile devices to enable connectionless operation 

and boost performance.  As in our approach, auto-

matic proxy generators are provided. 

44



7. CONCLUSION 
To enable the introduction of smart clients (PDAs, 

smart phones) into existing distributed applications, 

we proposed an approach that dynamically maps web 

services to .NET Remoting.  This approach enables 

the quick development of applications that interact 

with remote objects, solely using the .NET Compact 

Framework.  By presenting a transparent interface 

using proxies, the programmer does not have to 

worry about any communication details.  The solution 

is fully generic so it can be used for any existing ap-

plication without specific modifications. 

Using our code generation tool, proxies are generated 

fully automatically simply by selecting the needed 

classes in an assembly.  Thus a complete representa-

tion of the needed server-objects becomes available 

at the client in the form of proxies that mimic these 

objects.  The impact on the server is minimized by 

the implementation of all necessary logic using just 

one sink object.  This sink can be inserted into the 

.NET Remoting infrastructure by adding as little as 

three lines of code or even simply by modifying the 

application configuration file, without influencing the 

rest of the application.  In addition the portability to 

other client platforms should be easy.  It would only 

require an extension of the C# code generator for the 

transparent proxies. The server side requires no 

modifications. 

To refine the solution, two paths could be further 

pursued.  First, the implemented modules could be 

elaborated by including an implementation of the 

proposed garbage collection and eventing concepts.  

Secondly, we could search for good solutions to han-

dle the more efficient communication of frequently 

used classes such as collections and, more in general, 

all classes common to the class libraries of both client 

and server. 
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ABSTRACT 

We need clever solutions that manage distributed network systems. LanStore is a highly reliable, fully 
decentralized storage system which can be constructed from already existing desktop machines. Our software 
utilizes the otherwise wasted storage capacity of these machines. Reliability is achieved with the help of a 
traditional erasure coding algorithm called the Reed-Solomon algorithm which generates n error correcting code 
items for each m data item. The distributed behavior is controlled by a voting- based quorum algorithm. These 
provide us with the capability of tolerating up to n simultaneously failing machines. As LanStore is intended to 
be used in LAN environments, instead of employing an overlay multicast solution we used an IP level multicast 
service. To use the bandwidth effectively, we designed a special UDP- based multicast flow control protocol. Our 
solution supports both IPv4 and IPv6. For the implementation platform we chose the Windows family and the 
.NET framework as they are the most popular platforms in offices and university departments. So far we have 
implemented a prototype version of this solution. We measured its performance and the results indicate that this 
solution can provide a throughput comparable to the currently used network file systems, its performance 
depending on the selected error correcting capability, the number of failing machines and the performance of the 
client machine. In special cases like video-on-demand with a high client number our solution can outperform the 
traditional single server solutions.  

Keywords 
distributed system, distributed storage, erasure codes, multicast 

 

1. INTRODUCTION 
In today’s hectic world time is money and so is 
information. This is especially true nowadays with 
customer data from e-business and the huge amount 
of logistic and scientific data which may be worth 
their weight in gold. The amount of data is increasing 
sharply. The average storage capacity you get for 
your money is skyrocketing. Storage of several 
hundred GBytes is achievable for everyone. One 
might argue that today’s storage capacity is just 
following the trends and there is enough cheap 
storage to meet the increasing demand. 

Permission to make digital or hard copies of all part of this 
work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit 
or commercial advantage and that copies bear this notice 
and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or fee. 

.NET technologies ‘2005 conference proceedings, 
ISBN 80-86943-01-1 
Copyright UNION Agency – Science Press, Plzen, Czech Republic 

 Unfortunately, the total cost of ownership is also 
increasing sharply with the amount of the maintained 
data. In a typical company there are several file 
servers which provide the necessary storage capacity 
and there are many tape libraries for archiving the 
contents. If the storage need grows the company can 
purchase a new hard disk or a new server. To have a 
reliable system there is usually replication between 
the dedicated servers. The disk drives are organized 
in raid arrays, typically RAID 1+0 or RAID 5 
[Che94]. This solution is not scalable enough for 
today’s internet scale applications where there can be 
huge fluctuations in demand. Failsafe behavior versus 
effective storage capacity ratio is not optimal because 
of mirroring. Management is the other weak point of 
this system. That was why the Storage Area Network 
was designed. In a typical SAN there are several 
storage arrays that are connected via a dedicated 
network. The storage arrays typically contain some 
ten to sixty hard disks. To protect the data from hard 
disk failure these disks are organized into RAID 0, 1, 
5 arrays. Protection from more two or more hard disk 
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failures is very costly because of mirroring. In larger 
systems it is vital to protect the data against storage 
array failure; hence the storage arrays are duplicated 
and connected by SAN switches. The servers are 
connected to this network via their fiber channel 
interfaces and provide a 2 GBit/s transfer capability. 
The scaling of this system is achieved by adding new 
hard disks to arrays, or moving the partition 
boundaries. The price of SAN components is high 
compared to typical network components and servers, 
and the storage usage failure toleration ratio is not so 
optimal. 

We would like to present a much better and cheaper 
solution to this problem. A typical PC now has huge 
computing and storage capacity. It is not unusual to 
find more than 100 GBytes of storage capacity, over 
500 MBytes of RAM and two GHz or more CPU 
clock frequency in a desktop PC. It seems that these 
parameters are constantly increasing. A typical 
installation of an operating system and the software 
required does not consume more than ten to fifteen 
GBytes. The rest of the storage space is unused. A 
typical medium-sized company has more than 20 
PCs. A university or research lab usually has more 
than two hundred PCs. In this case the storage 
capacity that is wasted may be several TBytes in size. 
So it would great if we could utilize this untapped 
storage capacity. 

 

In order to solve the above-mentioned problem we 
decided to design and implement LanStore with the 
following design assumptions: 

• It is highly distributed without central server 
functionality. 

• It has low server load. We would like to 
utilize the storage capacity of desktop 
machines; these machines are used when our 
software runs in background. 

• It is optimized for LAN. The use of 
multicast and a special UDP based protocol 
is acceptable. 

• It has effective network usage. We designed 
and implemented a simplified UDP-based 
flow control protocol. 

• It is self organizing and self tuning. We used 
a multicast-based vote solution to implement 
the so-called ‘Group Intelligence’. 

• There is a highly changeable environment. 
The desktop machines are restarted 
frequently compared to dedicated servers.  

• It is a file-based solution. For effective 
caching we chose file-based storage instead 
of a block-based one. [Kis92] 

• It has campus, research laboratory-type file 
system usage. Also, file write collisions are 
rare. [Kis92] 

• It has an optimal storage consumption 
failure survival ratio. As a first approach we 
selected Reed-Solomon encoding for data 
redundancy. 

 

2. OVERVIEW 
In this article we would like to present our LAN-
based distributed storage solution, which can work 
even when the node failure rate is high. In the next 
part we list and compare several existing solutions for 
distributed data storage approaches. In Section 4 we 
describe the main building blocks of our application. 
The dependence between these blocks and the design 
assumptions are also included here. Then Section 4.1 
describes the data loss problem and the currently 
available solutions for it. We compare these solutions 
with our solution. Section 4.2 describes the network 
layer of our application and we show the features of 
our new simple multicast flow control algorithm. In 
Section 4.3 we present the core of our application, 
namely that of group intelligence. We show the goal 
of this layer and the solutions used. Next, Section 4.4 
discusses our security layer with the features 
provided. Section 4.5 describes our data persistence 
layer. The design goals and the chosen solutions are 
also stated here. The implementation details are then 
described in Section 5. Finally, in Section 6, we 
present our results.  

3. RELATED WORK 
Distributing the contents among storage blocks is by 
no means a new idea. The oldest and the most 
popular technique is the RAID (Redundant Array of 
Independent Discs) technique [Che94]. It uses two 
basic data distributing solutions called stripes and 
mirroring. The first algorithm uses XOR parity data 
slices for correcting only one error while the second 
one can be used several times to achieve the 
necessary error correcting level, but the storage 
efficiency then sharply decreases. RAID is used 
typically for computers with several hard disks inside. 
The Zebra [Hart93] file system took the idea of 
striping from RAID, but instead of distributing the 
data among hard disks it distributes the data among 
storage servers. To effectively use the network 
bandwidth it uses per client striping instead of per file 
striping. The weak point of this solution is its single 
error correcting capability. Petal [Lee96] uses 
striping without redundancy and mirroring as a type 
of data distribution. One can define block level 
virtual disks with the aid of a low level interface. 
There are special server functions which translate the 
addresses used on a virtual disk to a physical machine 
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and disk addresses. It uses a heartbeat backbone to 
provide the so-called “liveness” property. A 
distributed consensus is achieved by using Leslie 
Lamport’s Paxos [Lam98] algorithm. The goal of the 
Pasis [Wyl00] project was to create a solution for 
building a survivable data storage that was as simple 
as possible. Here is a thick client and thin servers. 
The only functionality implemented in servers is the 
data store which can be implemented as a simple file 
share, except that all this functionality is implemented 
on the client side. For the object name to physical 
location mapping, a directory server is used. In a later 
article [Wyl04] the authors of the Pasis framework 
define a new approach for handling 
Byzantine[Cas00]-type failures. In this solution the 
correction of failed storage nodes is a client task; 
there is no background process for consistency 
maintenance. This solution does not utilize the 
computing power of server nodes. Self*-store [Str00] 
is based on Pasis, its goal being to create a safe 
storage where, for a specified duration, there is no 
chance of data erasure. If the logfiles were stored in 
the Self*-store then the intruders would not be able to 
erase their footprints. OceanStore [Rhe03] defines a 
global scale storage system on a multicast overlay 
network. They use Tapestry[Zha01] for object 
naming and locating. To achieve data redundancy 
they use both erasure codes and mirroring. There are 
several defined classes of storage nodes with different 
responsibilities. For example the inner ring members 
have the task of data redundancy handling, but this 
solution is unsuitable in a laboratory where the 
storage nodes are desktop machines and they cannot 
tolerate a heavy processor load from a background 
process. FAB [Fro03] defines a storage system with a 
block level interface. The clients use SCSI commands 
for data manipulation whose implementation uses the 
thin client and thick server paradigm. This solution is 
unsuitable in an office or laboratory, however 

 

4. ARCHITECTURE 
Before going into detail let us see the high level 
workings of LanStore. As we mentioned before the 
main design goal was to gather the empty storage 
capacity into a virtual storage unit. To utilize in an 
equal way the storage capacity of the member nodes, 
we divided the files into equal fragments. In this way 
every storage node has the same number of stored 
data fragments. We would like to collect the free 
space from PC’s in computer laboratories, 
classrooms, and so on.  

�
�
�
�
�
�
�
�

�
�
�
�

	
�


�
�
�
�

�
�
�
�

�
�
�


�
�
�
�
�
�

�
�
�
�

 
Figure 1 

There is a high probability that one or more machines 
will be rebooted or turned off. We need data 
redundancy to correct the data which is stored on 
these machines. We will use forward error correcting 
codes (FEC) for error correcting. With the help of 
these algorithms we create n data fragments for m 
original data fragments. This means that we can 
reconstruct n failing data fragments. This process is 
shown in Figure 1. The consistency among modules 
is provided by a voting algorithm. If there are a 
critical number of working data nodes the remaining 
nodes may be reconstructed. Our solution is 
transaction based. At the end of a transaction a vote is 
taken and any changes are written to a permanent 
storage unit when the majority of nodes agree on the 
next common state. If there is no majority acceptance 
of the new state the transaction will roll back. After 
the changes are written into a permanent storage, a 
second vote is taken of the result. If there is a 
successful majority vote the whole task will be 
marked as fulfilled; if there is no successful majority 
result the first and the second transactions will roll 
back. 

 

In our system the file is the basic data unit. We 
designed the file store for campus and research 
laboratory usage where file-based caching could be 
much more effective than block-based caching 
[Kis92]. The files are identified with the aid of the 
hash of their contents. With this solution we never 
store the same file twice. If someone tries to upload a 
file that already exists in our storage system, it creates 
a new link to the existing file. In the case of a 
modification, the storage uses versioning to handle 
the modifications. Our application is divided into 
independent modules. This design pattern provides an 
easy-to-maintain and robust code, where each module 
can be replaceable by another one using interfaces. 
The necessary functionality groups of our software 
provide us with natural borders among modules.  
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Figure 2 

The modules are the following: 

• Data redundancy module 
• Network module 
• Data persistence module 
• Security module 
• Group intelligence module 
• Application logic module 
• GUI module 

Figure 2 shows the communication path between the 
modules. The control module is the core of our 
application; it uses the services provided by other 
modules. It is singleton, while every other module is 
thread safe. We may find that there are the same 
modules in the client and server sides, which 
contradicts our goal of developing an application 
with a fat client and thin server. During normal 
functioning the server does not use its Data 
Redundancy module. It only stores, sends the 
necessary data fragments and maintains its state with 
the help of the Group Intelligence module. We need 
the Data Redundancy module only for heavy data 
migration when every server helps a new or old 
server in an inconsistent state to achieve the 
consistent state. 
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Figure 3 

In Figure 3 the whole file download process is shown. 
First the client asks the group of servers via a 
multicast message for the altered data between its 
version and the global version of the directory/file 
database. We need this database on the client side to 
browse its contents. The designated server that was 
selected by the Group Intelligence module reacts and 
sends the recent changes. Next, the client starts a 
download process with the GetFile() multicast 
message. This message contains a transaction ID 
which is globally unique and it is generated from the 
hash of the file and the public key of the user. Every 
active server receives this message and starts 
uploading file fragments. During this upload process 
the client uses the flow control mechanism outlined in 
Section 4.2. 

 
Figure 4 

Figure 4 shows the file upload sequence. First the 
client sends a multicast message to the group of 
servers with the transaction ID. This step is needed to 
acquire a lock for the actual file. If there is no upload 
transaction with this ID the designated server sends it 
the right to modify. When the client receives this 
message it starts uploading file fragments to the 
servers. In the background a vote is taken among the 
servers after each slice upload. This mechanism is 
described in Section 4.3. There may also be a flow 
control between the servers and the client, which is 
mentioned in Section 4.2.  

4.1 DATA REDUNDANCY MODULE 
The task of this module is to provide the necessary 
data redundancy for error correction. Several 
approaches are available in the literature. The most 
popular one is that of data mirroring. This is an easy- 
to-use and implementable technique with low 
processing overheads but we pay the price on the 
storage consumption side. The creation of data parity 
blocks is another popular way, but apart from its 
optimal storage consumption this technique can 
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correct only one error at a time. This is a big 
drawback. 

 
Figure 5 

For our goal a special class of the forward error 
correcting codes FEC, the so-called erasure codes 
provide the best solution. Since we can detect failing 
data, we only have erasure errors. In the case of FEC 
codes one can select the required redundancy level 
and the algorithm generates the necessary error 
correcting data blocks for the existing data blocks 
(see Figures 5&6). If a data block fails, it can be 
calculated from the remaining data and error 
correcting blocs. 

 
Figure 6 

There are two types of FEC codes: codes with 
guaranteed error correcting capabilities and codes 
which have an error correcting capability with a given 
probability. We opted for the first code family 
because of its guaranteed error correcting capability. 
The price, however, is the processing overheads 
which depend on the selected error correction 
capability. This is one or two magnitudes higher than 
that for the second case. We chose a special case of 
the Bose-Chaudhuri codes called the Reed-Solomon 
[Riz94] code. The basic theory for this is quite 
straightforward: we have n data blocks and we need 
m data blocks to correct fewer than m erasure errors. 
To produce m data blocks we require a special 
equation system where every partial matrix is 
invertible. To produce such an equation system the 
Reed-Solomon approach makes use of the 
Vandermonde matrix. The Galois field is used as the 
space where the operations are performed. With this 
solution we replace the complex calculation-intensive 
operations by lookup tables. Here we use the Luigi 

Rizzo [Riz94] implementation of the Reed-Solomon 
code. The module divides the processed files into 64 
KByte long stripes and calculates redundancy data 
for these slices. These stripes form the basic unit of 
the versioning system. 

4.2 MULTICAST FLOW CONTROL 
Our software is designed to run in a LAN 
environment. Most modern LANs are switched and 
there is practically a full mesh among network nodes. 
The key feature of such a network is that the 
bottleneck is on the source side or on the destination 
side; the network itself does not contain bottleneck 
nodes. TCP was designed and optimized for 
situations where the network is a black box and we 
can detect the available bandwidth only with the help 
of packet loss. There is an optimal windowing 
algorithm [Imr04], but this is not optimal when there 
is more knowledge and we can use a multicast 
protocol. We have complete knowledge of both sides 
of the communication channel, so it is plausible to 
use a flow control mechanism based on this. We 
designed a simple flow control mechanism that is 
capable of handling both multicast and unicast traffic. 
UDP here was used as a base and we added a simple 
signaling mechanism. Prior to each data manipulation 
process a transaction identifier is created by the client 
from the hash of the manipulated file and the public 
key of the client, this ID being unique to the whole 
system. At the same time only one client manipulates 
a file. 

Our multicast flow control mechanism has two 
working modes, both modes utilizing the error 
correcting capability of our solution. In this way we 
can strike a balance between processor occupation 
and network transfer capability. The download mode 
operates during data transfer from a group of servers 
to a client. The upload mode operates during the data 
transfer from a client to a group of servers. In the 
following we will describe these modes.  

Download mode: 

1. Receive(fragment, stripeId, from) 

2. IF(stripe is not yet processed) 

3.  StoreFragmentInQueue() 

4. CheckQueue() 

5. ELSE 

6.  Drop(fragment) 

7. END IF 

8. IF(the Queue occupation is over 20%)  

9.  SendFlowControlInformation() 

10. END IF 

Figure 7 
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CheckQueue function: 

1. IF(there are more than N data fragments for the 
same stripe) 

2.  IF(we have every data fragments) 

3.  SendAlertToControler() 

4.  SetTheProcessedFlag(stripeId) 

5. ELSE 

6.  StartErrorCorretion(stripeId) 

7. END IF 

8. END IF 

Figure 8 
In the download mode the client receives the file 
segments from servers and then stores these 
fragments in the input queue. If there are sufficient 
fragments for error correction (Figure 8, line 6) the 
client immediately starts the error correcting process. 
When it finishes the error correction, an alert is sent 
to the controller and it sets the processed bit for the 
processed stripe (Figure 8, lines 3&4). Further 
fragments for the processed stripes are dropped. With 
this solution we can avoid the situation where 
bottleneck nodes slow down the data transfer rate, 
and we can tolerate transparently the failure of nodes 
below a critical number. 

In the upload mode our task is similar, namely that of 
tolerating the node failures and avoiding the situation 
where several slow nodes decrease the speed of the 
whole upload process. In this case after the first 
control packets the client starts sending the data 
fragments to different nodes as unicast UDP packets. 
When a storage node notices that the free space of its 
input queues is below 80%, it sends a control packet 
to uploading clients with a preferable transfer rate. 
The client has the responsibility of deciding whether 
it will accept the request or continue the upload with 
a higher speed. The decision of the client is based on 
responses from other storage nodes. It selects a speed 
which is acceptable for more than a critical number of 
storage nodes. The rest of the nodes will be corrected 
with the help of the Consistency process which is a 
part of the group intelligence. 

4.3 GROUP INTELLIGENCE MODULE 
In a distributed system this module plays a very 
important role. Its main task is to provide 
consistency, meaning a consistent state and consistent 
databases. In an ideal system where there are no 
failures this is not a hard task, but such difficulties 
arise when we have a real system. In the real world 
there is no algorithm that provides guaranteed 
consistency. To be able to handle this situation we 
define the following model of reality: 

• The participants in the group management 
protocol can reboot or switch off at any 
time. 

• The recorded data can never be overwritten. 

• The messages must be delivered without 
delay or they will be lost. 

With these constraints this module has: 

• A voting-based algorithm for sequence 
upload verification 

• A voting-based algorithm for file modifying 
finalization 

• A voting-based algorithm for designated 
node selection 

• Management of the correcting process of 
failed nodes 

The voting algorithm is based on one by Leslie 
Lamports called Paxos [Lam98]. Every server node 
maintains a history database [Figure 9] that contains 
the successfully finished instructions. A data 
modification or upload is a sequence of stripe 
uploads which are a sequence of data fragment 
uploads. After every stripe upload a vote is taken of 
its success. If it was successful this fact is placed in 
the history database. After every data modification 
transaction (sequence of stripe uploads) a vote is 
taken of the success of the transaction. The success of 
a transaction really means that every sequence upload 
vote was successful. If a transaction was successful 
then every node erases the temporality signaling flag 
of the modified file. After this is carried out the new 
version of the file is the latest version.  

 
Figure 9 

A designated node is important when the group of 
storage nodes sends messages to the client. This 
happens when a client asks for the new file list and 
about the success of file modification. The load of the 
processor, the occupation of the memory and the 
stability of the node are the properties which are 
important during the designated storage node election 
process. The designated nodes are changed after a 
few dozen transactions. 

The correction of failed nodes is handled collectively; 
each consistent storage node is responsible for a 
stripe. The sequence of tasks needed to correct it is 
calculated using the data difference between the local 
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history table and the globally accepted one. To 
calculate the required data fragment these nodes act 
as clients. With this method we can achieve a 
relatively fast self-correcting capability of the group 
without imposing a high load on any given node. 
There are so-called synchronization points where a 
part of every history table in the system is the same. 
After reaching several such points the old records are 
deleted from the history table. 

4.4 SECURITY 
The security module has the task of providing data 
integrity, user and node authentication and access 
control. We store the digital certificates of nodes and 
users in the central database; the MD5 hash and the 
windows SID is stored here too. We use the existing 
Kerberos infrastructure for authentication when it is 
available. When there is no such infrastructure then 
we provide a simple asymmetric encryption-based 
authentication infrastructure. The data integrity of 
messages is guarded by digitally signing them with 
the sender’s private key.  

 

4.5 DATA STORAGE 
The data storage module is responsible for data 
persistence and it has to maintain the history of 
conducted processes. The stored data can be divided 
into two main groups, the information which must be 
globally consistent and the information which has 
local importance (Figure 10). The Group Intelligence 
module maintains the consistency of globally 
important information. 

 

 
Figure 10 

We store the following information:  

• Metadata about data such as file name, path 
and access control lists. 

• The data which is needed for the correct 
working of our system like users, nodes and 
certificates.  

• The file fragments which have to be stored. 

• A history of the processed instructions.  

Every data type has its own behavior and therefore 
we selected different solutions for persistence. Meta 
data, infrastructure data, and histories are stored in a 
lightweight relation database. The size of this 
database never exceeds some 10 Mbytes. The 
fragments can be several hundred MBytes. We tested 
the handling of large objects in the current databases. 
We may conclude that the conventional file system 
has a speed about ten times faster for file fragments 
than current database solutions. 

We implemented a version handling file storage. We 
store every version of a file. Between versions only 
the difference is stored. The basic unit of the 
difference handling is the file slice which was 
mentioned in the Redundancy module.  

The goal of the history table was described in the 
Group Intelligence module. 

5. IMPLEMENTATION 
We selected the Windows platform because of its 
widespread usage in offices and university 
laboratories. Because it is well integrated in the 
Windows platform, .NET framework and the C# 
language was selected. For example it was very easy 
to check the infrastructure and the computing power 
of the hosting PC for leader election with the help of 
the Windows Management Instrumentation service. 
Another reason for using the .NET platform and 
managed code against the unmanaged C or C++ code 
was the short development cycle. Five graduate 
students have been working for a year on the software 
which is now in the alpha state. It has currently more 
than 20,000 lines of code. Figure 11 shows the 
detailed architecture. On the client side there are two 
threads: the Network module and the Client 
integration module. The network module has the task 
of capturing incoming packets and storing it in a 
synchronized queue. We designed this module to be 
as simple as possible to be able to capture every 
packet. The Client integration node consumes the 
packets from the common synchronized queue with 
the assistance of helper classes. If the queue is empty 
then the thread will go in the wait state. In this state 
the network module can wake it up with a pulse 
signal. In the case of file upload the GUI uses 
asynchronous method calls for each storage server. In 
this way outgoing traffic is handled in parallel. As the 
network module does not inspect the contents 
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Figure 11 

of the package and the packages could be encrypted 
with only one thread, the original client integration 
thread for handling the incoming will decode the 
packets and, if needed, wake up the appropriate 
sender thread for handling the output traffic.  

The server side has a similar architecture, but instead 
of a GUI there is a database engine and a Server-
Server intelligence module. These four threads are 
always running: the Network the Server-Server the 
Server-Client and the Hello thread. The first three 
threads work the same way here as on the client side. 
However, there are two queues; one for Server-Server 
and one for Server-Client module. The Network 
module makes a decision based on the type of the 
destination address of the incoming packet for 
selecting the appropriate queue. The Hello thread has 
the simple task of periodically sending hello packets. 
These packets act as keep-alive packets. 

Owing to its speed, small size and easy-to-deploy 
capabilities, SQLLite was selected as the database 
engine. It has no transaction handling capabilities. 
When one tries more than one writing process 
simultaneously, it throws an exception. To avoid this, 
we used the .NET frameworks ReaderLock solution 
to achieve a serial access of this resource. 

As we said earlier, we used the FEC encoder 
implemented by Luigi Rizzo [Riz94]. We use it as a 
native code.  

6. EVALUATION 
The raw encoding capacity with Reed-Solomon 
encoding was first measured. The results are shown 
in Table 1. We may conclude that the currently used 
processors produce a usable throughput for 64/32 (64 

nodes, and out of these 32 contain error correcting 
information).  

CPU Clock 
Frequency 

(GHz) N K 
Throughput 

(MBit/s) 

1 64 32 40 

2 64 32 80 

3 64 32 120 

3 200 100 38.4 

Table 1 
To test the performance we used a laboratory with 
sixteen PC’s, each having P4 3 Ghz processors, 1 
GByte of RAM and a 100 MBit/s network adapter, 
while for debugging we used virtual PC’s. We 
measured the throughput in different scenarios. Even 
in a larger configuration when there were 16 servers 
and we used a 16/8 redundancy scheme, the 100 
MBit/s network bandwidth was the bottleneck. The 
processor utilization was only 20% on the client side, 
and less than 1% on the server side.  

The above-mentioned measurements give a picture 
only about the raw coding capacity of a typical PC. 
Although this process is the most time-consuming 
part of the whole transaction, the remaining task 
could add significant delays. To be able to compare 
our solution with already exiting systems we tested 
our framework in different scenarios. One of the most 
accepted methods of file system testing is the Andrew 
benchmark [How88] which was created to measure 
the efficiency of the Andrew file system. This 
benchmark contains the following measurements:  

• MakeDir 
• Copy 
• ScanDir 
• ReadAll 
• Compile 

It measures the time needed for these tasks. Among 
these popular tasks the size of the manipulated files is 
important. The article [Cro98] estimates the 
distribution of file sizes of the UNIX file system as a 
Pareto distribution with parameters a=1.05 and 
k=3800. In another paper [Dou99] it was 
demonstrated that the windows file system file length 
distribution could be modeled with the help of a 
lognormal distribution and a tail with a two-step 
lognormal distribution. As a simple, but appropriate 
solution we chose the Pareto distribution to model the 
file size distribution of user homes. 

Currently our system is accessible only through the 
GUI provided. We do not provide an API, so we 
cannot use the original Andrew benchmark script. In 
these circumstances we did the following and then 
took measurements: we created an application which 
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generates files with the length of Pareto [Cro98] 
distribution the depth of its directory path follows 
linear distribution. Each character inside the files is 
generated with a linear random distribution. We 
uploaded and downloaded the generated file/directory 
set with the help of the GUI. We used the Windows 
SMB file share as a comparison partner. A test 
network was set up with 10 PC’s, each having P4 3 
Ghz processors, 1 GByte of RAM and 100 MBit/s 
network adapter connected via a HP4108 switch as 
server nodes and a similar PC as a client node. The 
redundancy ratio was set to 7/3, so for every seven 
original data items three error correction items were 
generated. The following tasks were measured on the 
LanStore and on a Windows share which was one of 
the server nodes: 

1. The delay of directory creation (a), and 
deletion (b) in seconds, with 615 randomly 
generated directories, with depth and name 
space of a random linear distribution. We 
executed this task on LanStore and on a 
Windows share system. 

2. The delay of  file upload (c) and download 
(d) in seconds  and the throughput in 
MByte/second  with 200 randomly 
generated files with the size distribution of 
Pareto(a=1.05, k= 3800) and with random 
hierarchy. The aggregate size of these files 
was 4.08 Mbyte.  

We obtained the following results: 

 Lanstore Windows file share 
 Delay Throughput Delay Throughput 
a 353 - 5.3 - 
b 116 - 3.8 - 
c 213 0,02 3.5 1,25 
d 53 0,08 6.1 0,7 

Table 2 
From these results we may conclude that for small 
files our system is about two magnitudes slower than 
the currently used network file systems. The reasons 
for this lie in the distributed nature of our system. In 
the current implementation every operation is 
handled in separated transactions and after every 
transaction a vote is taken of the success or failure of 
the transaction. As we have seen with small files or 
with administrative tasks like a directory tree 
manipulation, these overheads can take a longer time 
than the whole file upload. We can correct this 
behavior by batch processing the operations. When 
we upload a directory we can then assign a 
transaction for the whole process instead of managing 
every single operation as a transaction.  

To test the framework as a video archive, we had to 
measure with different file size distribution. The 

video files are in most cases larger than normal files, 
so we used the value of 3,800,000 for k. With this 
value we generated 75 files with an aggregated size 
of 1.03 GBytes and the directory hierarchy was 
randomly generated. The test bench was the same as 
in the previous measure. We got the following results 
for file upload (e) and file download (f): 

  Lanstore Windows file share 
 Delay Throughput Delay Throughput 
e 262 4.02 144 7,32 
f 240 4.39 104 8,5 

Table 3 
We can see that with larger files our solution 
provides a delay and throughput comparable to 
traditional network file systems. With batch 
processing this result can be further improved. In the 
case of a stabile environment we can achieve higher 
throughput than tradition file systems by sending the 
error correcting data fragments only when they are 
needed.  

The data storage efficiency was measured as the ratio 
of the size of stored files and the size of data which is 
stored for every file. A record size in our database 
was about 35 bytes, which is not comparable to the 
stored data quantity. We may conclude that the data 
storage efficiency really only depends on the used 
error correcting level.  

7. FUTURE WORK 
So far the group intelligence module has only been 
partially implemented, but we plan to finish it later 
this year. We would like to implement the batch 
processing and client side caching to achieve a better 
performance for small files. To be able to modify the 
contents we need versioning, and we plan to 
implement this in early 2006. We would like to 
measure the performance in larger configurations 
with some 150-200 PC’s. In the future we would like 
to use the LanStore as a basic building block for a 
wide area video-on-demand system and a long term 
archive for users’ files. The current bottleneck is the 
FEC encoder; we would like to study the use of other 
solutions.  

8. CONCLUSIONS 
In this article we presented a solution for a cheap, 
reliable, high performance LAN based distributed 
storage. The solution components we used are not 
new but we could not find a system which is 
optimized for such circumstances. The measurements 
prove the usability of this solution even with current 
desktop computing capabilities. We think that in the 
near future with increasing processor capacity similar 
solutions will be widely used.  
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ABSTRACT 
The Microsoft .NET Common Language Runtime (CLR) provides a low-level debugging application 
programmers interface (API), which can be used to implement traditional source code debuggers but can also be 
useful to implement other dynamic program introspection tools. This paper describes our experience in using 
this API for the implementation of a high-level debugger. The API is difficult to use from a technical point of 
view because it is implemented as a set of Component Object Model (COM) interfaces instead of a managed 
.NET API. Nevertheless, it is possible to implement a debugger in managed C# code using COM-interop. We 
describe our experience in taking this approach. We define a high-level debugging API and implement it in the 
C# language using COM-interop to access the low-level debugging API. Furthermore, we describe the 
integration of this high-level API in the multi-language development environment X-develop to enable source 
code debugging of .NET languages. This paper can be useful for anybody who wants to take the same approach 
to implement debuggers or other tools for dynamic program introspection. 
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Debugger, CLR, multi-language, C#, COM-interop, Rotor 

 

1. INTRODUCTION 
Tracking execution and examining the internal state 
of a program are important techniques for every 
developer. They can be used with debuggers to find 
bugs and unintended behavior. But they can also be 
used in other sorts of dynamic program introspection 
tools. A high-level debugger should provide a 
defined user experience regardless of the underlying 
technology. The developer who examines a running 
program cannot be bothered with the low-level 
intricacies of the underlying debugging API.  
The Microsoft .NET Common Language Runtime 
(CLR) provides a low-level debugging API, to 
implement such tools. Using this API directly is 
difficult. First the API is not easy to use from a 
technical point of view, because it is implemented as 

a set of COM interfaces instead of a managed API. 
Thus, it cannot directly be used in managed C# 
[Hei04a] code. Also the low-level debugging API 
has no notions of high-level programming languages 
or debugging functionality. This has to be 
implemented using low-level features. 
This paper describes how these problems can be 
solved. We describe our experience in defining a 
high-level debugger API and implementing it in 
managed C# code using COM-interop to access the 
low-level CLR debugging API. Furthermore, we 
describe the integration of this high-level API in the 
multi-language development environment X-develop 
[Omn04a] to enable debugging of .NET languages.  
The paper is structured as follows: Section 2 gives an 
overview of our architecture. Section 3 describes the 
supporting CLR debugging technologies. Section 4 
explains how to use COM-interop to create a 
managed wrapper for the low-level API. Section 5 
describes at this API and how to implement high-
level debugging features like breakpoints, stepping 
and variable introspection. Section 6 outlines the 
integration of these high-level features into the multi-
language development environment X-develop to 
create a full-fledged interactive debugger. Section 7 
discusses related work. Finally, we summarize this 
paper in Section 8. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
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2. ARCHITECTURE 
This section gives an overview of the architecture of 
our debugger.  

 

Design goals 
The architecture should fulfill multiple design goals: 
1. The main goal is to provide a user interface 
which enables all features necessary for conventional 
debugging from within the IDE. This functionality 
should follow the user's expectations. The developer 
should be able to set breakpoints in the source code 
at which execution of the whole program is 
suspended automatically. Once suspended the 
developer can switch between different threads of 
execution, display the current stack trace and step 
through the source code. When the developer uses 
single-stepping all threads of execution must be 
resumed to avoid deadlock situations. The developer 
also needs to be able to suspend execution at any 
time to inspect what the program is doing at that 
time. The interface must be powerful enough to 
allow a complete examination of the program state.  
2. We want to integrate the debugger into the multi-
language development environment X-develop 
[Omn04a]. X-develop supports C#, J# and Visual 
Basic and has an open API to extend it for new 
languages. Thus, it is important that the debugger 
also supports multiple languages. 
3. We want to implement a high-level debugger API 
which provides a clean interface to the IDE hiding all 
the runtime-specific peculiarities of the low-level 
debugging API.  
4. The debugger should be integrated in a way that 
provides maximum independence from the IDE. 
Even if the debugger interface ceases to function, the 
IDE should not be affected. 

System Architecture 
Figure 1 shows our architecture. On top, there is the 
X-develop environment that communicates with the 

debugger control program written in C#. This control 
program uses a high-level API which provides the 
desired high-level debugging functionality. The 
implementation of this API is based on the low-level 
CLR debugging services. The implementation is 
described in detail in section 4. 

3. SUPPORTING TECHNOLOGIES 
This section gives an overview of the CLR 
debugging services and other supporting 
technologies. 

CLR Debugging Services 
The Common Language Runtime provides low-level 
debugging services for runtime control and program 
introspection. Additionally, it defines a set of 
notifications for specific events that may occur 
during the execution of a program. The CLR 
debugging services are implemented as a set of COM 
interfaces. The program being debugged runs in its 
own Win32 host process. In the same process there is 
a special helper thread that communicates with the 
debugging services.  

Symbol Manager 
The CLR and the CLR debugging services know 
nothing about high-level programming languages. It 
knows only of the intermediate language (IL).  

However, there is a mechanism for mapping source 
code to IL code and vice versa. The compilers for the 
various .NET languages store the mapping 
information in a separate program database file 
(PDB). This mapping information can be used for 
mapping between lines in the source code and 
positions in the IL code or for mapping between 
variable names and their respective addresses. The 
component that allows access to this information is 
called the symbol manager. The symbol manager 
API is part of the .NET core libraries. It can be found 
in the namespace 
System.Diagnostics.SymbolStore. 

Additionally to the PDB files the executable files 
themselves contain information describing method 
names and signatures, class names, etc. This 
information is called metadata. It can also be used for 
source-to-IL mapping. For example it is possible to 
determine all the fields of a given class using 
metadata. The metadata API is a COM API like the 
debugger API. 

One key benefit of using the compiler provided 
mapping information is that this information can be 
accessed uniformly for all programming languages. 
Thus, it provides support for multi-language 
debugging without any further work per 

X-develop environment 

Debugger control program with our 
high-level C# debugging API 

Low-level CLR debugging API 

Figure 1. Architecture of our debugger
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programming language. The work is done in the 
compilers. 

For basic debugging functionality this information is 
sufficient. For more advanced applications a more 
detailed mapping might be desired. This would 
require additional static analysis of the source code 
in the compiler. Examples are expression-level 
stepping in debuggers or back-in-time debuggers.  

4. USING COM INTEROP TO ACCESS 
THE CLR DEBUGGING SERVICES 
Although the CLR debugging API is a classic COM 
API it is possible to implement a debugger in 
managed code using COM-interop. The advantage of 
this approach is that we can use C# (or any other 
managed .NET language) to implement the 
debugger. In this section, we give a step-by-step 
description how to achieve this. 

About COM-interop 
COM-interop is a technology to use classic COM 
APIs from managed code. This is done by creating 
managed wrapper classes representing the COM 
interfaces. This wrapper classes can than be called 
like normal managed classes. When calling a COM 
method from C# code, the CLR will internally 
marshal the arguments and return values to/from the 
COM object. Creating an instance of a COM class 
can be done in C# by simply creating a new instance 
using the new keyword. Internally, this causes a call 
to the native method CoCreateInstance.  

Wrapping the debugger COM API 
The preferred way to create wrapper classes is to use 
the tool TlbImp.exe that is included in 
Microsoft’s .NET framework software development 
kit (SDK). This tool reads a COM type library 
definition file (TLB) and converts it to a managed 
dynamic link library (DLL) containing the wrapper 
classes. The file cordebug.tlb that is part of 
Microsoft’s .NET framework SDK contains the 
definition of the debugger API. To create a wrapper 
assembly for this file we initially use TlbImp.exe 
to create a wrapper DLL. However, in this special 
case the DLL will not be complete. On the one hand 
there are classes missing that cannot be automatically 
converted by TlbImp.exe, on the other hand even 
some definitions in cordebug.tlb are not 
complete. To solve this problem we disassemble the 
wrapper DLL using ILdasm.exe. This tool is an 
intermediate language disassembler and is also part 
of the SDK. The result is an editable assembler 
version of the DLL. We can now add the missing 
classes by hand and adapt incomplete method 
signatures. Afterwards we use the SDK assembler 

ILasm.exe to create a DLL once again from the 
assembly file. 

The classes in our wrapper DLL can now be used 
from C# code to create a high-level debugger API. 
We describe the classes in detail in section 5. 

Our approach works with .NET 1.1 and .NET 2.0 
depending on which version we want to target. The 
Rotor Shared Source CLR [Mic02a] implements the 
ICorDebug COM interface as well and can be used 
in place of a MS .NET framework. 

Wrapping the metadata COM API 
It is also possible to write a wrapper class in C#. 
Since the required metadata API is quite small we 
choose this approach. We only have to write a 
wrapper for the IMetadataImport interface. A 
C++ header file containing the definition can be 
found in the file cor.h, which is part of the SDK. A 
wrapper in C# consists of a single C# interface, 
which contains the same methods as defined in cor.h. 
This interface has to be marked with the 
ComImport attribute as well as the correct Guid 
attribute. The Guid of the IMetadataImport 
interface can be found in the file cor.h. Now we 
can use the C# wrapper class to access the metadata 
of assemblies. 

5. IMPLEMENTATION OF A HIGH-
LEVEL API 
This section describes how to use the low-level API 
to implement a high-level debugging API, which is 
suited for integration into a development 
environment. Our high-level API allows to run 
programs, set breakpoints in source code, step single 
lines, introspect variables defined in the source code 
and to browse the fields of objects. The low-level 
API on the other hand provides access to the runtime 
and is not limited to our particular use case. In the 
following sections we will describe in detail on how 
to implement specific features affiliated with 
debugging. Figure 2 shows the architecture of our 
debugger and the high-level debugging API 
implementation. 

Initializing the debugger 
The first thing the debugger has to do is to create an 
instance of the ICorDebug interface. This is done 
in a completely different way in .NET 1.1 compared 
to .NET 2.0. 

COM-activation is used in .NET 1.1. COM-
activation is done in C# by simply creating an object 
of the COM wrapper class. In our case, new 
CorDebugClass() will create the correct class, 
which is an instance of the ICorDebug interface. 
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 However, this causes problems. If one has a .NET 
1.1 debugger debugging a .NET 1.1 program, the 
.NET 1.1 implementation of ICorDebug will be 
used. As soon as .NET 2.0 is installed, that scenario 
is automatically updated to use the .NET 2.0 
implementation of ICorDebug. Now, if the .NET 
2.0 implementation is slightly different than the 1.1 
implementation, installing the 2.0 version breaks the 
1.1 debugging scenario. 

Thus, since version 2.0, the debugger has to create 
the ICorDebug object using the method 
CreateDebuggingInterfaceFromVersion. 
This method takes the desired .NET version as an 
argument. The method is defined in mscoree.dll, 
which is part of the .NET framework. In C# this 
method can be called by defining an extern method.  

With the Rotor Shared Source CLR [Mic02a] the 
ICorDebug object can be obtained in the same way 
as for the .NET 1.1 framework. But before this 
method can be used the mscordbi.dll of Rotor 
has to be registered as a COM server using the 
regsvr32 tool. Unfortunately this is just the 
scenario which the second method was designed to 
avoid: Once the Rotor mscordbi.dll is 
registered the MS .NET 1.1 framework ICorDebug 
object can no longer be created using COM-
activation. 

The ICorDebug object is the entry point to all 
debugging services. The debugger has to call the 
Initialize method of the ICorDebug object 
before doing anything else.  

Handling events 
The CLR will notify the debugger whenever certain 
events occur. To make this possible the debugger has 
to provide an implementation of the 
ICorDebugManagedCallback interface. This 
interface has to be registered using the 

SetManagedHandler method of the 
ICorDebug object. The registered implementation 
will only receive events that occur when debugging 
managed code. There is also a 
ICorDebugUnmanagedCallback interface that 
can be used for debugging unmanaged code. 

Debugger control program with our 
high-level C# debugging API 

Symbol 
Manager 

API 

Metadata 
API 

CLR 
debugging 

API 
Whenever an event is raised the affected process will 
be suspended. This allows the debugger to handle 
these events in an appropriate way. Afterwards the 
affected process has to be resumed. The process is 
passed as an ICorDebugProcess object to the 
corresponding interface method. The debugger has to 
call the Continue method of this object to resume 
execution. This has to be done for all events even if 
they do not require special handling. Otherwise the 
execution will not continue. 

.PDB .EXE CLR

Figure 2. Implementation Overview

There is one event that needs special treatment. That 
is the CreateAppDomain event. It is called when 
the CLR application domain of the process is created. 
The method will receive an 
ICorDebugAppDomain object representing the 
application domain. In order to receive further events 
it is necessary to call the Attach method of this 
object.  

We will describe some other relevant events in the 
following the sections as well. 

Creating a process 
The ICorDebug interface provides the method 
CreateProcess to create a process to debug. This 
method takes essentially the same arguments as the 
common Win32 method with the same name. The 
CreateProcess method returns an 
ICorDebugProcess object representing the 
process. The process will be created asynchronously 
after the call and the CreateProcess method of 
the ICorDebugManagedCallback interface is 
called by the debugger once the process has actually 
been created. As with all events the process will be 
suspended after this event. 

Suspending and resuming the process 
Suspending and resuming program execution is a 
common debugger feature. A process can be 
suspended by calling the Stop method of the 
ICorDebugProcess object. This method takes an 
integer timeout parameter that should be set to some 
high value. Otherwise crashes of the CLR can occur. 

To resume execution we use the Continue method 
of the ICorDebugProcess object. 

60



Mapping between source and IL code 
The next features are more difficult to implement 
than the previous ones. The reason for this is that we 
now need to map between source code and IL code. 
The CLR debugging API itself has no notion of 
source code. Instead, the mapping has to be done by 
the debugger. Section 2 describes how symbol 
information is generated by the compilers. We will 
now show how to access this information.  

First, the IMetadataImport interface can be used 
to access metadata of a given module. For a given 
module represented by an ICorDebugModule object, 
we can get an IMetadataImport object by 
calling the GetMetaDataInterface method. 

The ISymbolReader interface can be used to 
access mapping information form PDB files. The 
way to create an ISymbolReader object differs 
between .NET 1.1 and .NET 2.0.  

In .NET 1.1 the debugger has to create a 
SymBinder object. This class is defined in 
ISymWrapper.dll, which consequently has to be 
referenced by the debugger. The GetReader 
method of the SymBinder object returns the 
desired ISymbolReader object. 

In .NET 2.0 the GetReaderForFile method of 
the SymbolBinder interface that is part of the core 
library can be used.  

For the core debugging features described in this 
paper the information provided by the metadata and 
symbol manager APIs is sufficient. The following 
sections show particular use cases. 

Setting breakpoints 
Breakpoints are set in certain positions in source 
files. With the CLR debugging API however, a 
breakpoint can only be set on a specific point in the 
intermediate language (IL) level. Hence, we have to 
implement the mapping between source code and 
intermediate code. To do this, we use symbolic 
information as described in the last section. 

5.1.1 Source-to-IL mapping 
To set a breakpoint with the debugging API, the IL 
position for a given position (line) in a source file is 
required. To achieve this, the debugger proceeds as 
follows: first it iterates all loaded modules, 
respectively the ICorDebugModule objects. For 
each module the debugger creates an 
ISymbolReader object to access source-to-IL 
mapping information as described in the previous 
section. Then we call the GetDocuments method 
to obtain all source files in the module. If the 
breakpoint source file is found in the module we can 

use the GetMethodFromDocumentPosition to 
obtain the method at the breakpoint position 
represented by an ISymbolMethod object. The 
GetFunctionFromToken method will then 
return an ICorDebugFunction object 
representing this method in the debugging API.  

The next step is to map the line in the source code to 
the corresponding IL instruction. To do this we can 
once again use compiler generated information, so 
called sequence points. The sequence points of a 
method specify for each statement in the source code 
where it can be found in the IL code. Thus, the 
desired IL instruction can be found by iterating each 
sequence point and comparing its line number with 
the breakpoint line number. 

The sequence points are delivered by the 
GetSequencePoints method of the 
ISymbolMethod object. 

5.1.2 Setting the breakpoint 
Once the source-to-IL mapping is done setting the 
actual breakpoint is possible. First the debugger calls 
the GetILCode method of the 
ICorDebugFunction object, which returns an 
ICorDebugCode object, representing the methods 
IL code. Then we call the CreateBreakpoint 
method of this object with the IL position as an 
argument. The breakpoint is now set and the 
debugged process will suspend once it is hit.  

5.1.3 Handling breakpoint events 
As soon as the execution of any thread in the CLR 
passes the breakpoint the whole process will be 
suspended and the Breakpoint event of the 
ICorDebugManagedCallback will be raised. 
This event contains an ICorDebugThread object 
representing the thread that has passed the 
breakpoint. We handle this event by raising an event 
in the debugger GUI. The GUI now has to show the 
affected thread, the source position it has stopped at, 
allow stepping the code and support introspection of 
variables and object contents. The implementation of 
these features is described in the next sections. 

Accessing the stack trace 
To show the current execution point when the 
debugger is suspended we need to access the stack 
trace with current IL positions of the affected thread. 
We then map this IL position to a position in a 
source file using sequence points. 

A stack trace of a CLR thread is separated into a 
series of so called chains. Each chain contains a 
series of frames. We can use the 
EnumerateChains and EnumerateFrames 
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methods to access those. The result is a series of 
ICorDebugFrame objects. Each frame object 
contains the current IL position. To map these 
positions to source positions we use symbol 
information and sequence points as described in the 
breakpoint section.  

Stepping source code 
When the debugger has been suspended at a given 
line in the source code, it offers the possibility to step 
over the next line in the source code, i.e. executing 
just this line. Additionally, a step-in feature will step 
into the next method called by the stepped line. 
Finally, a step-out feature will execute the rest of the 
current method and will stop after the call to this 
method. 

To implement stepping we proceed as follows: a call 
to the GetActiveFrame method of the current 
ICorDebugThread object will returns an 
ICorDebugFrame object. Now the debugger has 
to create a stepper object by calling the 
CreateStepper method, which returns an 
ICorDebugStepper object. The desired stepping 
behavior can be achieved by configuring this object.  

5.1.4 Step-over 
We use the StepRange method of the 
ICorDebugStepper object to specify the IL 
instructions we want to step over. In fact, this method 
takes the IL instructions that should not be stepped as 
an argument. To calculate those, the debugger once 
again uses the sequence points of the current method 
as described in the breakpoint section. The sequence 
points contain the information which IL instructions 
represent the source code line to be stepped. 

5.1.5 Step-in 
Step-in can be implement just like step-over with the 
difference of passing an additional argument to the 
StepRange method. 

5.1.6 Step-out 
Step-out does not require source-to-IL mapping. 
Instead we can just use the StepOut method of the 
ICorDebugStepper object. 

5.1.7 Other stepping behavior 
The debugging API is flexible enough to configure 
more stepping features than those described here. 
However, its main limitation is the lack of an 
appropriate source-to-IL mapping. For example if we 
want to step single expressions instead of statements, 
the provided mapping information is not sufficient. 
In this situation additional static source code analysis 
is required.  

Accessing local variables 
The debugger should show all variables defined at 
the current position, and their value. To do this, we 
first resolve the defined local variable names in the 
source code using the compiler generated source-to-
IL mapping. This mapping will also give us the 
address of each variable, which can be then used to 
determine its value. 

5.1.8 Resolving declared variables 
To determine all declared variables at the current 
position the debugger first has to retrieve an 
ISymbolMethod object representing the current 
method. The variables are grouped into scopes in 
which they are defined. The root scope of the method 
is returned as an ISymbolScope object by the 
RootScope property of the ISymbolMethod 
object. The subscopes of a scope are returned by the 
GetChildren method. The variables of a scope 
are returned by the GetLocals method. The 
debugger will use these methods and search for 
declared variables. The ISymbolScope objects 
contain the start and end position in the source file. 
This allows to determine the declared variables at a 
given source position. 

5.1.9 Accessing the value 
To access the value of a local variable of an 
ICorDebugFrame object the debugger calls the 
GetLocalVariable method. This method takes 
the address of the local variable and returns an 
ICorDebugValue object representing the value. 

5.1.10 Rendering values 
ICorDebugValue is the base of a hierarchy of 
interfaces representing different kinds of values. For 
primitive values the GetValue method will return a 
pointer to the bytes representing the actual value. 
Note that in C# the use of unsafe code and the unsafe 
keyword are necessary to access this value. The next 
section describes how to access the content of values 
representing object references. 

Accessing object contents 
If a value is a reference to an object, we want to 
access the fields of this object with their values. 
Doing this recursively allows to access the complete 
program state.  

A value of an object is represented by an 
ICorDebugObjectValue object. The 
GetFieldValue method of this object will return 
the value. The field is identified by an integer token. 
Again we have to use the source-to-IL mapping 
information to determine the declared fields with 
their token. This is done by using the EnumFields 
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and GetFieldProps methods of the 
IMetadataImport interface.   

Conclusion 
The previous sections described how to use the low-
level CLR debugger API to implement features of a 
high-level debugger. We make them available via a 
high-level debugger API – each feature is provided 
by a particular method. The low-level API is not 
limited to this use case though. It can also be used to 
implement other tools for dynamic program 
introspection. There are also more features in the 
low-level API than those described here. For 
example it is possible to suspend and resume 
individual threads, or modify data in the debugged 
program. This is required to implement further 
debugging features or for other applications. 

Figure 3. Breakpoints 
 

The “Run-in- Debugger” function will start the 
debugger control program and set breakpoints by 
sending the appropriate command packets. Once a 
breakpoint has been hit, socket communication is 
used to obtain the stack trace and associated source 
position to show where the debugged program has 
stopped. Figure 3 shows this scenario. 

6. INTEGRATION IN X-DEVELOP 
This section outlines the integration of the debugger 
functionality with the development environment X-
develop. 

Communication protocol  
In order to achieve maximum separation between 
IDE and debugger, the debugger interface and the 
debugger control program run in different processes 
and communicate using sockets. This architecture 
also enables easy implementation of remote 
debugging later on. There are three types of packets 
used for communication between IDE and debugger 
control program: command packets, reply packets 
and event packets. After startup of the debugger 
control program the IDE sends command and request 
packets to the debugger control program which in 
turn. Those command and request packets are 
modeled around the use cases identified in the 
previous section. When the debugger receives a 
command packet it carries out the requested action 
without sending a reply. When the IDE requests 
information from the debugger control program, a 
reply packet is generated containing the result or an 
error flag if the information could not be obtained. 
When a breakpoint is hit or execution is suspended 
after a step operation, the debugger control program 
sends an event packet back to the IDE. 

GUI  
The GUI provides user access to the debugging 
functions. X-develop displays the source code of the 
debugged program in its editor and allows setting of 
breakpoints in particular lines.  

 
Figure 4. Variables 

The user can continue program execution at any time 
using the Continue function. It is also possible to step 
through the program using the presented stepping 
functions. Additionally, all variables declared at the 
current position will be shown together with their 
value in a tree widget – see Figure 4. If the value is 
an object reference it may be further expanded to see 
the fields of the object and their respective values.  

Experience 
The integration in X-develop allows testing the 
performance and stability of the debugger. Our 
experience was positive: 

1. Except for initial hurdles with COM-interop the 
implementation was straightforward.  

2. Real-world stability of the debugger 
implementation was good. All functions work as 
intended. Debugging multi-threaded applications 
works as well as simple single-threaded applications. 
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3. Debugger responsiveness is excellent. We 
measured the “stepping speed”. This is the time 
between pressing the step button, execution of the 
step inside the debugger and the callback event with 
the new position. The measured time was always 
between 50 and 500 milliseconds. This is sufficiently 
fast for a responsive user experience.  

7. RELATED WORK 
The CLR debugging API is explained in detail in the 
documentation accompanying the .NET SDK. While 
being a comprehensive guide to the low-level API, it 
lacks information on how to put together a working 
debugger.  Neither examples nor a tutorial are 
included. 
Jon Shute published a series of articles on how to 
write a debugger with .NET using the CLR 
debugging API [Shu04a]. Unfortunately, the articles 
only cover a few details and uses example code 
written in C++. 
The .NET SDK contains the source code of CorDbg - 
a C++ command line debugger using the CLR 
debugging COM API directly. It has no high-level 
API abstraction nor is it written in managed code. 
Microsoft .NET 2.0 provides the source code of a 
command line debugger (Mdbg)  that is also written 
in managed C# code. This tool also uses COM-
interop to access the native debugging API. 
However, this tool does not include any 
documentation how the integration of the COM 
classes is performed. It only works with the 2.0 
framework and it does not provide a high-level API 
abstraction. Furthermore, our architecture can easily 
be extended to support remote debugging and it 
offers a stronger separation between the debugger 
and the debuggee. 

8. CONCLUSION AND FUTURE 
WORK 
We have described the design and implementation of 
a high-level multi-language debugger for the .NET 

CLR. One advantage of our approach is that it allows 
to use managed C# (or any other .NET language) to 
implement the debugger. This can be useful for 
everybody who wants to take the same approach to 
implement debuggers or other tools for dynamic 
programming introspection.  
We integrated the debugger in the development 
environment X-develop, but it is not limited to this 
particular use case. 
The implementation of the high-level debugging API 
for Mono using the Mono.Debugger low-level 
API is underway. 
The CLR debugging services provide rich access to 
the state of executed programs. The main limitation 
is the lack of additional source-to-IL mapping 
information. The information generated by the 
compilers for the various .NET languages is 
sufficient to implement the basic functionality. But 
for more advanced applications, additional static 
source code analysis is required. A good example for 
such an application is a back-in-time debugger 
[Kra04a] [Omn04b]. Such a debugger allows 
stepping backwards by replaying the previously 
recorded program execution.  
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fruja@inf.ethz.ch

Egon Börger
Dipartimento di Informatica, Università di Pisa
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ABSTRACT
We provide a complete mathematical model for the exception handling mechanism of the Common Language Run-
time (CLR), the virtual machine underlying the interpretation of .NET programs. The goal is to use this rigorous
model in the corresponding part of the still-to-be-developed soundness proof for the CLR bytecode verifier.
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1 INTRODUCTION

This work is part of a larger project [6] which aims
at establishing some outstanding properties of C] and
CLR by mathematical proofs. Examples are the cor-
rectness of the bytecode verifier of CLR, the type
safety (along the lines of the first author’s correctness
proof [12] for the definite assignment rules of C]), the
correctness of a general compilation scheme. We try
to reuse as much as possible and to extend where nec-
essary similar work which has been done for Java and
the Java Virtual Machine (JVM) [15]. As part of this
effort, in [8] an abstract interpreter has been developed
for C], including a thread and memory model [9]; see
also [10] for a comparative view of the abstract inter-
preters for Java and for C].

In [7] an abstract model is defined for the CLR vir-
tual machine without the exception handling instruc-
tions, but including all the constructs which deal with
the interpretation of the procedural, object-oriented
and unsafe constructs of .NET compatible languages
such as C], C++, Visual Basic, VBScript, etc. The
reason why we present here a separate model for the
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exception handling mechanism of CLR is to be found
in the numerous non-trivial problems we encountered
in an attempt to fill in the missing parts on exception
handling in the ECMA standard [1]. Already in JVM
the most difficult part for the correctness proof of the
bytecode verifier was the one dealing with exception
handling (see [15,§16]). This holds in a stronger sense
also for CLR. The concrete purposes we are pursu-
ing in this paper are twofold. First, we want to de-
fine a rigorous ground model for the CLR exception
mechanism, to be used as reference model for that part
of the still-to-be-developed correctness proof for the
bytecode verifier. Secondly, we want to clarify the nu-
merous issues concerning exception handling which
are left open in the ECMA standard, but relevant for
a correct understanding of the CLR mechanism. We
do not discuss here its design rationale nor any design
alternatives.

The ECMA standard for CLR contains only a few
yet incomplete paragraphs about the exception han-
dling mechanism. A more detailed description of the
mechanism can be found in one of very few existing
documents on the CLR exception handling [2]. The
CLR mechanism has its origins in the Windows NT
Structured Exception Handling (SEH). An interested
reader can find all the insights of the SEH in [3]. What
we are striving for, the CLR type safety, is proved for a
subset of CLR in [4]. However, that approach does not
consider the exception handling classified in [4,§4] as
a fairly elaborate model that permits a unified view of
exceptions inC++, C], and other high-level languages.
So far, no formal model has been developed for the
CLR exception handling. The JVM exception mech-
anism, which differs a lot from the one of CLR, has
been formalized in [16, 15].
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We use three different methods to check the faithful-
ness (with respect to CLR) of the modeling decisions
we had to take where the ECMA standard exhibits de-
plorable gaps. First of all we made a series of exper-
iments with CLR, some of which are made available
in [5] to allow the reader to redo and check them. We
hope that these programs will be of interest to the prac-
titioner and compiler writer, as they show border cases
which have to be considered to get a full understand-
ing and definition of exception handling in CLR. Sec-
ondly, to provide some authoritative evidence for the
correctness of the modeling ideas we were led to by
our experiments, over the Fall of 2004 the first author
had an electronic discussion with Jonathan Keljo, the
CLR Exception System Manager, which essentially
confirmed our ideas about the exception mechanism
issues left open in the ECMA documents. Last but not
least a way is provided to test the internal correctness
of the model presented in this paper and its confor-
mance to the experiments with CLR, namely by an ex-
ecutable version of the CLR model, using AsmL [18].
Upon completion of the AsmL implementation of the
entire CLR model the full details will be made avail-
able in [14].

Since the focus of this paper is the exception mech-
anism of CLR, we assume the reader to be knowledge-
able about (or at least to have a rough understand-
ing of) CLR. For the sake of precision we refer in
this paper without further explanations to the model
EXECCLRN defined in [7], which describes what the
machine does upon its ”normal” (exception-free) exe-
cution. Our model for CLR together with the excep-
tion mechanism comes in the form of an Abstract State
Machine (ASM) CLRE .

Since the intuitive understanding of the ASMs ma-
chines as pseudo-code over abstract data structures is
sufficient for the comprehension of CLRE , we abstain
here from repeating the formal definition of ASMs
which can be found in the AsmBook [17]. How-
ever, for the reader’s convenience we summarize here
the most important concepts and notations that are
used in the ASMs throughout this paper. An abstract
state of an ASM is given by a set of dynamic func-
tions. Nullary dynamic functions correspond to ordi-
nary state variables. Formally all functions are total.
They may, however, return the special elementundef
if they are not defined at an argument. In each step,
the machine updates in parallel some of the functions
at certain arguments. The updates are programmed us-
ing transition rulesP, Q with the following meaning:

f (s) := t updatef ats to t
if ϕ then P elseQ if ϕ, then executeP, elseQ
P Q executeP andQ in parallel
let x = t in P assignt to x and then executeP
P seqQ executeP and thenQ
P or Q executeP or Q

Notational conventionsIn the paper, beside the usual
list operations (e.g.push, pop, top, length, ·)1, we use
a different operation: for a listL, split(L,1) splits off
the last element ofL. More exactly,split(L,1) is the
pair (L′, [x]) whereL′ · [x] = L.

The paper is organized as follows. We list in Sec-
tion 2 a few notations defined in [7] and which are
used throughout the rest of the paper. Section 3 gives
an overview of the CLR exception handling mecha-
nism. The elements of the formalization are intro-
duced in Section 4. Section 5 defines the so-called
StackWalkpass of the exception mechanism. The other
two passes,UnwindandLeaveare defined in Section 6
and Section 7, respectively. The execution rules of
CLRE are introduced in Section 8. Section 9 con-
cludes.

2 PRELIMINARIES

In this section, we summarize briefly the notations
introduced in [7] which are relevant for the exception
handling mechanism. For detailed description we refer
the reader to [7].

A call frame consists of a program counterpc : Pc,
local variables addresseslocAdr : Map(Local, Adr),
arguments addressesargAdr : Map(Arg, Adr), an
evaluation stack2 evalStack : List(Value), and a
method referencemeth : MRef. The frame denotes
the currently executed frame. Accordingly,pc gives
the program counter of the current frame,locAdr the
local variables addresses of the current frame, etc.

The stack of call frames is denoted by
frameStack and is defined as a list of frames.
Note that we separate the current frame from the
stack of call frames, i.e.frame is not contained in
frameStack.

The macros PUSHFRAME and POPFRAME are used
to push and pop theframe, respectively.

PUSHFRAME ≡ push(frameStack, frame)

POPFRAME ≡
let (frameStack′,

[(pc′, locAdr′, argAdr′, evalStack′, meth′)])
= split(frameStack, 1) in

pc := pc′

locAdr := locAdr′

argAdr := argAdr′

evalStack := evalStack′

meth := meth′

frameStack:= frameStack′

1The “·” denotes the operationappendfor lists.
2In order to simplify the exposition we describe here the

evalStackas a list of values though [7] defines it as a list of pairs
from Value× Type.

66



Fig. 1 The CLRE machine

CLRE ≡
if switch= ExcMechthen

EXCCLR
elseifswitch= Noswitchthen

INITIALIZE CLASS or EXECCLRE(code(pc))

3 THE OVERALL PICTURE

Every time an exception occurs, the control is trans-
ferred from “normal” execution (inEXECCLRE) to
a so-called “exception handling mechanism” which
we model as a submachineEXCCLR. To switch
from normal execution (read: in modeNoswitch)
to this new component, the mode is set to, say,
switch := ExcMechwhich interruptsEXECCLRE

and triggers the execution ofEXCCLR. The ma-
chine EXECCLRE is an extension of the exception-
handling-free machineEXECCLRN by a submachine
which executes instructions related to exceptions (like
Throw, Rethrow, etc.); it will be defined in Fig. 4. Due
to the very weak conditions imposed by the ECMA
standard on class initialization, the overall structure
of CLRE has to foresee that the initialization of a
beforefieldinit 3 class may start at any moment
as analyzed in detail in [11]; this explains the defini-
tion of CLRE as a machine which, in the normal ex-
ecution mode, non-deterministically chooses whether
to start a class initialization or to execute the current
instructioncode(pc) pointed at by the program counter
pc (see Fig. 1).

The exception handling mechanism proceeds in
two passes. In the first pass, the run-time sys-
tem runs a “stack walk” searching, in the possibly
empty exception handling array associated byexcHA:
Map(MRef, List(Exc)) to the current method, for the
first handler that might want to handle the exception:

• acatch handler whosetypeis a supertype of the
type of the exception, or

• a filter handler – to see whether afilter
wants to handle an exception, one has first to exe-
cute (in the first pass) the code in the filter region:
if it returns1, then it is chosen to handle the ex-
ception; if it returns0, this handler is not good to
handle the exception.

Visual Basic and Managed C++ have special
catch blocks which can “filter” the exceptions based
on the exception type and / or any conditional expres-
sion. These are compiled intofilter handlers in the

3The ECMA standard states in [1, Partition I,§8.9.5] that, if
a class is markedbeforefieldinit , then the class initializer
method is executedat any time beforethe first access to any static
field defined for that class.

Common Intermediate Language (CIL) bytecode. As
we will see, thefilter handlers bring a lot of com-
plexity to the exceptions mechanism.

The ECMA standard does not clarify what happens
if the execution of thefilter or of a method called
by it throws an exception. The currently handled ex-
ception is known as anouter exceptionwhile the newly
occured exception is called aninner exception. As we
will see below, the outer exception is not discarded but
its context is saved byEXCCLR while the inner ex-
ception becomes the outer exception.

If a match is not found in thefaulting frame, i.e. the
frame where the exception has been raised, the calling
method is searched, and so on. This search eventu-
ally terminates since theexcHAof theentrypoint
method has as last entry a so-calledbackstop entry
placed by the operating system. When a match is
found, the first pass terminates and in the second pass,
called “unwinding of the stack”, CLR walks once
more through the stack of call frames to the handler
determined in the first pass, but this time executing
thefinally andfault 4 handlers and popping their
frames. It then starts the corresponding exception han-
dler.

The reader might ask why there are two passes,
i.e. why the handling mechanism does not proceed
in a single pass by executing also thefinally and
fault handlers. The answer is to be found in the ori-
gins of the CLR exception handling mechanism: the
two pass model was invented for Windows NT, before
the CLR was ever envisioned. There are two advan-
tages of a 2-pass model:

• it allows afilter to update the exception con-
text and then continue the faulting exception;

• it allows for better debugging, since one can of-
ten detect that an exception will go unhandled in
the first pass, without any second pass backout
disturbing the exception context;

4 THE GLOBAL VIEW OF EXCCLR

In this section, we provide some detail on the el-
ements, functions and predicates needed to turn the
overall picture into a rigorous model.

The elements of an exception handling array
excHA : Map(MRef, List(Exc)) are known as
handlersand can be of four kinds. They are elements
of a setExc:

4Currently, no language (other than CIL) exposesfault han-
dlers directly. Afault handler is simply afinally handler that
only executes in the exceptional case.
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ClauseKind = catch | filter
| finally | fault

Exc = Exc( clauseKind : ClauseKind
tryStart : Pc
tryLength : N
handlerStart : Pc
handlerLength : N
type : ObjClass
filterStart : Pc )

Any 7-tuple of the above form describes a handler
of kind clauseKindwhich “protects” the region5 that
starts attryStartand has the lengthtryLength, handles
the exception in an area of instructions that starts at
handlerStartand has the lengthhandlerLength– we
refer to this area as thehandler region; if the han-
dler is of kindcatch , then thetypeof exceptions it
handles is provided, whereas if the handler is of kind
filter then the first instruction of thefilter re-
gion is at filterStart. In case of afilter handler,
the handler region starting athandlerStart immedi-
ately follows thefilter region – consequently we
have filterStart < handlerStart. We often refer to
the sequence of instructions betweenfilterStart and
handlerStart− 1 as thefilter region. We assume
that afilterStart is defined for a handler if and only if
the handler is of kindfilter , otherwisefilterStart is
undefined.
To simplify the further presentation, we define the
predicates in Fig. 2 for an instruction located at pro-
gram counter positionpos ∈ Pc and a handlerh ∈
Exc. Note that if the predicateisInFilter is true,
then filterStart is defined and thereforeh is of kind
filter . Based on the lexical nesting constraints of
protected blocks specified in [1, Partition I,§12.4.2.7],
one can prove the following property:

Disjointness 1 The predicates isInTry, isInHandler
and isInFilter are pairwise disjoint.

We assume all the constraints concerning the lexical
nesting of handlers specified in the standard [1, Par-
tition I,§12.4.2.7]. The ECMA standard [1, Partition
I,§12.4.2.5] ordering assumption on handlers is:

Ordering assumption If handlers are nested, the
most deeply nested try blocks shall come in the ex-
ception handling array before the try blocks that
enclose them.

Only one handler region per try block? The
ECMA standard specifies in [1, Partition I,§12.4.2]

5We will refer to this region asprotected regionor try block.

that a singletry block shall have exactly one han-
dler region associated with it. But the IL assembler
ilasm does accept alsotry blocks with more than
onecatch handler block. This discrepancy is solved
if we assume that everytry block with more than
one catch block which is accepted by theilasm
is translated in a semantics-preserving way as follows:

.try {
block

} catch block1
catch block2

=⇒

.try {
.try {

block
} catch block1

} catch block2

To handle an exception, theEXCCLR needs to record:

• the exception referenceexc,

• the handlingpass,

• a stackCursor – i.e. the position currently
reached in the stack of call frames (a frame)
and in the exception handling array (an index in
excHA),

• the suitablehandlerdetermined at the end of the
StackWalkpass (if any) is the handler that is go-
ing to handle the exception in the passUnwind
– until the end of theStackWalkpass,handler is
undefined.

According to the ECMA standard, every normal ex-
ecution of atry block or acatch /filter handler
region must end with aLeave(pos) instruction. When
doing this,EXCCLR has to record the currentpassand
stackCursortogether with thetargetup to which every
includedfinally code has to be executed.

ExcRec=

ExcRec( exc : ObjRef
pass : {StackWalk,Unwind}
stackCursor : Frame× N
handler : Frame× N )

LeaveRec=

LeaveRec( pass : {Leave}
stackCursor : Frame× N
target : Pc )

We list some constraints which will be needed below
to understand the treatment of theseLeave instruc-
tions.
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Fig. 2 The predicatesisInTry, isInHandlerandisInFilter

isInTry(pos, h) ⇔ tryStart(h) ≤ pos< tryStart(h) + tryLength(h)
isInHandler(pos, h) ⇔ handlerStart(h) ≤ pos< handlerStart(h) + handlerLength(h)
isInFilter(pos, h) ⇔ filterStart(h) ≤ pos< handlerStart(h)

Syntactic constraints:

1. It is not legal to exit with aLeaveinstruction
a filter region, afinally /fault han-
dler region.

2. It is not legal to branch with aLeaveinstruc-
tion into a handler region from outside the re-
gion.

3. It is legal to exit with aLeave a catch
handler region and branch to any instruction
within the associatedtry block, so long as
that branch target is not protected by yet an-
othertry block.

The nesting of passes determinesEXCCLR to main-
tain an initially empty stack of exception or leave
records for the passes that are still to be performed.

passRecStack: List(ExcRec∪ LeaveRec)
passRecStack= [ ]

In the initial state ofEXCCLR, there is no pass to
be executed, i.e.pass= undef.

We can now summarize the overall behavior of
EXCCLR, which is defined in Fig. 3 and analyzed
in detail in the following sections, by saying that if
there is a handler in the frame defined bystackCursor,
then EXCCLR will try to find (when StackWalking)
or to execute (whenUnwinding) or to leave (when
Leaveing) the corresponding handler; otherwise it will
continue its work in the invoker frame or end itsLeave
pass at thetarget.

5 THE StackWalkPASS

During aStackWalkpass,EXCCLR starts in the cur-
rent frameto search for a suitable handler of the cur-
rent exception in this frame. Such a handler exists if
the search positionn in the current frame has not yet
reached the last element of the handlers arrayexcHA
of the corresponding methodm.

existsHanWithinFrame(( , , , , , m), n) ⇔
n < length(excHA(m))

If there are no (more) handlers in the frame pointed
to by stackCursor, then the search has to be contin-

ued at the invoker frame. This means to reset the
stackCursorto point to the invoker frame.

SEARCHINVFRAME(f ) ≡
let · [f ′, f ] · = frameStack· [frame] in

RESET(stackCursor, f ′)

There are three groups of possible handlersh
EXCCLR is looking for in a given frame during its
StackWalk:

• a catch handler whosetry block protects the
program counterpc of the frame pointed at by
stackCursorand whosetypeis a supertype of the
exception type;

matchCatch(pos, t, h) ⇔
isInTry(pos, h) ∧ clauseKind(h) = catch ∧
t � type(h)

• a filter handler whosetry block protects the
pcof the frame pointed at bystackCursor;

matchFilter(pos, h) ⇔
isInTry(pos, h) ∧ clauseKind(h) = filter

• a filter handler whosefilter region con-
tainspc of the frame pointed at bystackCursor.
This corresponds to an outer exception and will
be described in more detail below.

The order of theif clauses in thelet statement from the
ruleStackWalkis not important. This is justified by the
following property:

Disjointness 2 For every type t, the predicates
matchCatcht, matchFilter and isInFilter are pairwise
disjoint6.

The above property can be easily proved using the def-
initions of the three predicates and the propertyDis-
jointness1.

If the handler pointed to by thestackCursor, namely
hanWithinFrame(( , , , , , m), n) = excHA(m)(n),
is not of any of the above types, thestackCursoris
incremented to point to the next handler in theexcHA:

6By matchCatcht we understand the predicate defined by the set
{(pos, h) | matchCatch(pos,t,h)}.
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GOTONXTHAN ≡ stackCursor:= (f , n + 1)
where stackCursor= (f , n)

The Ordering assumptionstated in Section 4 and
the lexical nesting constraints stated in [1, Partition
I,§12.4.2.7] ensure that if thestackCursorpoints to a
handler of one of the above types then this handler is
the first handler in the exception handling array (start-
ing at the position indicated in thestackCursor) of any
of the above types.

If the handler pointed to by thestackCursor is
a matching7 catch then this handler becomes the
handler to handle the exception in the passUnwind.
ThestackCursoris reset to be reused for theUnwind
pass: it shall point to the faulting frame, i.e. the cur-
rent frame. Note that duringStackWalk, framealways
points to the faulting frame except in case afilter
region is executed. However, the frame built to execute
a filter is never searched for a handler correspond-
ing to the current exception.

FOUNDHANDLER ≡
pass:= Unwind
handler:= stackCursor

RESET(s, f ) ≡ s := (f , 0)

If the handler is afilter then by means of
EXECFILTER its filter region is executed. The ex-
ecution is performed in a separate frame constructed
especially for this purpose. However this important
detail is omitted by the ECMA standard [1]. The
currently-to-be-executed frame becomes the frame for
executing thefilter region. The faulting excep-
tion frame is pushed on theframeStack. The current
frame points now to the method, local variables and
arguments of the frame in whichstackCursoris, it
has the exception reference on the evaluation stack
evalStackand the program counterpc set to the be-
ginningfilterStart of the filter region. Theswitch
is set toNoswitchin order to pass the control to the
normal machineEXECCLRE .

7We use theactualTypeOffunction defined in [7] to determine
the run-time type of the exception.

Fig. 3 The exception handling machineEXCCLR
EXCCLR ≡

match pass
StackWalk→

if existsHanWithinFrame(stackCursor) then
let h = hanWithinFrame(stackCursor) in

if matchCatch(pos, actualTypeOf(exc), h) then
FOUNDHANDLER

RESET(stackCursor, frame)
elseifmatchFilter(pos, h) then EXECFILTER(h)
elseif isInFilter(pos, h) then EXIT INNEREXC

elseGOTONXTHAN

else SEARCHINVFRAME(f )
where stackCursor= (f , ) and f = (pos, , , , )

Unwind→
if existsHanWithinFrame(stackCursor) then

let h = hanWithinFrame(stackCursor) in
if matchTargetHan(handler, stackCursor) then

EXECHAN(h)
elseifmatchFinFault(pc, h) then

EXECHAN(h)
GOTONXTHAN

elseif isInHandler(pc, h) then
ABORTPREVPASSREC

GOTONXTHAN

elseif isInFilter(pc, h) then
CONTINUEOUTEREXC

elseGOTONXTHAN

else
POPFRAME

SEARCHINVFRAME(frame)

Leave→
if existsHanWithinFrame(stackCursor) then

let h = hanWithinFrame(stackCursor) in
if isFinFromTo(h, pc, target) then

EXECHAN(h)
if isRealHanFromTo(h, pc, target) then

ABORTPREVPASSREC

GOTONXTHAN

else
pc := target
POPREC

switch:= Noswitch

EXECFILTER(h) ≡
pc := filterStart(h)
evalStack:= [exc]
locAdr := locAdr′

argAdr := argAdr′

meth:= meth′

PUSHFRAME

switch:= Noswitch
where stackCursor=

(( , locAdr′, argAdr′, , meth′), )

Exceptions in filter region? It is not documented
in the ECMA standard what happens if an (inner) ex-
ception is thrown while executing thefilter region
during theStackWalkpass of an outer exception. The
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following cases are to be considered:

• if the exception is taken care of in thefilter
region, i.e. it is successfully handled by a
catch /filter handler or it is aborted because
it occured in yet anotherfilter region of a
nested handler (see theisInFilter clause), then the
given filter region continues executing nor-
mally (after the exception has been taken care of);

• if the exception is not taken care of in the
filter region then the exception is not prop-
agated further, but itsStackWalkis exited (see
Fig. 3). The exception will be discarded but only
after theEXCCLR runs itsUnwind pass to exe-
cute all thefinally andfault handlers (see
Tests 6, 8 and 9 in [5]).

EXIT INNEREXC ≡
pass:= Unwind
RESET(stackCursor, frame)

6 THE Unwind PASS

As soon as the passStackWalk terminates,
the EXCCLR starts the Unwind pass with the
stackCursorpointing to the faulting exception frame.
Starting there, one has to walk down to thehandlerde-
termined in theStackWalk, executing on the way ev-
ery finally /fault handler region. This happens
also in casehandler is undef. WhenUnwinding, the
EXCCLR searches for

• the matching target handler, i.e. thehandlerde-
termined at the end of theStackWalkpass (if
any) –handlercan beundef if the search in the
StackWalkhas been exited because the exception
was thrown in afilter region. Also the two
handlerandstackCursorframes in question have
to coincide. We say that two frames are the same
if the address arrays of their local variables and
arguments as well as their method names coin-
cide.

matchTargetHan((f1, n1), (f2, n2)) ⇔
sameFrame(f1, f2) ∧ n1 = n2

sameFrame(f1, f2) ⇔
pri(f1) = pri(f2),∀i ∈ {2, 3, 5}

• a matchingfinally /fault handler whose as-
sociatedtry block protects thepc;

matchFinFault(pos, h) ⇔
isInTry(pos, h)∧
clauseKind(h) ∈ {finally , fault }

• a handler whose handler region containspc;

• a filter handler whosefilter region con-
tainspc;

The order of the last threeif clauses in thelet statement
from the ruleUnwind is not important. It only matters
that the first clause is guarded bymatchTargetHan.

Disjointness 3 The following predicates are pairwise
disjoint: matchFinFault, isInHandler and isInFilter.

The property can be proved using the definitions of the
predicates and the propertyDisjointness1.

The Ordering assumptionin Section 4 and the
lexical nesting constraints given in [1, Partition
I,§12.4.2.7] ensure that if thestackCursorpoints to a
handler of one of the above types then this handler is
the first handler in the exception handling array (start-
ing at the position indicated in thestackCursor) of any
of the above types.

If the handler pointed to by thestackCursoris the
handler found in theStackWalk, its handler region is
executed through EXECHAN: the pc is set to the be-
ginning of the handler region, the exception reference
is loaded on the evaluation stack (when EXECHAN is
applied for executingfinally /fault handler re-
gions the current exception is not pushed onevalStack)
and the control switches toEXECCLRE .

EXECHAN(h) ≡
pc := handlerStart(h)
evalStack:=

if clauseKind(h) ∈ {catch , filter } then
[exc]

else
[ ]

switch:= Noswitch

If the handler pointed to by thestackCursoris a
matching finally /fault handler, its handler re-
gion is executed with initially empty evaluation stack.
At the same time, thestackCursor is incremented
through GOTONXTHAN.

Let us assume that the handler pointed to by
stackCursoris an arbitrary handler whose handler re-
gion containspc.
Exceptions in handler region?The ECMA standard
does not specify what should happen if an exception is
raised in a handler region. The experimentation in [5]
can be resumed by the following rules of thumb for
exceptions thrown in a handler region similarly to the
case of nested exceptions infilter code:

• if the exception is taken care of in the han-
dler region, i.e. it is successfully handled by a
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catch /filter handler or it is discarded (be-
cause it occured in afilter region of a nested
handler), then the handler region continues exe-
cuting normally (after the exception is taken care
of);

• if the exception is not taken care of in the handler
region, i.e, escapes the handler region, then

– the previous pass ofEXCCLR is aborted
through ABORTPREVPASSREC;

ABORTPREVPASSREC≡ pop(passRecStack)

– the exception is propagated further, i.e. the
Unwind pass continues via GOTONXTHAN (see
Fig. 3) which sets thestackCursorto the next
handler inexcHA.

The execution of a handler region can only occur
whenEXCCLR runs in theUnwindandLeavepasses:
in Unwind handler regions of any kind are executed
whereas inLeave only finally handler regions
are executed. If the raised exception occured while
EXCCLR runs anUnwind pass for handling an outer
exception, theUnwind pass of the outer exception is
stopped and the corresponding pass record is popped
from passRecStack(seeTests 1, 3 and 4 in [5]). If
the exception has been thrown whileEXCCLR runs a
Leavepass for executingfinally handlers on the
way from aLeaveinstruction to its target, then this
pass is stopped and its associated pass record is popped
off passRecStack(seeTest 2 in [5]).
In this way an exception can go “unhandled” without
taking down the process, namely if an outer exception
goes unhandled, but an inner exception is successfully
handled (see the second case of the preceding case dis-
tinction).

If the handler pointed to by thestackCursor is
a filter handler whosefilter region contains
pc, then the current (inner) exception is aborted and
the filter considered as not providing a handler
for the outer exception. So there is no way to
exit a filter region with an exception. This en-
sures that the frame built by EXECFILTER for exe-
cuting a filter region is used only for this pur-
pose. The handling of the outer exception is con-
tinued through CONTINUEOUTEREXC (see Fig. 3)
which pops the frame built for executing thefilter
region, pops from thepassRecStackthe pass record
corresponding to the inner exception and reestablishes
the pass context of the outer exception, but with
thestackCursorpointing to the handler following the
just inspectedfilter handler. The updates of the
stackCursorin POPREC and GOTONXTHAN are done
sequentially such that the update in GOTONXTHAN

overwrites the update in POPREC.

CONTINUEOUTEREXC ≡
POPFRAME

POPREC seqGOTONXTHAN

POPREC≡
if passRecStack= [ ] then

SETRECUNDEF

switch:= Noswitch
else let(passRecStack′, [r]) =

split(passRecStack, 1) in
if r ∈ ExcRecthen

let (exc′, pass′, stackCursor′, handler′) = r in
exc := exc′

pass := pass′

stackCursor:= stackCursor′

handler := handler′

if r ∈ LeaveRecthen
let (pass′, stackCursor′, target′) = r in
pass := pass′

stackCursor:= stackCursor′

target := target′

passRecStack:= passRecStack′

SETRECUNDEF≡
exc := undef
pass := undef
stackCursor:= undef
target := undef
handler := undef

If the handler pointed to by thestackCursoris not of
any of the above types, thestackCursoris incremented
to point to the next handler in theexcHA.

If the Unwindpass exhausted all the handlers in the
frame indicated instackCursorthen the current frame
is popped fromframeStackand theUnwindpass con-
tinues in the invoker frame of the current frame.
Exceptions in class initializers? If an exception oc-
curs in a class initializer.cctor then the class shall
be marked as being in a specific erroneous state and
a TypeInitializationException is thrown.
This means that an exception can and will escape
the body of an initializer only by the specific ex-
ceptionTypeInitializationException . Any
further attempt to access the corresponding class in
the current application domain will throwthe same
TypeInitializationException object. Un-
fortunately, this detail is not specified by the ECMA
standard but it seems to correspond to the actual
CLR implementation and it complies with the re-
lated specification for C] in the ECMA standard (see
Test 7 in [5]). Therefore we assume that the
code sequence of every.cctor is embedded into
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a catch handler. Thiscatch handler catches ex-
ceptions of typeObject , i.e. any exception, oc-
cured in.cctor , discards it, creates an object of type
TypeInitializationException 8 and throws
the new exception.

7 THE LeavePASS

The EXCCLR machine gets into theLeave pass
whenEXECCLRE executes aLeaveinstruction upon
the normal termination of atry block or of a
catch /filter handler region. One has to exe-
cute the handler regions of allfinally handlers on
the way from theLeave instruction to the instruc-
tion whose program counter is given by theLeave
target parameter. ThestackCursorused in theLeave
pass is initialized by theLeave instruction. In the
Leavepass, theEXCCLR machine searches for

• finally handlers that are “on the way” from
thepc to thetarget,

• real handlers, i.e.catch /filter handlers that
are “on the way” from thepc to thetarget– more
details are given below.

If the handler pointed to bystackCursor is a
finally handler on the way frompc to thetargetpo-
sition of the currentLeavepass record then the handler
region of this handler is executed (see Fig. 3). If the
stackCursorpoints to acatch /filter handler on
the way frompc to targetthen the previous pass record
on passRecStackis discarded (see Fig. 3). The dis-
carded record can only be referring to anUnwindpass
for handling an exception. By discarding this record,
the mechanism terminates the handling of the corre-
sponding exception.

isFinFromTo(h, pos1, pos2) ⇔
isInTry(pos1, h) ∧ clauseKind(h) = finally ∧
¬isInTry(pos2, h) ∧ ¬isInHandler(pos2, h)

isRealHanFromTo(h, pos1, pos2) ⇔
clauseKind(h) ∈ {catch , filter }∧
isInHandler(pos1, h) ∧ ¬isInHandler(pos2, h)

For each handlerEXCCLR inspects also the next
handler inexcHA. When the handlers in the current
method are exhausted,pc is set totarget, the context
of the previous pass record onpassRecStackis reestab-
lished and the control is passed to normalEXECCLRE

execution (see Fig. 3).

8In the real CLR implementation, the exception thrown
in .cctor is embedded as an inner exception in the
TypeInitializationException . We do not model
this aspect here.

8 THE RULES OF EXECCLRE

The rules ofEXECCLRE in Fig. 4 specify the effect
of the CIL instructions related to exceptions. Each of
these rules transfers the control toEXCCLR. Throw
pops the topmost evaluation stack element (seeRe-
mark below), which is supposed to be an exception
reference. It loads onEXCCLR the pass record as-
sociated to the given exception: thestackCursoris
initialized by the currentframe and 0. If the ex-
ception mechanism is already working in a pass, i.e.
pass 6= undef then the current pass record is pushed
onpassRecStack.

LOADREC(r) ≡
if r ∈ ExcPassthen

let (exc′, pass′, stackCursor′, handler′) = r in
exc := exc′

pass := pass′

stackCursor:= stackCursor′

handler := handler′

else let(pass′, stackCursor′, target′) = r in
pass := pass′

stackCursor:= stackCursor′

target := target′

if pass6= undef then PUSHREC

PUSHREC≡
if pass= Leavethen

push(passRecStack, (pass, stackCursor, target))
elsepush(passRecStack,

(exc, pass, stackCursor, handler))

If the exception reference popped from the
evalStack by the Throw instruction is null , a
NullReferenceException is thrown. For a
given classc, the macro RAISE(c) is defined by the
following code template9:

RAISE(c) ≡
NewObj(c :: .ctor )
Throw

This macro can be viewed as a static method defined in
classObject . Calling the macro is then like invoking
the corresponding method.

The ECMA standard states in [1, Partition III,§4.23]
that theRethrowinstruction is only permitted within
the body of acatch handler. However, the same in-
struction is allowed also within a handler region of
a filter (seeTest 5 in [5]) even if this does not

9The NewObj instruction called with an instance constructor
c ::.ctor creates a new object of classc and then calls the con-
structor.ctor .
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Fig. 4 The rules ofEXECCLRE

EXECCLRE(instr) ≡
EXECCLRN (instr)
match instr

Throw→ let r = top(evalStack) in
if r 6= null then

LOADREC((r, StackWalk, (frame, 0), undef))
switch:= ExcMech

elseRAISE(NullReferenceException )

Rethrow→ LOADREC((exc, StackWalk, (frame, 0), undef))
switch:= ExcMech

EndFilter→ let val = top(evalStack) in
if val = 1 then

FOUNDHANDLER

RESET(stackCursor, top(frameStack))
elseGOTONXTHAN

POPFRAME

switch:= ExcMech

EndFinally→ evalStack:= [ ]
switch:= ExcMech

Leave(pos) → evalStack:= [ ]
LOADREC((Leave, (frame, 0), pos))
switch:= ExcMech

match the previous statement. It throws the same ex-
ception reference that was caught by this handler, i.e.
the current exceptionexcof EXCCLR. Formally, this
means that the pass record associated toexcis loaded
on EXCCLR.

In a filter region, there should be exactly one
EndFilter instruction. This has to be the last instruc-
tion in the filter region. EndFilter takes an inte-
ger val from the stack that is supposed to be either
0 or 1. In the ECMA standard,0 and 1 are assim-
ilated with “continue search” and “execute handler”,
respectively. There is a discrepancy between [1, Parti-
tion I,§12.4.2.5] which statesExecution cannot be re-
sumed at the location of the exception, except with a
user-filtered handlerand [1, Partition III,§3.34] which
states that the only possible return values from the
filter are “exceptioncontinue search”(0) and “excep-
tion executehandler”(1). In other words, resumable
exceptions are not (yet) supported contradicting Parti-
tion I.

If val is 1 then the filter handler to which
EndFilter corresponds becomes thehandlerto handle
the current exception in the passUnwind. Remem-
ber that thefilter handler is the handler pointed
to by thestackCursor. The stackCursoris reset to
be used for the passUnwind: it will point into the
topmost frame onframeStackwhich is actually the
faulting frame. Ifval is 0, the stackCursoris incre-
mented to point to the handler following ourfilter
handler. Independently ofval, the current frame
is discarded to reestablish the context of the fault-
ing frame. Note that we do not explicitly popval
from theevalStacksince the global dynamic function

evalStackis updated anyway in the next step through
POPFRAME to theevalStack’ of the faulting frame.

The EndFinally instruction terminates the execu-
tion of the handler region of afinally /fault han-
dler. It empties theevalStackand transfers the con-
trol to EXCCLR. A Leave instruction empties the
evalStackand loads onEXCCLR a pass record cor-
responding to aLeavepass.
Remark The reader might ask why the instruc-
tions Throw, Rethrowand EndFilter do not set the
evalStack. The reason is that this set up, i.e. the emp-
tying of theevalStack, is supposed to be either aside-
effect(the case of theThrowandRethrowinstructions)
or ensured for acorrectCIL (the case of theEndFilter
instruction). Thus, theThrowandRethrowinstructions
pass the control toEXCCLR which, in a next step,
will execute10 acatch /finally /fault handler re-
gion or afilter code or propagates the exception
in another frame. All these “events” will “clear” the
evalStack. In case ofEndFilter, the evalStackmust
contain exactly one item (anint32 which is popped
off by EndFilter). Note that this has to be checked by
the bytecode verifier and not ensured by the exception
handling mechanism.

9 CONCLUSION

We have defined an abstract model for the CLR ex-
ception handling mechanism. On one hand, this paper
has laid the ground for the mathematical correctness
proof of the CLR bytecode verifier. On the other hand,
through the analysis of the mechanism, we discovered
a few gaps in the ECMA standard for CLR. Our model
fills in these gaps and precisely specifies the behavior
of the mechanism in all the subtle but critical cases.
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ABSTRACT 
Operators forming an ad hoc network (MANET) in emergency situations would benefit from software 
supporting their interaction. To date, however, development of such a coordination layer has required 
abstractions on the services and data provided by the lower network layers. In this paper we present the design 
and a possible implementation of the Network Service Interface [DeRosa03a] as a .NET Compact Framework 
component, coded in C#, to be run on PDAs with the Windows Mobile operating system. We chose Dynamic 
Source Routing (DSR) as the routing protocol supporting inter-device communication. 
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1. INTRODUCTION 
The widespread availability of network-enabled 
hand-held devices (e.g. PDAs with WiFi - the 
802.11x-based standard) has made pervasive 
computing environment development an emerging 
reality. Mobile (or Multi-hop) Ad hoc NETworks 
(MANETs, [Agrawal03a]) are mobile device 
networks communicating with one another via 
wireless links without relying on an underlying 
infrastructure. This distinguishes them from other 
types of wireless networks, such as cell networks or 
infrastructure-based wireless networks. Each device 
in a MANET acts as an endpoint and as a router 
forwarding messages to devices within radio range. 
MANETs are a sound alternative to infrastructure-
based networks whenever the infrastructure is 
lacking or unusable, such as in emergency 
situations. 

Operators acting in such emergency situations 
would benefit from software supporting their 
collaboration. Such a coordination layer would 
enable them to execute sets of activities (in 
sequence, concurrently, etc.) through specific 
applications (e.g. computer supported cooperative 
work - CSCW - tools [Grudin04a], workflow 
management applications [Leymann00a], etc.) 
running on hand-held devices, thus enabling 
cooperative processes to be run. All such 
applications typically require continuous inter-
device connections (e.g. for data/information 
sharing, activity scheduling and coordination, etc.), 
but these are not generally guaranteed in MANETs.  

We investigated a specific pervasive architecture, 
targeted at CSCW and workflow management 
applications constituting the coordination layer and 
able to maintain continuous connections among 
MANET devices. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 
.NET Technologies’2005 conference  proceedings, 
ISBN 80-86943-01-1 
Copyright UNION Agency – Science Press, Plzen, Czech Republic 

As a typical example, consider the aftermath of an 
archeological disaster: following an earthquake, a 
team is equipped with mobile devices (laptops and 
PDAs) and sent to the affected area to evaluate the 
condition of archeological sites and buildings, with 
the goal of drawing a situation map to schedule 
rebuilding activities. A typical cooperative process 
to be enacted by the team would be that shown in 
Figure 1 (depicted as an UML Activity Diagram): 
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• the team leader has previously stored all area 
details (not included in the process), including 
a site map, list of the most important objects 
located in the site and previous 
reports/materials; 

• the team is considered as an overall MANET, 
in which the team leader’s device (requiring 
the most computing power, therefore usually a 
laptop) coordinates the other team members’ 
devices, by providing suitable information (e.g. 
maps, sensitive objects, etc.) and assigning 
activities/tasks; 

 
 

 

• team members are equipped with hand-held 
devices (PDAs), which allow them to run some 
operations but do not have much computing 
power. Such operations, possibly involving 
various hardware items (e.g. digital cameras, 
GPRS connections, computing power for 
image processing, main storage, etc.), are 
provided as software services to be 
coordinated. Team member 1  might compile 
some specific questionnaires (after a visual 
analysis of a building), to be analyzed by the 
team leader using specific software in order to 
schedule subsequent activities; team member 3 
might take pictures of the damaged buildings, 
while team member 2 may be responsible for 
specific processing of previous and recent 
pictures (e.g. for initial identification of 
architectural anomalies). 

In this case, it might be useful to match new 
pictures with previously stored images.  The device 
holding the high-resolution camera must therefore 
be connected to the one containing the stored 
pictures. 

But in a situation such as that shown in Figure 2, 
the movement of the operator/device equipped with 
the camera may result in its disconnection from the 
others.  
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Figure 2. Critical situation and adaptive 
management. 
rvasive architecture should be able to predict 
a situation, alert the coordination layer, and 
bly have a “bridging” device (team member 
evice) to follow  the operator/device moving 
of range, maintaining the connection and 
ing a path between devices. In this way the 
ination layer schedules the execution of new 
ties based on the prediction of a 
nnection, as shown in Figure 3 (note the new 
ty for team member 4). 

rocess’s adaptive change is centrally managed 
he coordination layer, which has “global” 
ledge of the status of all operators/devices and 
 into account idle devices, operations that can 
fely delayed, etc. 

cent years, research in the MANET area has 
ed on the development of appropriate routing 
cols, methods for energy preservation, and 
 issues on the lower four ISO/OSI layers. 
tive routing in ad hoc networks is still an 
ly-addressed open problem [Vaidya04a], with 

 interesting proposals presented in the 
ture (e.g. Dynamic Source Routing – DSR, Ad 
n demand Distance Vector – AODV routing, 

 Routing Protocol - Z-RP, etc.). 
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layer, while in Section 4 we report the results of 
NSI component testing experiments. In Section 5 an 
example of Windows Mobile application –MANET-
Chat – is described, to show the use of the NSI 
component. Finally in Section 6 we report our 
conclusions and future work. 

2. WORKFLOW ARCHITECTURE 
Figure 4 shows the architecture supporting 
cooperative work on MANETs. The various 
MANET devices are equipped with some wireless 
network interfaces and specific hardware for 
calculating distances from neighboring devices 
(Wireless Stack in the figure), while the Network 
Service Interface (NSI) provides the upper layers 
with the basic services for sending and receiving 
messages (through multi-hop paths) to/from other 
devices, by abstracting the specific routing 
protocols. 

Services (i.e. specific applications supporting the 
device users’ tasks 1) are accessible to other devices 
and can be coordinated and composed in a 
cooperative process. In contrast, the coordinator 
device presents the Predictive Layer on top of the 
Network Service Interface, signaling  any probable 
disconnection to the upper Coordination Layer. 
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Zoom on 
damaged part 

Send Photos  
Photos 

Team Member 3 (camera 
device) 

Team Member 4 
(bridge device) 

Capture Scene 

Follow Team 
member 3 

Matching 

Team Member 2 (picture 
store device) 

Selected 
Building 

Select Building 

 
Figure 3. Modified process (details).
te, development of application layer software 
thus of any information system for MANET), 
required  abstractions on the specific 
cteristics of the routing algorithms and, more 
ally, on the services and data provided by the 
 network layers. [DeRosa03a]  proposes a 
rk service interface to be used as the basic 
on which to build application software, 
g from the analysis and abstraction of current 
g protocols. 

s paper we present the design and a possible 
mentation of the Network Service Interface 
osa03a] layer as a .NET Compact Framework 
onent, coded in C#, to be run on PDAs with 
indows Mobile operating system. Dynamic 

e Routing was chosen as the routing protocol 
rting inter-device communication . To our 
ledge, this is the first effective implementation 
ANET routing protocol for PDAs (which are 

y Windows-based); current research and the 
ercial tools available are targeted only at 
s running Linux. 

aper is organized as follows: in Section 2, the 
low architecture constituting the reference 
work for cooperative work on MANET is 
ibed; this provides the overall framework for 
sults presented in this paper. In Section 3 we 
 the design of the Network Service Interface 

The Predictive Layer implements a probabilistic 
technique [DeRosa05a] which can predict if all 
devices will still be connected in the successive 
moment. At a given time instant ti in which all 
devices are connected, the coordinator device 
collects all device distance information and builds a 
next connection graph, i.e. the most likely graph at 
the next time instant ti+1, in which the predicted 
connected and disconnected devices are 
highlighted.  In the interval [ ti, ti+1 ], the 
coordinator layer enacts the appropriate actions to 
enable all devices to be still connected at ti+1. In 
predicting at ti the next connection graph, the 
technique considers not only the current situation, 
but also recent situations and predictions (i.e., at ti-1, 
ti-2, etc.), specifically considering distances 
calculated in the recent past. Thus, although the 
pervasive architecture guarantees that constant 
connection of all devices, MANET’s evolution is 
considered as it would be in a “free” scenario (i.e. 
without remedial actions by the coordination layer) 
when predicting the future situation. The 

                                                           
1 Some of these services are applications that do not 

require human intervention (e.g. an image processing 
utility), whereas others act as proxies in front of human 
actors (e.g. the service for instructing human actors to 
follow a peer is a simple GUI that alerts the human 
operator by displaying a pop-up window and emitting a 
signal). 
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reasonable assumption is that if two devices have 
the tendency to go out of radio range if left “free”, 
and are thus connected through the coordinator’s 
remedial actions, then this influences the 
subsequent connection probability. The predictive 
layer therefore calculates a probable distance 
St+1(i,j) p(i,j) (see equation 1) at time ti+1 between 
each pair of MANET devices i, j, , taking into 
account previous real distances h (distance history) 
between devices, each with a different weight (αk/c 
with αk = k and c = ∑h

k=1 αk),as more importance is 
given to recent movements (h is the dimension of 
the predictive algorithm temporal window).  

 
 

 

Starting from these predicted distances and by 
considering the maximum communication range 
(Sdev) of the wireless technology utilized (e.g. 
approximately 100 m if the device uses IEEE 
802.11b), the predictive layer estimates  the 
probability that a pair of MANET devices (i, j) is 
still within radio range at the next instant ti+1 
(equation 2).  

 
 

 

 

These probabilities are used to build a square 
probability matrix |E| x |E| (|E| = number of 
MANET mobile devices) M = (mij), in which mij = 
P(t+1)

(i,j) (equation 3). This matrix is used to build 
the subsequent connection graph: the set of graph 
nodes is E = {e1, …,em} and the set of graph arcs is 
A = {(i, j) | mij = P(i,j) ≥ β}, where 0 ≤ β ≤ 1 
represents a probability threshold. The value of β 
depends on the type of situation, but is normally  ≥ 
½.  

 

 
 

 

 

Equation 3. The square probability matrix. 

The strategy of the algorithm used in the Predictive 
Layer component is therefore to find the connected 
components in the subsequent connection graph 
(using the SUB CCDFSG procedure), and verify if 
two devices ei and ej, belong to the same connected 
component (the TEST CONNECTION procedure); 
if so, then they will still communicate in the 
subsequent instant and if not, they will lose their 
connection. After building the matrix M = (mij), it is 
therefore possible to verify which devices are 
directly (one hop) or indirectly (multi hop) 
connected to all other devices, and thus let the 
coordinator decide whether or not to take actions to 
maintain connection between the involved devices. 
The predictive algorithm is reported below: 

Equation 1. Predicted distance between two 
MANET devices i, j. 

 

PROGRAM MGR(Comps[m]) 

1. numcomps ← 0 
2. for i ← 0 to (m - 1) 
3.      do if Comps[i] = 0 
4.           then numcomps ← numcomps + 1 Equation 2. The Probability that a couple of 

MANET devices i, j being still in the radio range at 
the next instant ti+1. 

5.                   CCDFSG(M, i, numcomps, Comps[]) 
6. return Comps[] 
 

SUB CCDFSG(M, i, numcomps, Comps[m]) 
1. Comps[i] ←  numcomps 
2. for each M[i, j] ≥ Beta 
3.       do if Comps[j] = 0 
4.               then CCDFSG(M, j, numcomps, Comps[]) 
5. return NIL 
 
1. PROGRAM TEST CONNECTION(i, j, Comps[m]) 
2. if Comps[i] = Comps[j] 
3.     then TEST ← true 
4.     else TEST ←false 
5. return TEST 
 

The coordination layer manages situations when a 
peer is about to disconnect (e.g. by instructing a 
specific device to “Follow Peer X”). For example, 
if the coordination layer realizes a workflow 
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management system, then the coordination layer 
may restructure the workflow schema on the basis 
of the current prediction. 

 

 

 
 

 

The MANETServices component consists of  two 
main packages: the MANETService package and the 
RoutingProtocol package (Fig. 6). 

 

Client Application MANETServices.dll 
<<interface>> 

Network Service Interface 

isLinked(peer): StructInfo 

receive(StructReceive): 
message 

Send(message,peer): 
Boolean 

Bind(port): ManetSocket 

close(port): void 

release(): void 

<uses> 

                        Mobile Device j 

Service 3 Service 4 

Network Service Interface 

Wireless Stack (802.11x, 
Bluetooth)

                        Mobile Device i 

Service 1 Service 2 

Network Service Interface 

Wireless Stack (802.11x, 
Bluetooth)

Mobile Device Coordinator 

Wireless Stack (802.11x, Bluetooth) 

Network Service Interface 

Coordination Layer 

Predictive Layer 

MANETServices.dll  
 
 

Figure 4. Proposed Architecture for supporting
cooperative work on MANETs. 
 
 

3. NSI COMPONENT DESIGN 
Figure 5 reports the Network Service Interface API 
[DeRosa03a], which provides the following 
operations to the upper layers: 

• bind(), which enables applications running on 
the same device to be bound to the MANET 
network layer; 

• send(), which sends messages to a peer and 
reports the success or failure of data 
transmission; 

• receive(), which receives messages from peers 
in the MANET; 

• isLinked(), which reports whether a given peer 
is present in the MANET at that time; 

• close(), which closes the MANET socket 
related to a specific application;  

• release(), which releases all resources locked 
by a specific MANET socket. 

Figure 5 also shows the realization and dependency 
relationships among the NSI, the MANETServices 
component, and a generic Client Application 
running on Pocket PC. Client Applications may be 
stand alone (e.g. chats, electronic agendas, etc.) or 
other components using the NSI to communicate 
with other network peers, and MANETServices 
implements the MANET Network layer, enabling 
communication among MANET mobile devices. 
The MANETServices component and its constituent 
packages are described below. 
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Figure 5. The NSI with realization and 
dependency relationships. 
 

MANETService 

RoutingProtocol 
<<uses>> 

IRoutingProtocol 

NSI 
  

 
Figure 6. The MANETServices component and 

its constituting packages. 
MANETService package contains all interfaces 
classes implementing the NSI API. The 

ingProtocol package includes all interfaces 
classes implementing the specific MANET 
ng protocol: e.g. in our case, the classes and 
faces implementing the DSR routing protocol 
ollocated in the RoutingProtocolDSR package, 
utingProtocol sub-package. It was decided to 
 two packages linked by the IRoutingProtocol 
face (a common interface for all MANET 
ng algorithms) in order to keep the 
ETServices component as modular as possible. 
ct, by separating the routing algorithm logic 
 the MANET network management, the NSI is 
independent of the routing protocol utilized. 
xample, to use AODV routing protocol rather 
DSR protocol, it is only necessary to 

ement the AODV algorithm (e.g. by producing 
RoutingProtocolAODV sub-package), by 
ementing the IRoutingProtocol interface, and 
igure the MANET network layer context (by 
g up specific component properties). This 

ires no change to the MANET management, 



nor, in consequence, to the client application source 
code. This is a typical application of the “Strategy” 
pattern presented in [Gamma94a], in which 
ConcreteStrategies are the classes realizing the 
MANET routing protocols (see Figure 7). 
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tables if any, etc. At run time there is therefore only 
one MANETManager class instance which has 
strict control over how and when client applications 
access the NSI. The unique manager object 
maintains a list of opened MANETSocket objects 
for each application, which obtain shared 
information through synchronized methods. For 
these reasons we adopted the Singleton pattern 
[Gamma94a] for the MANET communication layer 
as a design solution, where the singleton class is 
our MANETManager class (Figure 9). 

 

 

<<interface>> 

IRoutingProtocol 
getRouteFor(peer): Route 

getAllNetUsers(): array 

getNeighbours(): array 

DSR 

getRouteFor(peer): Route 

getAllNetUsers(): array 

getNeighbours(): array 

AODV 

getRouteFor(peer): Route 

getAllNetUsers(): array 

getNeighbours(): array 
Client Application 

MANETManager 

static getMANETManager() 

bind(int port): MANETSocket

close(int port): void 

release(): void

<<uses>>

MANETSocket 

send(Message message): bool 

isLinked(Peer peer): bool 

receive(): Message 

 

1 0..

<<uses>> 

 
Figure 7. The Strategy pattern for MANET
routing algorithms. 
ANETService Package 
e main classes constituting the MANETService 
ckage and realizing the Network Service 
terface are MANETManager and MANETSocket 
e Figure 8). 
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4. NSI IMPLEMENTATION AND 
TESTING 
We implemented NSI as a .NET Compact 
Framework component, coded in C#, to be run on 
both PDAs, with the Windows Mobile operating 
system, and laptops (or any desktop) with the 
Windows operating system desktop version. The 
Dynamic Source Routing protocol [Johnson94a], 
specifically optimized for route caching 
[Vaidya04a], was implemented to support inter-
device communication. To our knowledge, this is 
the first effective implementation of a MANET 
routing protocol for PDAs (which are mainly 
Windows-based), as current research and the 
available commercial tools are targeted only at 
supporting laptops running Linux. 

<<interface>> 

Network Service Interface 

MANETSocket MANETManager 

NSIRealization 

0..* 1 

 

 
Figure 8. Main Classes constituting the
MANETService package. 
ith a file system manager, a window manager, 
 printer spooler, the MANETManager class 
ages and controls concurrent access to the 

ET network layer of client applications 
ing on the same mobile device, specifically  
aging access to shared information of the 
ng protocol used, e.g. neighbor list, routing 
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Figure 9. The Singleton pattern for MANET

connection manager.  
For our experiments we deployed the NSI 
component on several kinds of PDA devices, with:  

• IPAQ 5550 and IPAQ 5540 with 450 MHz 
processors and 128 MB RAM,  

and on: 



• desktops with 3 GHz processors and 1 GB 
RAM; 

• laptops with 2.8 GHz processors and 512 MB 
RAM.  
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destination node, while the data transmitting time is 
relatively small (requiring four packets per message 
at most). Messages over 1024 bytes must be split 
into more packets, thus requiring more time to send 
the message from one hop to another. In this case, 
the node mobility means that connection failures 
are quite likely, necessitating a great deal of packet 
retransmission (this also explains why the time 
increases when the message size exceeds 1024 
bytes).   

The second test focused on measuring component 
soundness and reliability. The main goal was to 
verify the capacity of connection servers to accept 
and satisfy incoming packet requests from 
neighbors, especially when running on PDA 
devices. This was achieved by producing high 
packet traffic in the network to provoke frequent 
full server connection queue exceptions and thus 
packet retransmissions. 
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Figure 10. Experiment environments: laptops,
desktops, and PDAs placed in adjacent rooms 

and constituting an unique MANET. 
e deployed heterogeneous devices in order to 
etter test the NSI component and verify its 
erformance on devices with different hw/sw. It is 
asy to predict that when a laptop or a desktop 
orwards packets to PDAs, throughput is limited by 
heir different clock speeds. One of our goals was 
o establish how this affects the routing protocol 
erformance (in our case the DSR protocol 
erformance). 

he experiments were conducted indoors,  with the 
evices placed in several adjacent rooms to form a 
ingle  MANET, thus using the walls as separators 
o simulate obstacles (see Figure 10). 

wo kinds of test were conducted on the NSI 
omponent. The first was to fine-tune various 
omponent parameters such as packet size. The 
aximum time spent in discovering a node route, 

lus the time spent in sending data (message) to 
estination node (i.e. the total time spent for the 
omplete execution of the getRouteFor(peer): 
oute and the send(Message message): bool 
ethods – see Section 3 IRoutingProtocol interface 

nd MANETSocket class) was chosen as the 
alidating parameter,  and 256, 512, 768, and 1024 
ytes were selected as instance values for packet 
ize. Results showed that 1024 byte packages were 
 good compromise between the time spent in 
ending the message and its size. 512, 768, and 
024 byte packages take almost the same time 
Figure 11). In fact with messages of this size, most 
ime is spent in discovering the route to the 
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ize messages (i.e., 1, 2, 4
yte packets and straining th
 shows the results of our ex
econds) to send the whol
ith 3 and 6 hosts is repo

ize . As can be seen, the 
essage increases with its 

umber of packet retran
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Figure 11. Experiment results. X axis represents 
message size in bytes, while Y axis represents 
the spent time to send message with 256, 512, 

768, and 1024 bytes packet size, resp.   
 by decomposing fixed 
 and 8 MB), into 1024 
e MANET hosts. Table 
periments. The time (in 
e message in MANET 
rted for  each message 
time spent in sending a 
size, due to the higher 
smissions, principally 
umber of full server 



connection queue exceptions. The different results 
obtained in the two cases considered are because 
there are more alternative routes to the destination 
node for MANET with 6 hosts than for 3 hosts, 
thus decreasing the number of connection requests 
to each host.  

 
Message 

Dimension  
Time for 3 

hosts (in sec.) 
Time for 6 

hosts (in sec.) 
1 MB 14 323 
2 MB 90 624 

4 MB 438 1800 

8 MB 840 2400 
 

 

 

 

5. USING THE NSI COMPONENT  
In this section we report an example of Windows 
Mobile application –MANET-Chat –implemented 
to show the use of the NSI component (see Figure 
12).  

MANET-Chat is a simple chat application that may 
be run independently on PDA and laptop/desktop 
devices and on top of a MANET network. It uses 
the NSI component as MANET network layer to 
send and receive messages to and from other 
devices.  

The main class application is the Form class of the 
System.Windows.Forms package. It includes: a 
TextBox object to enter the text message; a 
ComboBox object to select the list of message 
destinations; the isLinked, send, and close 
button objects to verify if a device is linked to the 
network, send the message, and unbind the 
application from the NSI component. Finally, the 
bigger TextBox object is used to show incoming 
messages from other network devices. The 
packages needed by the chat application are 
reported below. The MANETService package and 
the MANETService.Utility package contain all 
classes implementing the NSI component.  
 

 

 
 
 
 
 

Table 1. Experiment results  obtained for 
testing the component soundness and reliability.

 

 

  

I
w
t
a

  

84
Figure 12. MANET chat application used for 
testing the MANETService component. 
n the class constructor, variables are initialized 
ith the instance of the MANETManager class and 

he MANETSocket object assigned to the 
pplication by a binding operation. 

/* MANET chat application */ 

 
using System; 
using System.IO; 
using System.Drawing; 
using System.Collections; 
using System.Windows.Forms; 
using System.Threading; 
using System.Data; 
using System.Text; 
using System.Net; 
 
/* using the MANETService package */ 
 
using MANETService; 
using MANETService.Utility; 
 
public class Form1 : 
 System.Windows.Forms.Form  
{ 
 … 
 private MANETManager  
  manager = null; 
 private MANETSocket ms1 = null; 
 private Thread listener = null; 
 … 
} 



 
 

The send, isLinked, and close application buttons 
use the NSI component’s send, isLinked, and close 
methods. The receive method is called by a thread 
object listening on a specific port. 

6. CONCLUSION AND FUTURE 
WORK 
In this paper we presented the design and a possible 
implementation of the Network Service Interface 
layer as a .NET Compact Framework component, 
coded in C#, to be run on PDAs with the Windows 
Mobile operating system; we chose Dynamic 
Source Routing as the routing protocol supporting 
inter-device communication.  

The layer prototype is available at: 
http://www.dis.uniroma1.it/pub/~me
cella/projects/MobiDIS/. 

We reported a set of NSI component tests and their 
results. Finally, we described an example of 
Windows Mobile application –MANET-Chat – in 
order to show the use of the NSI component. 

Future work will involve the development of the 
predictive layer on top of the NSI component in the 
.NET environment, using the probabilistic 
technique presented in [DeRosa05a]. 

 

 

 
public Form1()  
{ InitializeComponent(); 
 
/* Getting the unique MANETManager 
instance */ 
 
 manager = 
 MANETManager.getMANETManager()
; 
 
/* Binding application on port 50 */ 
 
 ms1 = manager.bind(50); 
 listener = new Thread(new  
 ThreadStart(this)); 
 listener.Start(); 
 … 
} 

/* Using the NSI send() method */ 
 
public void send(){ 
 this.textBox3.Text = ""; 
 string nameDest =   
 this.comboBox1.Text; 
 string message =   
 this.textBox1.Text; 
 byte[] message_b= 
 Encoding.UTF8.GetBytes(message);
 
 Boolean boo = 
 ms1.send(nameDest,50,message_b);
 
 this.textBox3.Text = 
 boo.ToString(); 
}// End the send method 
 
… 
 
/* Using the NSI receive() method */ 
 
public void receive(){ 
 … 
StructReceive sr = new 
StructReceive(50); 
StructReceive result = null; 
while(breaking) 
{ 
 
 

result = ms1.receive(sr); 

 if(result != null){ 
  string[] message =  
  result.getMessage(); 
  … 
  break; 
 } 
} 
… 
}// End the receive method 
 
… 
/* Using the isLinked() method */ 
 
public void isLinked(){ 
 string nameDest = 
 this.comboBox1.Text; 
 Boolean bo = 
 ms1.isLinked(nameDest); 
 textBox5.Text = 
 bo.ToString(); 
} 
/* The close method to unbind the 
MANET chat application */ 
 
public void close(object sender, 
System.EventArgs e) 
{ 
 MANETManager.close(50); 
 … 
 MANETManager.release(); 
 … 
} 
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ABSTRACT 
As a result of the increasing availability and processing capacity offered by portable devices, it is important for 
software providers to offer mobile services that seamlessly interoperate with business applications. However, 
currently there is still a considerable technology gap between building .NET applications on PC-like systems and 
programming mobile services on mid-range portable devices, a large number of which run the Symbian operating 
system. As Microsoft has built its .NET Compact Framework Common Language Runtime (CLR) for high-end 
mobile devices, it would be desirable to bring a reasonable subset of this technology to mid-range smartphone 
devices as well. Such a platform for executing .NET applications on Symbian-enabled smartphones has then the 
potential (1) to considerably facilitate the migration of .NET applications to portable devices and (2) to increase 
the interoperability between software running on stationary systems and mobile services. In this paper, we present 
an initial feasibility assessment for porting the .NET Compact Framework to Symbian smartphones, and analyze 
how the unique characteristics of the Symbian operating system affect the portability of the .NET Compact 
Framework. Based on our experiences in porting parts of the .NET Compact Framework to Symbian, we 
illustrate code portability between different platforms and provide a preliminary performance analysis of the 
.NET Compact Framework compared to Java. 

Keywords 
.Net Compact Framework – Symbian – Mobile Services – Smartphones – Software Migration. 

 

1. INTRODUCTION 
During the last two decades, mobile phones have 
become almost ubiquitous. As a result of this 
development, it is increasingly important for software 
providers to offer mobile services that seamlessly 
interoperate with their business applications in order 
to improve customer satisfaction and service 
availability. The .NET Framework has been a popular 
platform for creating such applications and services 
both on stationary computers and Windows CE-based 
PDAs. However, a large number of today’s 

smartphones are currently based on the Symbian 
operating system, for which applications are either 
developed in Symbian C++ or Java. According to a 
recent study [Gar04], 80% of all smartphones 
shipped in the 3rd quarter of 2004 were Symbian 
phones. Hence, for the next couple of years Symbian 
smartphones are likely to remain an important 
platform for implementing mobile services. 

As a consequence, it would be beneficial if .NET 
applications could also be executed on Symbian-
enabled devices. .NET developers could then reuse 
their code for mobile services instead of 
reimplementing their applications from the ground up 
using C++ or Java. Reimplementation can be 
especially cumbersome since commonly used 
CLR/.NET features may not be present in different 
programming models (e.g. floating point support is 
absent in some J2ME profiles, SOAP Web Services 
support may be missing, XML and graphics 
programming model might differ). These issues mean 
that direct code reuse is not possible, which results in 
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increased costs and is likely to introduce new 
program errors. Having a Common Language 
Runtime (CLR) running on Symbian smartphones 
also implies that developers could implement 
applications for this platform using the same 
programming environment and tools offered for the 
.NET Framework. We would like to argue that such 
an approach has the potential to considerably simplify 
the migration of .NET applications to mobile devices 
and makes it easier for software developers to design 
mobile services that interoperate with stationary 
.NET applications. 

In this paper, we investigate whether it is feasible to 
port the .NET Compact Framework to Symbian, and 
report on our preliminary experiences in porting parts 
of the .NET Compact Framework to this platform. 
The paper also contains an analysis of specific 
characteristics of Symbian and describes how the 
internals of the Symbian operating system affect the 
portability of the .NET Compact Framework. 
Furthermore, we provide a preliminary performance 
analysis of executing applications for Symbian 
smartphones by means of the Common Language 
Runtime (CLR). 

The remainder of this paper is structured as follows: 
The following section summarizes related work. Sect. 
3 provides an overview of the .NET Compact 
Framework architecture. Sect. 4 reports on our 
experiences in porting parts of the .NET Compact 
Framework to Symbian phones and shows how we 
dealt with the specific demands of the Symbian 
operating system. In Sect. 5 we evaluate our 
implementation in comparison to Java. Sect. 6 gives 
an outlook on future work, while Sect. 7 concludes 
the paper.  

2. RELATED WORK 
The number of programming languages targeting the 
Common Language Infrastructure (CLI) has been 
steadily increasing over the years. Besides the variety 
of currently supported programming languages, 
however, CLI run-time technologies have also 
become increasingly interesting for simplifying the 
development process across different platforms and 
operating systems. Examples for this development are 
Microsoft’s Rotor and 3rd party Mono and DotGNU 
implementations of the CLI [Rotor,Mono,DotGNU]. 
The last years have therefore shown a shift from 
using CLI technologies for language integration on a 
single platform to improving the development of 
applications across different platforms and operating 
systems. As the CLI has been accepted as an 
international standard, the development into this 
direction of cross-platform interoperability of CLI 
languages is likely to persist.  

While there are significant projects that aim at 
supporting .NET on operating systems such as Unix 
and MacOS, the major difference in hosting the CLI 
on the Symbian operating system is that the latter is 
explicitly targeting resource-restricted mobile 
devices. Constraints regarding the amount of 
available memory, computational resources, and 
restrictions in the functionality provided by the 
operating system pose therefore new demands on the 
portability of the .NET Framework. Because of these 
constraints, this paper focuses on the .NET Compact 
Framework [NETCF] – which itself was designed for 
mobile devices and first implemented to run on 
Windows CE. Because of this, it already considers 
some of the typical constraints of mobile platforms.  

Most Symbian smartphones are shipped with a Java 
Virtual Machine (JVM) already installed on the 
phone (J2ME MIDP, the Java 2 Platform Micro 
Edition Mobile Information Device Platform targets 
resource-restricted mobile devices such as mobile 
phones). A .NET Compact Framework 
implementation for smartphones should therefore be 
at least comparable to Java implementations with 
respect to provided functionality and resource 
consumption. Besides this fact, there are however 
major differences between Java and .NET that make 
a direct comparison difficult: (1) Java byte code is 
often interpreted while the CLR primarily uses Just-
in-Time (JIT) compilation. (2) There are international 
standards for the CLI and C#, while there is no such 
standard for Java (there is a Java Community 
Process, though). (3) .NET supports many 
programming languages – with J# also a flavour of 
Java. This can make direct comparison difficult 
because this advantage can imply architectural 
decisions affecting the performance of the CLI. (4) 
The .NET Compact Framework comes with 
functionality that is not natively supported by J2ME 
MIDP. However, there are a range of publicly 
available add-ons and class libraries that support 
much of this functionality also on this Java platform 
[J2MEWeb].  

Rashid et al. [RTCE04] compare the performance of 
native Symbian code with interpreted Java 
applications, and Raghavan et al. [RSL04] reports on 
a model-based performance evaluation of 
applications on mobile devices. In the scope of our 
work, test suites provided by IBM 
[IBMBenchmarks], covering basic features such as 
method calls, thread creation, and data access, were 
used to carry out performance comparisons.  

There are several papers (e.g., [Opera] and [Helix]) 
dealing with some of the obstacles that arise when 
porting applications to the Symbian operating system. 
Some of the described approaches are also applicable 
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in the context of our work and helped us find a 
direction for our project. 

3. ARCHITECTURE OVERVIEW 
Fig. 1 gives an overview of the .NET Compact 
Framework architecture and its underlying 
components. As can be seen, the major constituents 
of this general architecture are (1) the actual 
hardware of the mobile device, (2) the operating 
system that provides access to this hardware, (3) the 
.NET Compact Framework CLR, which maps the 
instructions of a (4) .NET application onto 
instructions for the operating system and the 
underlying hardware.  

 

Figure 1: Overview of the .NET Compact 
Framework Architecture 

In the following, we will shortly describe these 
individual components before we present our 
experiences in porting parts of the .NET Compact 
Framework to Symbian. 

Hardware Constraints 
A crucial aspect when trying to target a different 
computing platform for .NET is to be aware of the 
computational and functional restrictions of the 
underlying hardware. 

The Symbian Web site currently (February 2005) 
lists 31 different Symbian OS phones, of which 13 
are distributed by Nokia, 7 were built by Fujitsu for 
NTT DoCoMo’s FOMA network, 3 are from Sony 
Ericsson, and the others come from companies such 
as Siemens and Motorola. For 21 of these 31 phones, 
for which more detailed information could be found, 
we looked more closely at the technical 
specifications.  

All of the investigated phones were built around 
ARM processors or variants such as the OMAP 1510 
from Texas Instruments, which itself is based on an 

ARM architecture. The processor speed varied from 
104 MHz for the ARM4T processor to 220 MHz for 
an ARM5 CPU. As an average, most phones are 
operated at processing speeds of up to around 150 
MHz. Regarding display capabilities, approximately 
50% of the investigated Symbian smartphones have a 
screen resolution of 176x208 and the others a 
resolution of 208x320. An exception is the Nokia 
9290 Communicator with a screen resolution of 
640x200. This relatively large screen, however, is 
only used in the PDA mode of the device. 

All of the smartphones we compared with each other 
supported Java, and most new phones come with Java 
MIDP 2.0 support. Furthermore, Bluetooth has 
become a wireless communication standard that is 
implemented by virtually all Symbian smartphones. 
In some of the new phones Bluetooth is even 
preferred over infrared; these phones are not 
equipped with an infrared port. This is important 
because the .NET Compact Framework provides 
special classes facilitating networking and 
communication over infrared links. In a port of the 
Compact Framework to Symbian-enabled devices, it 
therefore seems reasonable to focus more on 
Bluetooth than infrared as the standard interface for 
short-range communications. 

The most striking difference when comparing 
Symbian smartphones is in the amount of memory 
integrated into the devices. While some Nokia phones 
such as the Nokia N-gage or the Nokia 7650 have 
only about 4 MB of internal memory to store photos 
and messages, newer models such as the Nokia 6630 
come with 10 MB of memory integrated (only about 
6 MB of which are free to store programs or photos); 
the Nokia 7710 has up to 90 MB of internal memory 
[MobileReview]. With respect to non-volatile 
memory, most phones offer the possibility to insert 
multimedia cards (MMC) in order to increase storage 
capabilities. Furthermore, the trend towards more 
sophisticated digital cameras integrated into 
smartphones will increase the demand for non-
volatile memory. As a consequence, it will not be the 
limiting factor when porting the .NET Compact 
Framework to Symbian phones. A more pressing 
problem is the amount of RAM available on 
smartphones. According to [MobileReview], the 
amount of volatile memory available on the Nokia N-
Gage, the Nokia 7610, and the new Nokia 6630 is a 
mere 379 kB, 1403 kB, and 8758 kB, respectively. 

Tab. 1 compares typical hardware features of 
Symbian smartphones with those of a Compaq iPAQ 
PocketPC – a relatively old iPAQ model on which 
the .NET Compact Framework, however, 
successfully runs in a Windows CE based OS (newer 
Pocket PC’s which also run the .NET Compact 

Operating System 
(Symbian) 

Hardware 
(Processor, RAM/ROM, Bluetooth, etc.) 

.NET Compact Framework Application 

.NET Compact Framework CLR 

Class Libraries 

Execution Engine 

Platform Adaptation Layer 
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Framework have significantly greater resources). As 
we can see, the most relevant physical difference 
between the iPAQ and the smartphones is the amount 
of memory integrated into the devices. Following an 
exploratory approach, we tried to assess the memory 
demands of a .NET Compact Framework for 
smartphones by porting parts of the framework to the 
Symbian platform (cf. Sect. 5). Considering the other 
hardware characteristics both platforms are somewhat 
similar, so that none of the hardware constraints 
found on smartphones should make it impossible to 
port the .NET Compact Framework to this platform. 

Table 1: Typical hardware characteristics of 
Symbian smartphones compared to that of an 

iPAQ H3650 

 iPAQ H3650 Smartphones 

OS Windows Symbian 

Processor 206 MHz 
Intel StrongARM 

up to 220 MHz 
ARM architecture 

Memory 32 MB RAM 
16 MB Flash 

typ. <<10 MB RAM 
typ. < 10 MB Flash 

Display 240x320 
touch screen 

176x208 or 208x320 
typ. no touch screen 

Connect IrDA, Bluetooth Bluetooth, IrDA  

Operating System 
The second layer in our overall architecture (cf. Fig. 
1) is made up of the operating system, in our case the 
Symbian OS. In many respects does the Symbian OS 
considerably differ from Windows CE, which has 
been the standard platform for hosting the .NET 
Compact Framework CLR implementation. These 
differences affect such elementary features as 
multitasking, error handling, file access, and 
networking. They have therefore a significant impact 
on our goal to port the .NET Compact Framework.  

Here are some of the Symbian characteristics that so 
far caused most of the problems in our project (for a 
more detailed description of these issues, please refer 
to Sect. 4): 

• A C++ dialect that redefines basic language 
structures 

• No writable global and writable static variables 
allowed in DLLs 

• Extensively used client/server model that, for 
example, implies constraints for accessing file 
and networking functions 

• Event-driven programming model with a focus 
on non-preemptive multitasking 

• Symbian’s error handling and cleanup model 

• Concepts from the Unix/Windows world such as 
environment variables as well as several file and 
networking functions are missing 

CLR Architecture Overview 
The .NET Compact Framework CLR is made up of 
the following main components: (1) class libraries, 
(2) execution engine, and (3) platform adaptation 
layer. 

The goal of the .NET Compact Framework class 
libraries is to provide a basic set of classes, 
interfaces, and value types that constitute the 
foundation for developing applications in .NET. For 
example, support for integers, boolean values or 
strings, functionality for performing I/O, classes for 
handling exceptions, and methods for collecting 
information about loaded classes are all included in 
the class libraries of the .NET Compact Framework.  

The execution engine is the core component of the 
CLR – it provides the fundamental services necessary 
for carrying out managed code. While the execution 
engine consists of a large number of individual 
components, some of its most important parts are: (1) 
a just-in-time (JIT) compiler (or alternatively an 
interpreter), (2) a garbage collector, and (3) a class 
and module loader. The decision whether to use a JIT 
compiler or to immediately carry out generated 
instructions in an interpreter depends on the resource 
constraints of a given platform. Our preliminary port 
is based on a JIT compiler, not an interpreter. 

Because the design of the .NET Compact Framework 
anticipated operating system portability, access to 
core operating services occurs through a PAL layer. 
The main responsibility of the platform adaptation 
layer (PAL) is to map calls from the execution engine 
to functions provided by the underlying host 
operating system. In other words, the PAL serves as 
the main mediator between the operating system 
(Symbian OS in our case) and the CLR. As a result of 
the architectural design of the .NET Framework, the 
PAL is the core component that needs to be 
reimplemented when porting the .NET Compact 
Framework to Symbian OS. To illustrate the 
responsibility of the PAL, let us consider the example 
of a simple Web request. Using .NET class libraries, 
the code for retrieving a Web page in C# could look 
like this:  

    WebRequest req; 
    WebResponse resp; 
    
 4: req = WebRequest.Create( 
      “http://www.microsoft.com”); 
 5: resp = req.GetResponse(); 

 

Classes such as WebRequest and WebResponse 
belong to System.Net and are therefore part of the 
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class libraries provided by the .NET Compact 
Framework. The method calls in lines 4 and 5 of the 
above code result internally in a number of function 
calls to the underlying operating system. First, the 
URL “http://www.microsoft.com” must be internally 
resolved into a corresponding IP address. Afterwards, 
a timer is created with a callback function that is 
executed when the Web page is not retrieved in a 
certain time frame. Finally, a TCP socket must be 
created and configured that is used to send a request 
to and retrieve data from the remote Web server. The 
implementation of the class libraries in the .NET 
framework thereby assumes the existence of certain 
hooks for handling timers and dealing with sockets on 
the operating system layer. The PAL implements 
these function hooks based on the capabilities of the 
underlying operating system. In case of Windows CE, 
these mappings to function calls of the operating 
system are often straightforward. However, with 
Symbian it can be much more complicated to find 
appropriate mechanisms to implement the desired 
semantics.  

4. PORTING THE .NET COMPACT 
FRAMEWORK 
In this section, we describe our port of selected 
components of the .NET Compact Framework to 
Symbian-enabled mobile devices. Again, we would 
like to point out that our work focuses on evaluating 
whether it is feasible to port the .NET Compact 
Framework to Symbian phones. As a result, simple 
solutions were often preferred over more complex 
approaches in order to get a simple version of the 
Framework working as soon as possible. 

In this section, we attempt to analyze the 
characteristics of the Symbian operating system that 
caused most of the problems in our project, and 
propose solutions for dealing with these issues. 

Current Status 
The preliminary port presented in this paper is based 
on the Microsoft .NET Compact Framework 
implementation version 1 for Windows CE. 
Currently, it is possible to execute basic console-
based .NET applications on two Series 60 phones 
that are based on the Symbian OS: Phone A (OS v6.1 
, 3 MB available memory, and a 104 MHz processor) 
and Phone B (OS v8.0a, 10MB of available memory, 
and a 220 MHz processor). Furthermore, we support 
file access and simple networking. To achieve that, 
work has not only been done on several Platform 
Adaptation Layer (PAL) modules such as threading, 
event handling, console output, file access, and 
networking, but also on the surrounding components 
that are used to load .NET DLLs and to start .NET 
applications.   

C++ Dialect 
The flavor of C++ used to implement native Symbian 
applications caused several problems in our project. 
In particular, Symbian C++ introduces some peculiar 
language features and programming models that were 
partly introduced because of the limited device 
capabilities of Symbian smartphones and partly due 
to historical reasons [Nok04]. Important issues are: 
(1) different standard data types, (2) a missing libc, 
(3) a special exception handling mechanism, and (4) 
a different memory management model. 

First, simple types such as int or unsigned 
long are not recommended by the Symbian 
Software Development Kit (SDK), so types such as 
TInt and TUInt32 had to be used instead. The 
STL (Standard Template Library) is also not 
supported due to size limitations. 

Second, as a libc is not supported by Symbian, a 
basic implementation had to be attached to our 
project containing memory management (like 
memcmp) or C-type string manipulation functions 
(such as strlen). 

Third, the GNU C++ implementation of exception 
handling was not mature enough at the design time of 
EPOC (the old name of Symbian), thus the designers 
employed a more lightweight approach to error 
handling – the “trap harness” mechanism. A function 
called User::Leave() corresponds to the throw 
directive, while the TRAP and TRAPD macros are 
called instead of catch. Exception objects were also 
replaced by simple error codes. 

Furthermore, as mobile phones are switched on for 
long periods of time, the ability to reclaim unused 
heap cells was crucial during the design of Symbian. 
Therefore, a mechanism called “two-phase-
construction” is used during object creation, and a 
“cleanup stack” structure makes sure that every 
object created on the heap is destroyed after it has 
been used.  

Writable Global and Writable Static 
Variables in DLLs 
The Symbian operating system was built with 
memory-constraint devices in mind. Therefore, it tries 
to avoid all unnecessary allocations or wastage of 
main memory. To prevent allocation of memory for 
writable static data in DLLs, which would have to be 
allocated for each application, and to enable 
eXecution In Place (XIP), DLLs that are stored in 
ROM are not copied to RAM. As a consequence, the 
programming environment does not support writable 
static or global data because the segment containing 
these values in the DLL is not writable.  

If this requirement is not a major issue when writing 
new applications, it becomes a major problem when 
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porting applications that have been designed to run 
on operating systems supporting writable static data. 
This is the case for the original Microsoft .NET 
Compact Framework, which usually runs on top of 
Windows class operating systems. Two strategies can 
be envisaged to solve this problem. First, rewriting 
the libraries was ruled out as a viable solution since 
the number of writable static data was too large to 
enable a manual rewrite of the libraries. The second 
strategy, which is the one we followed as a way to get 
a test version of the .NET Framework working as 
soon as possible, consists in loading in RAM all 
DLLs used by the .NET Compact Framework 
application. To reach this goal, we designed and 
wrote a specific loader. Starting the Framework is 
then realized by calling the loader. The loader is in 
charge of downloading in RAM the image of the 
.NET Compact Framework binary, as well as all 
libraries that it needs (including the writable data 
section). The loader also performs the necessary 
relocation in order to prepare the execution. Once 
relocation is done, the loader identifies the entry 
point defined in the .NET Compact Framework 
binary and jumps to its location. Although this 
solution works, it is far from optimal since it can 
result in a possibly high memory footprint. While this 
is not a problem in our feasibility assessment, this 
issue would have to be addressed in a real, complete 
port of the .NET Compact Framework to Symbian.  

Starting .NET Applications 
When a .NET application – which is usually 
generated using a development environment and a 
compiler on a Windows-based PC system – is to be 
executed on a Symbian phone, it must be assigned to 
our .NET Compact Framework implementation for 
execution. As .NET compilers generate files in the 
standard .NET portable executable file format, it is 
possible to distinguish any .NET application from 
native Symbian applications. Luckily, the Symbian 
OS provides the concept of so called Recognizers, 
which are used to assign certain file types to selected 
applications. For example, HTML files can be 
associated with a Web browser, PDF files with an 
Acrobat reader, etc. As this association can be based 
on more that just the file extension and allows us to 
analyze the file to be executed, we use a special 
Recognizer for starting .NET applications. 

Dealing with Symbian’s Client/Server 
Framework 
The Symbian OS introduces a range of servers to deal 
with system resources on behalf of different clients. 
Examples for such servers are the file server, the 
socket server, and the window server; servers are 
usually located in a different process than the clients 
that want to access their services. The problem with 

Symbian’s client/server framework from the 
perspective of the .NET Compact Framework is that 
only the client thread that creates resources for 
interacting with a server can use and destroy them. 
This has some implications for a port of the .NET 
Framework, and especially the Platform Adaptation 
Layer (PAL). Imagine that there is a .NET 
application consisting of two threads that both want 
to access a file. In this scenario, the PAL would be 
responsible for mapping the file access to 
corresponding operating system functions. For 
example, there would be a function like 
PALFile_Open() that sends a request to the 
Symbian file server to open a file. However, since 
both .NET threads – which are both mapped to 
Symbian threads in our implementation – might want 
to open a file, this is not possible because only the 
client thread that created the connection to the file 
server can do that. To solve this problem, we 
introduced a mediator thread that handles all 
communication with the file server. Symbian OS 
threads that represent threads in .NET then interact 
with this additional thread in order to access files. For 
the PAL implementation, this means that 
PALFile_Open() does not interact with the file 
server directly, but instead issues a request to the 
intermediary thread communicating with the file 
server. A similar mechanism is deployed to handle 
networking and console access. 

Dealing with Symbian’s Focus on 
Cooperative Multitasking 
In the desktop domain, pre-emptive multitasking 
replaced cooperative multitasking years ago when 
resources became cheaper and PC-like systems much 
more computationally powerful. Furthermore, using 
pre-emptive multitasking for different computations 
that need to be carried out concurrently is much 
easier from a programmer’s point of view than having 
to deal with the burden to split a long-running task 
into subtasks in order to keep up responsiveness. 
However, although the Symbian operating system 
supports pre-emptive multitasking, switching between 
different pre-emptive threads is considered very 
expensive and programmers are strongly encouraged 
to use cooperative multitasking instead [Nok04, 
Har03]. To support programmers in handling 
cooperative multitasking, Symbian introduced the 
concept of Active Objects as a programming 
paradigm. Together with a so-called Active 
Scheduler, Active Objects are supposed to facilitate 
the programming of non-preemptive concurrent tasks. 

However, cooperative multitasking using Active 
Objects has still the disadvantage that if there is a 
long-running calculation, it only will give control to 
another task if it is finished. As this might severely 
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reduce the responsiveness of a user interface, for 
example, books on Symbian programming [Har03, 
Nok04] strongly suggests manually splitting long-
running tasks into smaller subtasks that can faster 
pass on control to other subtasks, thereby improving 
the overall responsiveness of the system. This, 
however, does not map well with the notion of 
threads in .NET because threads in .NET are 
generally viewed as being preemptively scheduled. 
To deal with this issue in a port of the .NET Compact 
Framework there are several theoretical solutions:  

(1) If there is a thread in .NET, it is possible to 
generate a pre-emptively scheduled thread in the 
Symbian operating system and accept the effect on 
system performance this does imply. (2) When the 
execution engine requests a new thread to be created 
for a thread in a .NET application, a new Active 
Object could be created that handles the associated 
task. However, this would mean that we would need a 
mechanism to automatically find a location in the 
code where this active object can pass on control to a 
different task. Finding a place where this can be done 
requires at least the help from the JIT compiler or 
special statements in the .NET code that would have 
to be used by a programmer. (3) Another important 
issue with threads is that Symbian’s client/server 
model (see previous subsection) forces us to 
introduce preemptively scheduled threads on the 
operating system layer to sequentialize access to 
servers (the file server, for example). In order to 
reduce the number of low-level Symbian threads, it is 
possible to use a single thread for all different 
servers. The downside of this, however, is that a 
.NET thread that wants to output a string on the 
console might need to wait for a different .NET 
thread that wants to do file access. Whether this can 
be accepted depends mainly on the concrete .NET 
application. In the current state of our port, .NET 
threads are directly mapped to pre-emptively 
scheduled threads on the Symbian operating system 
layer. 

5. EVALUATION 
The purpose of this section is to estimate the 
performance of a .NET Compact Framework 
implementation for Symbian smartphones in 
comparison to other runtime environments where 
intermediate code is executed by a just-in-time 
compiler or an interpreter. To achieve this goal, we 
compare the time necessary to execute .NET code on 
our platform with the time needed to execute Java 
code on a Symbian smartphone. As it would be too 
complex to compare and difficult to interpret the 
runtime characteristics of complete applications 
written for .NET and Java – due to the different 
algorithms and optimizations Java and .NET runtimes 
might use – our approach is instead based on micro-

benchmarking. Micro-benchmarks are simple 
programs (usually loops) targeting a single 
functionality such as memory allocation or thread 
synchronization. Because of the simplicity of the 
underlying programs, porting the benchmarks to both 
Java MIDP and .NET is relatively simple. This also 
assures that a comparison based on these benchmarks 
stays fair. 

In order to carry out the evaluation, we chose a suite 
of micro-benchmarks originally written by IBM to 
measure the performance of simple Java operations in 
a standard Java Virtual Machine (JVM) environment 
[IBMBenchmarks]. These benchmarks originally 
targeted the desktop versions of Java and thus are 
using APIs that are not available on a Symbian 
smartphone. Therefore, we selected relevant tests 
from this benchmarking suite and adapted them such 
that they could be executed by the JVMs installed on 
our Symbian smartphones. As a result, benchmarks 
for the reflection interface of Java were omitted as 
well as tests targeting file access functions (file 
access is not supported on the smartphone JVMs used 
in our tests). Additionally, we also had to drop any 
benchmark using Java functionality not available to 
.NET applications. 

The other major change in the benchmarks dealt with 
timing issues. Instead of dynamically calculating the 
number of iterations of a test, we hard-coded the 
number of iterations for each benchmark based on the 
duration of a test. This was done because it simplifies 
porting of the test framework to C#, and because it 
ensures that all tests are carried out the same amount 
of times on different devices. In general, faster tests 
run more often than more time-consuming tests. For 
the above reasons, test results measured with the 
selected benchmark suite on another hardware 
platform cannot be directly compared to the results 
presented in this paper.  

Porting the Benchmarks to C# 
In a second step, we ported the selected set of micro-
benchmarks to the .NET Compact Framework using 
C#. Because Java is quite similar to C#, porting the 
micro-benchmarks required mainly small syntactic 
modifications. For example, the C# language keeps a 
different set of reserved identifiers, thus, variables 
named internal or object had to be renamed. 
Besides syntactic modifications, a few discrepancies 
between Java and C# forced us to modify the code. 

Unlike Java, for example, C# does not support the 
synchronized tag for methods or classes. For 
tests that required synchronized method calls, we 
removed the synchronized tag and added a 
lock(this) as the first statement of the method. 
The lock statement in C# is used to acquire the 
monitor associated to an instance of a class, thereby 
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preventing anybody else from calling a method of this 
object. As a result, this statement emulates the 
behavior of the synchronized tag of Java. 

Another, slightly more complex modification in the 
benchmarks was necessary because there is no simple 
alternative to the Thread.Join() statement in the 
.NET Compact Framework. This is a difference w.r.t. 
the original .NET Framework, but in the Compact 
Framework, it is difficult to ask a thread to wait for 
the completion of another thread. To handle this 
problem, we rewrote the original tests such that 
explicitly generated events were used for signaling.  

Micro-Benchmarks Description 
The first micro-benchmark in our evaluation (cf. Tab. 
2) measures memory read latency by reading the 
elements of an array. The second micro-benchmark 
measures the efficiency of calling a single method. 
The test distinguishes between calling a plain and a 
synchronized method. The third micro-benchmark 
deals with thread creation. This test sequentially 
creates threads and waits for them to start. Since the 
Symbian documentation in many places warns against 
the overhead involved when creating threads we were 
especially curious how well our implementation 
behaves compared to the Java thread implementation. 
The fourth micro-benchmark measures the time 
necessary to create new objects and the overhead 
caused by inheritance. In particular, it tests the 
creation of small objects derived over two 
generations compared to the creation of large objects 
that also inherit from a baseclass over two 
generations. This test also illustrates the performance 
of the memory subsystem and to some extend of the 
garbage collector. The fifth micro-benchmark 
measures the performance of comparing strings. The 
last three tests concentrate on measuring the 
performance of general array handling operations 
(e.g., initialization and copying). Both Java and C# 
provide support for a system-level array copy 
function a programmer should use for performance 
reasons. The CopyArray test therefore has two 
versions, one using the system-level function, the 
other using a naive copy of the array using a loop. 
While this might result in a performance penalty for a 
runtime that interprets code, we do not expect a big 
performance hit when code is generated by a JIT 
compiler. Similarly, the InitArray and 
SumArray micro-benchmarks provide two versions, 
one using a simple loop, the other using unrolling to 
limit the cost of the loop overhead. 

Results Analysis 
Tab. 2 shows the results obtained by executing the 
described tests on different platforms and execution 
environments. For the analysis of the results, the 

reader should keep in mind that the .NET tests for 
Symbian smartphones were carried out on a 
preliminary port of the .NET Compact Framework. 

The first column of Tab. 2 shows the name of the 
micro-benchmark. The second lists the parameters 
used to run the micro-benchmark (starting with the 
number of iterations). Columns three and four show 
the results, in milliseconds, of the Java micro-
benchmarks when executing them on the JVMs that 
were already installed on the smartphones used for 
our experiments (cf. Sect. 4). The next three columns 
show the results when carrying out the benchmarks in 
a .NET Compact Framework runtime. As can be seen 
in the table, we have used our port on Phone A and 
Phone B (cf Sect. 4) for the tests and compared these 
results with a standard .NET Compact Framework 
running on a regular PDA (a T-Mobile MDA II 
running PocketPC 2003 has been used for this 
experiment). Although not directly comparable, the 
results obtained with the PDA are useful to find out 
whether performance differences between Java and 
.NET are a problem of our PAL implementation or 
shared between .NET runtimes on different 
platforms. 

As a general result, the speed of our initial port of the 
.NET Compact Framework is comparable with the 
corresponding Java implementation on Phone B and 
sometimes significantly faster on Phone A. A likely 
reason for this is that the JVM on Phone A seems to 
use an interpreter, while Phone B comes with a JIT. 
In two occasions, however, our port of the .NET 
Compact Framework is much slower than the Java 
runtime on the same device. These correspond to 
tests calling synchronizes methods (we are 4.8 times 
slower on Phone A) and spawning threads (we are 52 
times slower on Phone A). 

In case of synchronized methods, the Java 
implementation of a synchronized method call takes 
twice as long as calling a method that is not 
synchronized. It is remarkable, however, that this is 
much faster than the time needed in our port, where 
calling locked method is 157 times slower than an 
unsynchronized method call on Phone A. We 
expected calls to a synchronized method to be 
slightly slower compared to the unsynchronized 
version. Furthermore, since there is no real 
concurrency involved (as only one thread in this test 
calls the functions), we did not expect a major 
difference. Our first assumption was that our 
implementation of the corresponding PAL functions 
were responsible for the poor performance.  
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Table 2: Time for running benchmarks (in ms) 
Java .NET Compact Framework 

Test Parameter 
Phone A Phone B Phone A Phone B PDA 

1. MemReadLatency #1000000, 4, 512 1578 141 219 110 122 

  #1000000, 8, 256 1547 125 219 109 121 

2. Method Calling #1000000, internal, sync 4094 579 19703 32390 12843 

  #1000000, internal, nosync 2719 203 125 62 330 

  #1000000, external, nosync 2703 219 172 79 394 

3. Spawn Threads #1000, <> 422 1437 21937 15062 2579 

4. AllObjectConstruct #10000, small, assign, 3 219 31 63 94 61 

 #10000, large, assign, 3 1125 250 ENOMEM 219 103 

5. StringCompare #10000, 128 2500 328 531 250 217 

  #10000, 512 9187 1157 2047 984 854 

6. CopyArray #10000, 1024, simple 3890 328 250 375 389 

  #10000, 1024, system 203 250 531 687 69 

7. InitArray #10000, 1024, unrolled 1547 250 31 234 166 

  #10000, 1024, simple 3438 235 16 250 271 

8. SumArray #1000, 512,simple 187 16 531 0 15 

  #1000, 512,unrolled 94 16 2047 0 12 

 

Comparing this to the tests running on the PDA, 
however, revealed that the real reason might 
partially reside in the implementation of the 
Compact Framework itself. This is because even on 
the PDA locked code runs 39 times slower than a 
function not using the lock statement (cf. previous 
subsection). Spawning a thread is also considerably 
slower in our Symbian .NET Compact Framework 
implementation than in the Java implementation. 

Right now, we are not sure if this is due to a bad 
implementation in our PAL layer or to the use of 
different synchronization primitives in our 
adaptations of the micro-benchmarks. The result for 
the same test on the PDA seems to indicate that it is 
a problem of our implementation on Symbian, and 
we are currently in the process of identifying the 
underlying problem.  

As can be seen in Tab. 2, one of the tests 
(AllObjectConstruct with large objects) 
failed with an out-of-memory error on Phone A. A 
possible explanation for this problem is that the 
garbage collector was not able to reclaim memory 
as quickly as the test requested new objects to be 
created. To confirm this theory, we modified the 
test to manually call the garbage collector during 
the test. This solved the problem, but did not allow 
us to report useful results since the reported time to 
execute the benchmark included the time to run the 
garbage collector. Solving this issue is a work item 
for us that we will investigate in the scope of our 
project. 

6. FUTURE WORK 
Security 
So far, we have not explicitly dealt with security in 
our project, but there are a number of security 
features that could be addressed in the future. These 
features could be divided into managed code 
security and the .NET Framework security. 

Managed code security generally follows the 
guidelines of the .NET Compact Framework, which 
currently allows full access to resources through the 
P/Invoke mechanism (which allows for calling 
functions of the underlying OS). Later releases of 
the .NET Compact Framework will support security 
policies, custom permission sets, imperative and 
declarative security checks [MSDNSecurity]. 

Our .NET Compact Framework runtime itself is a 
Symbian application, thus special attention needs to 
be placed on testing the implementation against 
possible exploits – especially the PAL layer, which 
has access to core OS features. 

Porting the GUI 
Symbian allows access to the GUI on several layers. 
The OS itself provides a common graphics server 
that provides the main window, basic drawing 
functions, and event handling mechanisms. Direct 
screen access is also possible. On top of that there 
are several phone-specific graphic libraries, the 
most common being the AVKON library built for 
Series 60 phones. 
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Three distinct approaches were identified that could 
be followed in implementing the GUI: 

1. Using basic drawing primitives to adapt an 
existing portable graphics library to Symbian 
smartphones. This approach would be the 
easiest to implement, but it would probably 
result in a high memory footprint and a slow 
performance of the UI subsystem. The look-
and-feel would also be different from native 
Symbian applications. 

2. Mapping .NET user interface calls to AVKON. 
This would be the most convenient solution, 
but there are significant differences between 
the two APIs. Major problems include the 
creation of resource files that the Symbian GUI 
framework relies on and several threading 
issues that prevent multiple threads to access 
the same control or have a parent-child window 
relationship.  

3. Providing access for the AVKON GUI: This 
would place the burden of dealing with a 
device-specific library on the .NET developer, 
but proxy objects and helper functions could 
assist her during the process. 

7. CONCLUSION 
This paper evaluated the feasibility of porting the 
.NET Compact Framework to Symbian 
smartphones. Our analysis shows that the specifics 
of the Symbian OS and the resource constraints of 
today’s smartphones make porting difficult but not 
impossible. Carrying out a serious port of the .NET 
framework, however, would require a considerable 
amount of manpower in order to appropriately react 
to the constraints of the Symbian platform. Our 
comparison with Java showed that .NET programs 
executed on smartphones would have similar 
performance characteristics. This is a very 
promising result and speaks in favour of the overall 
design of the .NET Compact Framework for 
resource-constraint devices. 
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ABSTRACT 

Component-Based Software Development (CBDS) and Aspect-Oriented Software Development (AOSD) have 
emerged in the last few years as new paradigms of software development. Both approaches provide techniques 
to improve the structure and reusability of the code. In addition, Aspect-Oriented Programming (AOP) permits 
the reduction of the maintainability and development costs of the final code by means of the separation of 
concerns in aspects. However, the .NET framework does not provide support for the Aspect-Oriented approach. 
In this paper, we present a solution for this lack found in .NET technology by means of a .NET middleware 
called PRISMANET. PRISMANET is based on the PRISMA approach, which integrates the advantages of 
AOSD and CBDS and supports dynamic reconfiguration of software architectures at run-time. This middleware 
has been completely developed using the .NET framework and has been tested with real case studies, such as the 
Teach Mover Robot.  As a result, PRISMANET extends the .NET technology by the execution of aspects on the 
.NET platform, the reconfiguration of software architectures (local and distributed) and the addition and removal 
of aspects from components at run-time.  

Keywords 
Aspect-Oriented Programming (AOP), Component-Based Software Development (CBDS), dynamic 
reconfiguration of software architectures, addition and removal of aspects at run-time, concurrency, distribution, 
mobility. 

 

1. INTRODUCTION 
Complex structures, non-functional requirements, 
reusability and run-time evolution are leading 
properties that current software systems need to 
deal with. Two software development approaches 
have emerged to respond to these needs: 
Component-Based Software Development (CBSD) 
[Szy98] and Aspect-Oriented Software 
Development (AOSD) [AOS05]  
On the one hand, CBSD decomposes the system 
into reusable entities called components that 
provide services to the rest of the system. 

 
On the other hand, AOSD allows for the separation 
of concerns by modularizing crosscutting concerns 
into a separate entity, called aspect. The 
encapsulation of the aspect allows for the 
reusability of the same aspect in different objects 
and the evolution of an aspect without affecting the 
rest of objects and aspects. The main effort in this 
approach has been made at the implementation 
level. As a result, this approach has emerged as a 
new paradigm of software development. However, 
the .NET framework does not provide support for 
this new approach, making the use of .NET 
technology by the “Aspect-Oriented Community” 
unfeasible. 
In this paper, we present a solution that provides 
support to the AOSD by means of the 
PRISMANET middleware. PRISMANET 
implements PRISMA. PRISMA is an approach to 
develop complex information systems that provides 
a model and an Architecture Description Language 
(ADL).

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 
.NET Technologies’2005 conference  proceedings,  
ISBN 80-86943-01-1 
Copyright UNION Agency – Science Press, Plzen, Czech Republic 
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Figure 1. PRISMA approach

The PRISMA model defines software architectures 
by integrating AOSD and CBSD. In addition, 
PRISMA supports evolution by means of a meta-
level. Its meta-level allows the evolution of types 
and the dynamic reconfiguration of architectures. 
The PRISMANET includes the PRISMA model, its 
meta-level and the distribution support for mobility.  
PRISMANET not only extends the .NET technology 
by the incorporation of aspects, but it also provides 
the reconfiguration of software architectures (local 
and distributed) and the addition and removal of 
aspects from components at run-time. These complex 
features have been successfully implemented thanks 
to the mechanisms that the .NET technology 
provides to deal with them. The most important .NET 
technology mechanisms [Rob03] that we have used 
are: delegates, reflection, serialization, .NET 
Remoting [Mic05] and dynamic code generation. 

As a result of the PRISMANET implementation, 
PRISMA software architectures can be developed 
and can be executed on the .NET platform. In 
addition, PRISMANET allows .NET programmers to 
develop applications with aspect-oriented, mobility 
and dynamic evolution properties. 

Currently, the PRISMA approach allows the 
development of software systems with all its 
advantages by extending PRISMANET classes. The 
middleware has been developed and tested with real 
case studies, such as the TeachMover robot [Tea05] 
and the EFTCOR teleoperation system [EFT02] to 
clean the hulls of the ships. As a result of this work, 
we are able to move the robot with the Aspect-
Oriented .NET technology and to develop the 
PRISMA CASE model compiler based on the 
middleware. For this reason, we are currently 
developing the compiler in order to automatically 

generate C# code from graphical diagrams (see 
Figure 1).  

The goal of this paper is to show how the aspect-
oriented, mobility and run-time evolution properties 
of PRISMANET have been implemented using the 
.NET technology mechanisms that have been 
previously mentioned. 
The structure of the paper is as follows: Section 2 
briefly introduces the basic concepts of the 
PRISMA model to understand the middleware 
implementation. Section 3 explains the 
PRISMANET middleware implementation in detail: 
aspects and components, concurrency, mobility and 
run-time evolution. Section 4 presents a comparison 
with other approaches that introduce aspect-oriented 
programming in .NET technology and points to the 
disadvantages that PRISMA overcomes. Finally, 
conclusions and further work are presented in 
section 5.        

2. PRISMA 
The PRISMA model allows for the definition of 
architectures of complex software systems [Per03]. 
Its main contributions are the integration of the 
AOSD and the CBSD and its reflexive properties. In 
this way, it specifies different characteristics 
(distribution, safety, coordination, etc.) of an 
architectural element (component, connector) using 
aspects, and it is able to evolve its architectures by 
means of a meta-level.  
A component is an architectural element that 
captures the functionality of the system and does not 
act as a coordinator among other elements. However, 
a connector is an architectural element that acts as a 
coordinator among components. In the PRISMA 
model, the connector does not have the references of 
the components that it connects to and vice versa. In 

98



this way, both components and connectors are 
reusable. The channels between two connected 
architectural elements have their references. The 
channels that connect components and connectors are 
called attachments. 
Architectural elements can be seen from two 
different views, internal (white box view) and 
external (black box view). The white box view shows 
an architectural element as a prism being an aspect of 
this architectural element each side of the prism (see 
Figure 2); whereas, the black box view encapsulates 
its functionality and publishes a set of services that 
offers to other architectural elements (see Figure 3). 

 
Figure 2. White box view of a component 

A PRISMA aspect represents a specific concern 
(safety, coordination, distribution, etc) that crosscuts 
the software architecture. This means that those 
concerns that do not crosscut the architecture are not 
going to be an aspect. In order to avoid these 
crosscutting-concerns, a PRISMA architectural 
element is formed by a set of aspects that describe it 
from the different concerns of the architecture. The 
kinds of aspect (safety, coordination, distribution, 
etc) that form an architectural element depend on the 
concerns of the information system that is being 
specifying.The main elements that form an aspect are 
the following:  
• Attributes: store information about the 

characteristics of the aspect.  
• Valuations: specify the changes in attribute values 

by the execution of a service.  
• Services: offer functionality of a specific concern.  
• Protocols: describe the order and the state in which 

a service could be executed. 
A component is formed by a set of aspects 
(functional, distribution, etc.), their synchronization 
relationships (aspects weaving) and one or more 
ports. These ports represent the interaction points 
among components. The type of ports is an interface 
that publishes a set of services.  

 
Figure 3. Black box view of a component 

The weaving is the glue of the aspects forming a 
prism. The weaving determines how an aspect is 

connected (synchronized) with the rest of the aspects. 
It indicates that the execution of an aspect service 
can generate the invocation of services in other 
aspects. However, to preserve the independence of 
the aspect specification from the aspect weaving, the 
weaving is specified outside the aspect and inside the 
component. 

The weaving methods are operations that describe 
the causality of the weaving services. The weaving 
methods are commonly used in the AOP. They are as 
follows: 
• after: aspect1.service is executed after 

aspect2.service 
• before: aspect1.service is executed before 

aspect2.service 
• instead: aspect1.service is executed in place of 

aspect2.service 

3. .NET MIDDLEWARE 
PRISMA ADL (Architecture Description Language) 
is a specification language independent of the 
development platform. For this reason, an abstract 
middleware that sits above the .NET platform has 
been developed to implement .NET PRISMA 
applications. This middleware is called 
PRISMANET, and its implementation has been 
carried out in C# language using the standard 
techniques that the .NET framework provides, that is, 
without extending the development platform. As a 
result, PRISMANET can be executed in the .NET 
platform without having to do anything else other 
than starting the execution of the middleware. 
PRISMANET offers the extra functionalities and 
characteristics which .NET does not directly provide. 
It allows for the execution of aspects, the 
reconfiguration of software architectures (local and 
distributed), the load of components, the creation of 
execution threads, the management of the local 
components, the addition and removal of aspects 
from components at run-time, the mobility and 
replication, etc. 

PRISMANET architecture 
 
The PRISMANET architecture is constituted by two 
modules: server and framework (see Figure 4): 
• PRISMA Server: This module provides services 

to manage, move, maintain and evolve 
components. 

• PRISMA Framework: This module is the user 
interface that offers the user the available services 
of the Server module. In addition, the state 
messages of the middleware are displayed on this 
user interface.   
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Figure 4. PRISMA Middleware 

 
As PRISMA specifies software architectures of 
distributed systems, distribution needs has also been 
taken into account in the development of the 
middleware. PRISMANET has to run on each node 
where a PRISMA application needs to be executed 
(see Figure 5). Each middleware manages the 
architectural elements instances that are being 
executed in its specific node, providing the necessary 
distribution, mobility, maintenance and evolution 
services to the instances. In order to keep the 
consistence of distributed software architectures and 
to make the instances work as if they were local 
instances, each middleware is able to interchange 
information with the other middlewares of the 
different nodes of a software architecture. 
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Figure 5. PRISMA Middleware running in 

distributed nodes 
 

There are three kinds of communications concerning 
PRISMANET and the applications that run on it: 
• Calls from the components to the middleware to 

ask for mobility and replication services. 
• Communication among different components as a 

result of the execution of the application. 
• Communication among different middlewares to 

find out locations of components, to move 
components, to evolve the architectures, etc. 

 

PRISMA Model Implementation 
Each concept defined in the PRISMA model has 
been implemented in the Server module of the 
PRISMANET. In this section, we focus on the 
aspects and components. The implementation has 
been carried out preserving the following features: 

• The run-time evolution of applications must be 
possible. As a result, the dynamic code generation 
to add and remove aspects, components, connectors 
and attachments must be allowed. 

• The implementation has to be as close as possible 
to the model in order to facilitate the future 
automatic code generation. 

• The execution of attachments, connectors and 
components must be concurrent. In addition, the 
concurrency among the different aspects that form 
a component must be preserved.  

3.2.1. Aspects 
An aspect has been implemented as a C# class called 
AspectBase of the PRISMANET. This class stores 
the name of the aspect and its thread reference. 
 

 
Figure 6. AspectBase class of PRISMANET 

middleware1 

                                                           
1 The set of classes that appear in the figure have been 

automatically generated from the source code of 
PRISMANET using the Sparx tool 
http://www.sparxsystems.com/ 
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The AspectBase class has the references of the 
component and the middleware that it belongs to in 
order to request them services.  In addition, as the 
middleware must guarantee the execution of services 
without blocking the requesters, when a service of an 
aspect requires its execution while another service is 
being processed, the aspect stores the service that can 
not be immediately attended in a queue. As a result, 
the aspect thread is continuously processing the 
requests of the queue (see Figure 6). Finally, it is 
important to emphasize that the AspectBase class 
offers three services: startAspect to start the 
execution of the aspect thread, stopAspect to stop the 
execution of the aspect thread and abortAspect to 
definitively stop the execution of the aspect thread.  

The kinds of aspects that can be defined in the 
PRISMA model are unlimited. However, each one 
has the functionality described above. For this 
reason, they are a subclass of the AspectBase class 
and inherit this functionality (see Figure 7). 

 

Figure 7. Classes of several kinds of aspects1  

As a result, PRISMANET allows the implementation 
of a specific aspect by creating a C# class that 
inherits from one of the classes that represent one 
kind of aspect. It is important to keep in mind that 
aspects must be serializable in order to enable the 
mobility of aspects in distributed architectures.  

In a specific aspect, the PRISMA attributes are 
implemented as private variables. The PRISMA 
services are programmed as private methods that 
implement their respective valuations. They also 
check whether their execution is enabled in 
accordance with the established order of the 
protocol. An example of a specific safety aspect is 
presented below: 
using PRISMA; 
using PRISMA.Aspects; 
using PRISMA.Aspects.Types; 
using PRISMA.Middleware; 
using PRISMA.Attachments; 
 
 

namespace Robot 
[Serializable] 
public class SMotion : SafetyAspect 
{ 
  #region Definition of PRISMA Variables 
      double minimun; 
      double maximun; 
  #endregion 
  public SMotion(double initialMinimum,  
                 double initialMaximum) :  
                 base("Smotion")… 
  public AsyncResult Check(double newAngle,  
                 out bool secure)… 
} 

 

Finally, it is important to emphasize that specific 
aspects are packaged in an assembly in order to 
facilitate their distribution over the network and their 
integration in a library. 

3.2.2. Components 
A component has been implemented as a C# class 
called ComponentBase of the PRISMANET. This 
class stores the name of the component, its own 
thread reference and its middleware reference and the 
dynamic list of aspects. It stores two attributes to 
control whether the component is going to stop or 
move, as well as the references to the ports to be able 
to receive and request services. In addition, the 
ComponentBase class offers the following services: 
Start to initiate the component thread execution; Stop 
to stop temporarily the component thread execution; 
Abort to stop definitively the component thread 
execution; IsWeaved to query if an aspect of the 
component is weaved with another aspect; 
AddAspect and RemoveAspect to add and remove 
aspects from a component; and AddWeaving and 
RemoveWeaving to add and remove weavings from a 
component (see Figure 8). 

 
Figure 8. ComponentBase class of PRISMANET 

middleware1 
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3.2.3. Weavings 
Weavings have been implemented as a dynamic 
linked list with three levels of depth. This list is part 
of the component that it belongs to. Thus, this 
weaving implementation facilitates the management 
and evolution of the weavings. The dynamic list is 
implemented by the WeavingsCollection C# class. 
Each element of this dynamic list is an instance of 
the AspectTypeNode C# class that contains the aspect 
type and another dynamic list called 
weavingAspectList. Each element of the 
WeavingAspectList is an instance of the 
WeavingNode C# class. This class stores the service 
name, which triggers the weaving execution as well 
as, a delegate of this service for its dynamic 
invocation. It also stores three more lists, each of 
which belongs to a weaving operator (after, before, 
instead). These lists contain instances of the 
WeavingMethod C# class. This class stores the 
delegate, which points to the method that must be 
executed as a result of the weaving 
(methodDelegate). It also stores the method that has 
triggered the weaving execution (origMethod), and 
the weaving type (see Figure 9). 
 

 
Figure 9. Dynamic list of weavings1 

 

As a result, PRISMANET allows the implementation 
of a specific component by creating a C# class that 
inherits from the ComponentBase class. It is 
important to keep in mind that components must be 
serializable in order to enable the mobility of 
components in distributed architectures. An example 
of a component called Actuator is presented below: 
 
using System; 
using System.Reflection; 
using PRISMA; 
using PRISMA.Aspects; 

using PRISMA.Aspects.Types; 
using PRISMA.Components; 
using PRISMA.Middleware; 
 
namespace Robot 
{ 
[Serializable] 
 public class Actuator : ComponentBase 
 { 
   public Actuator(string name,  
   MiddlewareSystem middlewareSystem) : base   
   (name,middlewareSystem) 
   { 
   /* *************************** 
    * * DEFINITION OF ASPECTS * *    
    *****************************/ 
   // Creation of Functional Aspect 
   AddAspect(new FActuator()); 
   // Creation of Safety Aspect 
   AddAspect(new  SMotion(initalMinimum,  
                          initialMaximum)); 
 
  // Achieving the references of the aspects 
   IAspect functionalAspect =  
        GetAspect(typeof(FunctionalAspect)); 
   IAspect safetyAspect =  
            GetAspect(typeof(SafetyAspect)); 
 
  /* ***************************** 
   * DEFINITION OF  WEAVINGS * *    
   *******************************/ 
   // Weaving MoveJoint         
    AddWeaving(functionalAspect,"MoveJoint", 
         WeavingType.AFTERIF("secure",true), 
            safetyAspect,"Check",functions); 
 
   /* *************************** 
    * * DEFINITION OF PORTS * *     
    *****************************/ 
    InPorts.Add("IMotionJointPort",  
                "IMotionJoint",  
                 functionalAspect); 
     
    OutPorts.Add("IMotionJointPort",  
                 "IMotionJoint");}}} 

 

Execution Model 
When the execution of a service is requested from a 
component, the request comes from the port that 
publishes the service (step 1, Figure 10). The port 
sends the request to the queue of the component (step 
2, Figure 10). Once the component thread extracts 
the requested service from the queue, the component 
checks if the requested service has weavings 
associated to it (step 3, Figure 10). If the service does 
not have any weavings, its delegate is 
asynchronously executed so that the component can 
process another request from the queue. The delegate 
execution consists of adding the service to the queue 
of the corresponding aspect. Next, the aspect thread 
executes the service (step 5, Figure 10). However, if 
the service has weavings associated to it, before 
executing step 5, the service is sent to the weaving 
manager (step 4, Figure 10). The manager processes 
weavings creating its own thread and freeing the 
component from this task. 
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Figure 10. The execution model of a component 

With regard to starting or stopping a component, 
when the middleware calls the start service of a 
component, the component calls the startAspect 
service of each one of its aspects. On the other hand, 
when the middleware calls the stop or abort services 
of a component, the threads of its aspects must also 
be stopped (stopAspect) or aborted (abortAspect). In 
the case of stopping a component in a secure way 
(stop service), a set of operations must be performed 
in order to achieve a secure state that will permit the 
start of the component execution in the future. A 
component is in a secure state when it does not have 
requests in its aspect queues and there are no 
executing services. These operations consist of not 
allowing anymore services in their queues and 
processing every service that was stored in the queue 
before the stop execution. 

Adding and removing aspects at run-time 
Aspects can be added to and removed from a 
component at run-time. The addAspect service 
inserts a new aspect inside a component. This 
method verifies that the kind of aspect that is going 
to be added does not already exist in the component, 
since only one aspect of each kind can exist in a 
component. The method updates the references of the 
aspect to the component and middleware and adds 
the aspect to the aspect list of the component. 
Finally, dynamic code generation is used to update 
the component constructor in order to make the 
changes consistent. The removeAspect service 
deletes an aspect from a component. First, the 
method stops the aspect that is going to be removed 
in a secure way. Second, it removes the aspect from 
the aspect list of the component and its associated 
weavings. Finally, the dynamic code generation is 
used to update the changes. 

Distribution Model and Mobility 
PRISMANET supports the distributed 
communication and the mobility of the components. 
It provides the distributed communication among 

components without making components aware of 
each other. 

3.5.1. Distributed Communication among 
elements through Attachments 
To make components as reusable as possible, they do 
not have references to other components they 
communicate with. Therefore, the components are 
unaware of the components they communicate with. 
The distributed communication among components 
is the responsibility of attachments. Thus, an 
attachment has the references of the communicating 
components.  
To support attachments, the middleware contains 
three classes: the Attachment class, the 
AttachmentServerBase class and the 
AttachmentClientBase (see Figure 12). For each 
component port, there is at least one instance of an 
Attachment class. When a component instance is 
created, the PRISMANET middleware creates the 
instances of the attachments associated to each port. 
Each PRISMA port has been implemented into two 
queues, a client (outPort) and a server queue (inPort) 
(see Figure 10), there also exists a Server Attachment 
and a Client Attachment for each Attachment. An 
instance of the Attachment class automatically 
instantiates an AttachmentClientBase and an 
AttachmentServerBase class.   
An AttachmentClientBase instance has a thread that 
listens to a specific outport of a component instance. 
When the AttachmentClientBase instance detects that 
there is a petition in the queue, the petition is 
redirected to the instance of an 
AttachmentServerBase. Thus, the 
AttachmentClientBase instance has a reference or a 
proxy of the AttachmentServerBase. The 
AttachmetServerBase is a MarshalByRefObject class 
of the .NET Remoting framework. This has been 
necessary to create a proxy of the instance to allow 
the AttachmentClientBase instance to access to it 
remotely. 

 
Figure 11. Two distributed architectural elements 
connected by attachments 
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Figure 12. A logical view of the attachments in the middleware1 

Figure 11, shows how two distributed components 
are connected together. Component1 has an 
AttachmentClientBase that listens to its Output queue 
and redirects services to the AttachmentServerBase 
of Component2. In addition, Component2 also has an 
AttacmentClientBase that listens to its Output queue 
and redirects the services to the 
AttachmentServerBase.  Each  AttachmentClientBase 
and AttachmentServerBase of a component are 
associated by an Attachment. 
The attachments are solely responsible for the 
distributed communication of the components. The 
PRISMANET middleware only participates in the 
creation of attachments instances between its 
component instances. To store the list of attachments 
in its site, each middleware has an 
AttachmentCollection class (see Figure 12). 
The use of attachments approximation for distributed 
communication does not only allow for the 
reusability of the elements but also makes distributed 
applications independent of a centralized Domain 
Name Server (DNS). Thus, the attachments of a 
component can be seen as a distributed DNS that 
contains the necessary references that allow an 
instance to perform the needed communications. Our 
approach prevents the failures which may be 

generated as a result of failures produced by a 
centralized DNS such as load saturation and 
deadlock. In addition, if a certain attachment between 
two architectural elements fails, their communication 
among others is not affected. 

3.5.2. Mobility of the elements in PRISMA 
Mobility is defined as the process of transferring a 
component instance and its code to a new host.  The 
transferred component instance must continue 
executing at the new host, while conserving its state 
and maintaining the same execution point.  
Current technologies do not offer this definition of 
mobility nor does .NET. Therefore, the mobility has 
to be simulated.  
To implement the mobility, we have marked all 
classes of components, aspects and the inPorts and 
outPort queues of the component with the 
[Serializable] attribute. The ability to serialize (to 
pass them by value) is provided by the .NET 
Framework. However, this is not enough. The 
mobility process has to ensure that the instance is at a 
consistent state before it is serialized.  The steps to 
enable a mobility process are presented in the 
following section. 
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3.5.2.1. The execution of a mobility decision  
A distribution aspect of a component encapsulates 
the different decisions related to mobility. This 
enables the reusability of the different mobility 
decisions in different components. As a result, the 
component controls the mobility decisions and even 
if the environment wants to make a mobility 
decision, it has to go through the distribution aspect 
of a component.  
Figure 13 shows an interaction diagram of part of the 
mobility process performed at the site where the 
mobility decision of a component has been executed. 
It shows the interchange of messages until the 
component instance is transferred to the 
RemoteMiddleware. 
When a mobility decision is satisfied, the distribution 
aspect asynchronously calls the PRISMANET 
middleware on its site to indicate that it is willing to 
move (move, Figure 13). The distribution aspect also 
notifies its component thread to prepare itself to be in 
a secure state so that it can be serialized (by 
executing the Stop of a Component, Figure 13). A 
component is at a secure state when the queues of its 
aspects are empty and when there is no service being 
executed. Therefore, the component thread stops 
processing services from its queue. However, 
services can be queued in the component inport 
because the queue is also serializable. In addition, the 
component thread notifies the aspect threads to stop 
when they finish processing services from their 
queues and when they finish executing all the 
services (StopAspect, Figure 13). When the 
component and aspect threads finally stop, the 
PRISMANET is notified and it is able to move the 
component.  

3.5.2.2. Preparing to Move Attachments 
The attachments also have to be prepared for 
mobility if a component is moved. This is because 
the attachments are the communication channels that 
allow others to communicate with a specific 
component. Therefore, it is also important to involve 
the attachments when a component is moved.  
When a component instance is completely stopped, 
PRISMANET executes a service called 
PrepareToMoveAttachments (Figure 13). This 
service fetches the attachments of a component by 
going through its ports and finding the listeners to 
these ports. It checks which attachments connect the 
mobile component with distributed ones. The 
information associated with each attachment is saved 
in a structure called the AttachmentDataTransfer (see 
Figure 12).  The information contains the references 
of the AttachmentServerBase instances that are 
connected to the AttachmentClientBase instances of 
the component. It also contains the name of the 
component instance that is connected to the mobile 
component instance, and others.  
When this task is completed, the middleware stops 
the thread of the AttachmentClientBase instances of 
the component. In addition, the 
AttachmentServerBase instances of the distributed 
component instances, connected to the mobile 
component instance, are unregistered from Remoting 
by using the Disconnect(MarshalByRefObject) 
service. This is previously performed in order not to 
allow the transfer of services to and from the mobile 
component object. 

{for all  the component aspects}

{for all  attachments}

DistributionAspect ComponentThread AspectsThreads LOCALPRISMANET RemotePRISMANETAttachmentsCol lection

move

Stop

StopAspect

PrepareToMoveAttachments

TransferComponent

Remove()

 
Figure 13. A simple interaction diagram showing the tasks done by at the local middleware site of the 

transferred component 
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Finally, a list with all the AttachmentDataTransfer 
structures of a component is created. This is 
necessary for the new middleware, where the 
component is going to be transferred, to allow it to 
recreate the attachments on its site.  

3.5.2.3. Transferring component instances 
When all the information for the mobility is 
prepared, the component instance with InPorts and 
OutPorts is serialized, and the list with the 
information of the attachments is transferred to the 
middleware of the new host. The transfer process is 
performed in a try/catch block in order to recover 
from any failure that may occur while making the 
transfer (TransferComponent, Figure 13).  When the 
object is correctly serialized, the original component 
object is destroyed.  
In addition, the attachments associated with the 
mobile component are removed from the list of 
attachments that exist in the site of the current 
middleware by executing the Remove() method of the 
AttachmentsCollection (Remove, Figure 13).  

3.5.2.4. Process after transferring a component 
instance 

When the component instance is moved, the 
receiving middleware updates the list where it stores 
the components that are executing on its site by 
adding the component instance moved 
(componentList.Add Figure 14).  
Then the middleware uses the information stored in  
AttachmentServerBase structure list in order to create 
the Attachments of the component instance 
(createLocalAttachment, see Figure 14).  However, 

this is not enough because the instances of the 
AttachmentClientBase of other component instances 
that are connected to the instances of the 
AttachmentServerBase still have the old references or 
proxies. Therefore, the new proxies of each 
AttachmentServerBase of the component instance are 
sent to the connected instances of the 
AttachmentClientBase (sendNewLocationToCouple, 
Figure 14). Afterwards, the thread of each 
AttachmentClientBase of the component instance is 
started as well as the thread of the component 
instance. 
As the inPorts have not been stopped while the 
moved component instance was preparing itself to be 
in a secure state and to be moved, the component 
instance can start executing the services which where 
queued at the first middleware and were not 
processed.  
In this way, a mobility approximation has been 
implemented preserving the state of the object after 
moving it. 
Our approach clearly distinguishes between moving 
an object and allowing remote calls to it. This can be 
done thanks to the implementation of the 
attachments. In .NET Remoting, instances cannot be 
MarshalByRefObjects and serializable at the same 
time. As well, even if a MarshalByRefObject is 
serialized a proxy is created, and it is not the real 
object that is transferred. Therefore, using 
attachments the indirect reference remoting to 
component instances is allowed as well as their 
mobility. 

{for each AttachmentDataTransfer}

PRISMANET Attachment Component

componentList.Add

sendNewLocationTo Couple

AttachmentStart

createLocalAttachment

startComponentInstance

 
Figure 14. An interaction diagram showing the tasks done by the new middleware site after the 

component is transferred
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4. RELATED WORKS 
Currently, there is an increased interest in Aspect-
Oriented Programming (AOP) which is becoming a 
widely used programming technique. AOP was 
initially developed for Java environments through 
AspectJ [Kic01] and is being transferred to other 
platforms such as .NET by means of extensions. 
However, the existing .NET approaches for 
supporting AOP are still in an early phase. 

AspectC#[Kim02] and SourceWeave.Net [Jac04] 
support AOP in .NET having available the source 
code of the base code, the aspects and the weavings. 
These approaches propose joining the base code with 
the aspects by specifying the weavings in an XML 
file. Weave.Net [Laf03] and AspectDNG [Asp05] 
also define the weavings through an XML file; 
however, they only use the assemblies of the base 
code, the aspects and weavings to join the code 
without being available the source code. Loom.Net 
[Sch02] is another .NET approach for supporting 
AOP. It has a graphical interface that allows the 
addition of defined aspects by means of reusable 
code templates and allows the performance of 
weavings.  

The approaches mentioned above clearly separate the 
base code, the aspects and the weavings in different 
entities. However, none of them supports 
mechanisms for dynamically adding or removing 
aspects. The Rapier-Loom.Net [Sch03] approach 
does allow dynamic addition and removal of aspects, 
but it defines the weavings inside the aspects thereby 
losing their reusability. SetPoint [Set05] also allows 
for dynamic addition and removal of aspects. Its 
weaving is based on the evaluation of logical 
predicates in which the base code is marked with 
meta-information that permits the evaluation of such 
predicates. EOS [Raj03] is another dynamic 
approach which is able to attach aspects at instance-
level by means of events.  

None of the approaches mentioned above takes into 
account the emerging relations that result from the 
aggregation of various aspects at the same point of 
the base code (joinpoint). However, JAsCo.Net 
[Ver03] provides an expressive language that permits 
the definition of relations among aspects. JAsCo.Net 
integrates AOP and CBSD. It introduces the concept 
of connectors for the weaving between the aspects 
and the base code which allows for a high level of 
aspect reusability.  An inconvenience of this 
approach is that the dynamic weaving of aspects to 
the base code is referential but not inclusive. This 
requires an execution platform to intercept the 
application and insert it into the aspects at execution 
time. 

The principal disadvantage of these approaches is 
that none of them integrates the needed properties at 
the same time to allow the mobility, the reusability 
and the evolution of aspect-oriented components. 
These properties are the dynamic weaving, the join 
of the base code and the aspects inside the same 
entity and the reusability of aspects. Therefore, the 
code mobility is limited because not all the properties 
of the object code can be moved. However, PRISMA 
defines a model that combines AOP and the dynamic 
reconfiguration of the CBSD models. The aspects are 
separately defined from the weavings and are highly 
reusable. The components are formed from aspects 
which are inclusively and can be dynamically 
aggregated. In addition, PRISMA permits the 
dynamic mobility of its components, and the concept 
of base code does not exist, so the component is 
solely formed by aspects. The implementation of the 
PRISMA model in .NET permits the dynamic 
addition and removal of aspects as well as the 
dynamic modification of the weavings without 
stopping the execution of the component. 

5. CONCLUSIONS AND FURTHER 
WORK 
In this paper, an innovative middleware called 
PRISMANET has been presented. This middleware 
is based on PRISMA model and in this way, it allows 
the implementation of complex, dynamic, distributed, 
aspect-oriented and component-based software 
systems using C# language. PRISMANET has been 
developed with C# language using the standard 
techniques that the framework provides, that is, 
without extending the development platform. As a 
result, PRISMANET can be executed in every 
computer that has the .NET framework installed. 
PRISMANET offers extra functionalities for the 
.NET platform. It allows the execution of aspects, the 
reconfiguration of software architectures (local and 
distributed), the addition and removal of aspects 
from components at run-time, mobility, etc. As 
explained in the paper, these functionalities have 
been implemented using .NET mechanisms such as 
delegates, reflection, serialization, .NET Remoting 
and dynamic code generation. 
PRIMANET has also been tested in industrial case 
studies such as the EFTCoR teleoperation system and 
the TeachMover robot. We are now working on the 
PRISMA model compiler in order to integrate the 
PRISMA graphical interface and the middleware in a 
CASE tool and to automatically generate code from 
the graphical diagrams. 
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ABSTRACT
We present the OCamIL compiler for Objective Caml that targets .NET. Our experiment consists of adding a

new back-end to the INRIA Objective Caml compiler that generates CIL bytecode. Among all the advantages

of code reuse, ensuring compatibility while keeping all the expressiveness of the original language is particularly

interesting. This allowed us to bootstrap the OCamIL compiler as a .NET component and build an interactive

loop (toplevel) which may be embedded within .NET applications. This work deals with typing issues because

OCamIL needs to translate an untyped intermediate language into a typed bytecode. We discuss various

intermediate language retyping techniques and their consequences on performances. We also present applications

of interoperability of Objective Caml and C# components.

1. INTRODUCTION
The .NET [1] platform is often presented as a uni-

versal framework that can host software components

developed in numerous languages. It offers a Com-

mon Type System (CTS) and a runtime environment

CLR (Common Language Runtime) built on a byte-

code machine. By assuming compliance to the CTS

type system, components interoperate safely. This

has motivated the adaptation of various languages,

such as C#, J#, A#, Eiffel, Scheme, Sml, F#, P#

or Mercury.

Even though the main implementation of .NET runs

on Windows, some Open Source projects provide im-

plementations for BSD Unix and Windows (Rotor [2]
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and Linux (Mono [3]). That reminds of Java’s motto:

“Compile once, run everywhere”. There is a hope

for a safe and efficient multi-language platform with

a single runtime, running on numerous systems. We

experiment the integration of a full-fledged functional

language in this environment by writing a .NET com-

piler for the INRIA Objective Caml [4] (thereafter

shortened as O’Caml).

O’Caml is an ML dialect: it is a functional/imperative

statically typed language, featuring parametric poly-

morphism, an exception mechanism, an object layer

and parameterized modules. Its implementation in-

cludes a bytecode and a native code compiler, which

generates efficient programs.

OCamIL [5] is a project which aims at compiling O’-

Caml to the .NET environment. We believe it can

help make popular O’Caml applications. Our primary

goals are compatibility with O’Caml and interoper-

ability.

In order to help compliance with the original lan-

guage, OCamIL is developed as a new back-end of the

O’Caml compiler. This approach quickly succeeds in

producing a full-fledged compiler for the whole lan-

guage. We achieve bootstrapping as a sizeable com-

patibility test. Taking advantage of the .NET reflec-

tion API, OCamIL can dynamically emit code and

execute it, which is a useful feature to build a toplevel

interaction loop. Both compiler and toplevel can be

redistributed as .NET components. The main part of

O’Caml standard library and the O’Caml graphics,

threads and dynlink libraries have been ported. Func-
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tional, imperative and object-oriented features are im-

plemented, as well as the module system (functors,

modular compilation).

Interoperability is achieved using a two-layered tech-

nique: a low-level unsafe foreign function interface

supports a high-level interfacing through O’Caml ob-

jects using an IDL approach.

We first present the relevant features of the .NET

platform from a compiler writer’s point of view, then

give an outline of the OCamIL implementation and

describe the building of the toplevel interactive loop

from the bootstrapped compiler. We then expose the

principles of OCamIL interoperability and give exam-

ples of applications. We finally discuss related work

and outline future work.

2. THE .NET PLATFORM
The .NET Common Language Runtime consists of

a typed stack-based bytecode called CIL (Common

Intermediate Language), an execution system and a

support library BCL (Base Class Library). Let us

enumerate some features of the .NET platform for

Windows developped by Microsoft:

The type system is designed around an object model

featuring single inheritance, Java-style interfaces and

exceptions. In addition to Reference Types (for heap-

allocated objects), it supports stack-allocated Value

Types (which range from basic types to complex struc-

tured types). Dedicated bytecode instructions (box

and unbox) switch between the two kinds of represen-

tation. The type system is geared towards dynamic

management: it supports run-time type tests, checked

coercions and reflection capabilities.

Safety is based on typing. Verification rules are im-

plemented in the runtime, tracking down stack incon-

sistencies and dependencies resolving errors (for in-

stance erroneous calls to foreign methods). The CIL

bytecode conforming to typing and verification con-

straints is called “managed code”. Unmanaged code

gives access to unsafe languages like C++. The run-

time environment also features a Garbage Collection

mechanism, which frees the developer from memory

management issues.

Deployment: The fundamental .NET component

is called an assembly : it is a self-contained unit of

deployment. Assemblies can be signed with a crypto-

graphic key so that the hosting computer can trust the

embedded code: this allows sharing a piece of software

by installing the assembly in the GAC (Global Assem-

bly Cache), a special assembly repository. This helps

versioning and localization management altogether.

Performances: The execution relies on a system-

atic Just In Time compilation mechanism (each method

is compiled to native code at first call). It is possible

to bypass this behavior by pre-compiling an assembly

to a native image.

The CLR provides useful features for functional lan-

guages implementations, such as tail calls. However,

closures, which are ubiquitous data structures in func-

tional languages, are not supported natively by the

CLR. The ILX extension [6] is developed to address

this issue. Parametric polymorphism is also hard to

implement efficiently, but change might be on its way

with the possible addition of Generics [7, 8] to the

forthcoming release of the CLR.

3. THE O’Caml LANGUAGE
O’Caml is a statically typed language based on a func-

tional and imperative kernel. It also integrates a class-

based object-oriented extension in its type system, for

which inheritance relation and subtyping relation for

classes are well distinguished [9]. One key feature of

the O’Caml type system is type inference. The pro-

grammer does not annotate programs with typing in-

dications: the compiler gives each expression the most

general type it can.

A class declaration defines:

• a new type abbreviation of an object type,
• a constructor function to build class instances.

An object type is characterized by the name and the

type of its methods. For instance, the following type

can be inferred for class instances which declare moveto

and toString methods:

< moveto : (int * int) -> unit;

toString : unit -> string >

At each method call site, static typing checks that

the type of the receiving instance is an object type

and that it contains the relevant method name with a

compatible type. The following example is correct if

the class point defines (or inherits) a method moveto

expecting a pair of integers as argument. Within the

O’Caml type inference, the most general types given

to objects are expressed by means of “open” types

(<..>). The function f can be used with any object

having a method moveto (’a denotes a universally

quantified type variable):

method call

let p = new point(1,1);;
p#moveto(10,2);;

functional-object style

# let f o = o # moveto (10,20);;
val f : < moveto : int * int −> ’a; . . > −> ’a
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Some of the most important characteristics of the O’-

Caml object model are:

• Class declarations allow multiple inheritance and

parametric classes.

• Method overloading is not supported.

• The method binding is always delayed.

4. THE OCamIL COMPILER
Our main goal is to port O’Caml to the .NET plat-

form and be as compatible as possible with the stan-

dard INRIA implementation. Granting priority to

compliance is not an easy task because the O’Caml

language is perpetually evolving: new versions of the

standard compiler are released on a regular basis,

yielding major additions to the language. We choose

to implement OCamIL as a back-end to the standard

compiler, in order to reuse as much code as possible

and later on to prevent tiresome modifications when

upgrading to new O’Caml versions.

To be more precise: parsing, typing and first code

transformations are left to the standard O’Caml com-

piler. Our back-end gets the internal representation

Clambda1 from the compiler front-end, as sketched in

figure 1. At that stage, several code transformations

have been realised. Further steps on the ocamlopt

branch, which specialize code for specific processor

architectures, are useless to OCamIL.

We introduce a new intermediate representation called

Tlambda, the purpose of which is discussed in the fol-

lowing sections.
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Clambda Code

Cmm Code

Mach Code

Native Code

Syntax Tree

Lambda Code

Typed

Instructions

Fig. 1: OCamIL inside O’Caml.

1With respect to the Lambda code which handles functional
values, Clambda explicitly manages closures and implements
direct application.

4.1 The need for types
Compiling the Clambda intermediate code to a typed

runtime is not straightforward. First, types are dis-

carded right after type-checking, therefore Clambda

does not carry types. Second, it is already designed

to take advantage of the standard O’Caml runtime

environment peculiarities. The standard O’Caml im-

plementation uses a uniform representation to deal

with parametric polymorphism. Integer values and

pointers toward heap-allocated blocks are both repre-

sented by native machine integers and distinguished

by a bit of tag. However, when compiling to CIL,

integers are typically represented by integers (a value

type) and blocks by some reference types. This even-

tually requires boxing operations on integers in order

to make them fit in the same locations as blocks. To

achieve that, type reconstruction is required on the

Clambda code.

The following table shows an example of CIL code

generation, which is incorrect because of the involved

types are ignored. The variable t refers to an array

(implemented by an array of objects because of poly-

morphism):

O’Caml code

t.(0) + 1

Clambda code

(+ (field 0 t) 1)

CIL Comments

ldloc t Pushes the local variable t on stack.

ldc.i4.0 Pushes the integer 0.

ldelem.ref Loads an array element (by reference)

(*)

ldc.i4.1 Pushes the integer 1.

add Computes addition.

At the level of the (*)-marked line, the top of the stack

holds a reference to an object whereas the instruction

add expects an integer value type.

We introduce the Tlambda code that carries types and

includes type casting operations to address this issue.

A type-aware compiler inserts an unbox instruction

at (*). The type safety property is ensured by the

front-end type checking.

4.2 Type re-inference
As sketched in the previous section, retyping Clambda

allows to compile correct code. Moreover, accurate

typing information helps to choose data representa-

tions that avoids performance penalties.

4.2.1 Methodology.
We use a retyping algorithm that infers types on the

Clambda code. In the standard O’Caml runtime, types

are all collapsed down to a uniform representation.

There is a trade-off: on one hand we need to be as
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accurate as possible in order to prevent inefficiencies

(typing everything to be an “object” is an option, but

a costly one because it maximizes (un)boxing opera-

tions), and on the other hand the available informa-

tion does not allow for much accuracy. We propose

the following type grammar:

T ::= int | block | string | float

| closure | unit | any

The algorithm propagates type information from the

primitives back to the whole code. Having no other

clue on source types, there is very little to retype: the

types grammar is rather poor, and is based on the

types that can be associated with the primitives (han-

dling blocks and integers, but also floats, strings and

so on). Distinguishing integers from blocks is a first

step. Furthermore, we try to identify particular kinds

of blocks wherever possible, in order to manage them

specifically. It turns out that some instances of O’-

Caml blocks: string, float, closure and unit, being

operated on by specific primitives, can be identified

contextually. In order to handle polymorphism, the

implementation assigns a representation that inherits

from the representation of block (which denotes un-

determined blocks). The type any encompasses every

other types. It is mandatory because of parametric

polymorphism, and its typical .NET representation is

the root class Object.

This simple retyping technique only requires a slight

adjustement of Clambda code to work properly.

4.2.2 Data representation.
We translate basic types according to the following

correspondences:

O’Caml bool int float string

CTS int32 int32 float64 StringBuilder

• We use StringBuilder, not string, because O’-

Caml strings are mutable.

• Since types are determined by the way values are

used in the intermediate code, O’Caml integers

and booleans are mapped to the same representa-

tion.

Tuples, arrays, records, lists and sumtype values are

traditionally represented by means of heap-allocated,

tagged blocks (in the case of a sumtype value, the

tag is used to code the involved constructor). These

types are not distinguished by the O’Caml runtime

and are operated on by the same primitives. There-

fore they cannot be identified by type reconstruction.

They are all compiled to a common generic represen-

tation: arrays of objects (object[]), requiring boxing

operations on basic type values which are not objects.

Closures are compiled to objects inheriting from Ca-

mIL.Closure, a dedicated class that declares two meth-

ods handling application: exec implements total ap-

plication and apply: object -> object is used for

partial application. Wrapped around exec, apply re-

turns a new closure ready to expect the forthcoming

arguments, or the final result value, depending on the

number of remaining arguments. The closure’s envi-

ronment is stored in object fields.

Mapping an O’Caml class hierarchy to a .NET class

hierarchy is very tempting. Besides the theoretical

issues it raises (because of the numerous differences

between the two object models), this is also hard

to achieve because of the internal representation of

O’Caml objects: starting from the first intermedi-

ate language, objects no longer show up as objects

but merely as blocks of fields and functions. O’Caml

implements the late binding mechanism by inserting

additional code within user code (the standard O’-

Caml runtime environment was originally designed for

the core language, and does not natively support an

object layer). The OCamIL compiler processes the

corresponding blocks transparently, without knowing

they are related to objects.

The current release of the OCamIL compiler was de-

veloped according to this design. The back-end ap-

proach, using retyping techniques, quickly leads to

significant achievements.

4.3 Compatibility
Compatibility is fairly complete. The standard core

library, as well as some others (the graphics, threads

and dynlink libraries) have been successfully adapted.

Large applications have been compiled and behave

consistently with the standard implementation.

Let us mention the main differences between OCamIL

and the standard implementation. First, some as-

pects of O’Caml are left implementation-dependent.

For example the order of evaluation of function ar-

guments is not specified. The INRIA compiler and

OCamIL adopt right-to-left and left-to-right eval-

uation, respectively. Second, O’Caml provides some

partially hidden, low-level and unsafe operations on

data representations. OCamIL only emulates a part

of them (actually, what is used by the implementation

of the standard library). Third, the foreign function

interface with C is replaced with a basic interface with

CIL methods (more on this topic in subsection 5.1).

We focus on managed code until now, but interfacing

with unmanaged libraries can be addressed. Finally,

the O’Caml data marshaling format is not specified.

The OCamIL implementation rely on the BCL serial-

ization API: on one hand, this leads to incompatible

data formats and on the other hand, this provides a

safe marshaling for free.
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4.4 Bootstrapping
We describe here the different steps that lead from

OCamIL sources to a bootstrapped compiler running

in the .NET framework. Like the O’Caml compiler

itself, OCamIL is written in the O’Caml language.

More than our personal preferences for O’Caml, it

is convenient to use the implementation language of

the standard INRIA compiler because we open a new

compilation branch on it.

The successive steps needed for building and boot-

strapping OCamIL are shown in figure 2. Compiling

OCamIL from sources requires the original O’Caml

bytecode compiler (ocamlc) and runtime (referred to

as µ). In the figure, mlB stands for the original O’-

Caml bytecode.
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Fig. 2: Building and bootstrapping steps

4.4.1 Building steps
(following figure 2): the hybrid compiler pre-ocamil

is compiled first. It produces CIL executables and

shared libraries from O’Caml source files, but still

runs in the standard O’Caml environment. Then we

recompile OCamIL sources using the freshly compiled

compiler. This produces ocamil, which is itself a

.NET bytecode executable file. Once this is done, we

no longer need the O’Caml system nor the pre-ocamil

compiler 2.

4.4.2 Bootstrapping steps
(following figure 2): we use the newly built compiler

to compile itself. We need two rounds to reach a fix-

point (ocamil-2 is identical to ocamil-3) because of

the slight difference of operational semantics exposed

in subsection 4.3 (regarding evaluation order). When

compiling OCamIL, it affects the ordering of code gen-

eration. For that matter, pre-ocamil and ocamil do
2Later on, the pre-ocamil compiler should not be used, be-
cause it runs in a different world than executables it produces.
As explained in subsection 4.3, the O’Caml and OCamIL data
marshaling formats are not compatible. This implies that
data marshaled by programs compiled by pre-ocamil cannot
be read back by pre-ocamil, a situation that typically hap-
pens when compiling from a marshaled abstract syntax tree
instead of a source file (as preprocessors generate), or for dy-
namic linking. This also means that libraries compiled by
pre-ocamil cannot be used by ocamil: they need to be com-
piled by ocamil itself.

not strictly behave the same, so ocamil and ocamil-2

are not strictly identical. In this case it does not af-

fect the semantics of the resulting programs but only

their code layout. The additional round fixes the mis-

match.

4.5 Toplevel Building
The OCamIL compiler and executables compiled by it

run in the CLR altogether. Using the .NET dynamic

code generation and execution features provided by

the reflection API helps building a toplevel utility

ocamiltop. A toplevel iteratively compiles O’Caml

declarations on the fly and executes them, while main-

taining a symbol table. Figure 3 displays the toplevel

components and shows the processing steps of an O’-

Caml expression.
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Fig. 3: The toplevel engine

1) The toplevel engine consumes an O’Caml expres-

sion phrasen.

2) It uses the ocamil compiler engine (together with

a Symbol Table resolving free variables) to compile

the expression to CIL code.

3) The CIL code is written as a shared library file on

the hard disk.

4) The toplevel engine calls the BCL System.Reflec-

tion.Assembly::LoadFrom method to dynamically

load back the emitted assembly to memory.

5a) Calls to the reflection API manage to run a public

method of the assembly which was emitted at stage

2. It is a startup method for the compiled expression.

5b) The startup method first registers the bindings

defined by phrasen by accessing directly the table of

symbols used by the toplevel. 5c) The startup method

then runs the inner code of phrasen (that may refer

to previous expressions using the associations main-

tained in the table of symbols).

6) The execution flow returns to the toplevel loop that

handles output (typically by displaying computed val-

ues).
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The toplevel prototype writes compiled assemblies to

disk, then reloads them back to memory. We plan

to develop a new version that directly compiles code

to memory: this allows to produce a single assembly

that grows up during the toplevel session, from which

we expect increased performance.

The toplevel tool is very useful for application devel-

opment. It also has promising applications using its

embedding capabilities.

5. INTEROPERABILITY
OCamIL interoperability capabilities are based on a

two-layered approach.

5.1 Basic Foreign Function Interface
The heart of OCamIL interoperability is a simple mech-

anism which allows to call CIL code from O’Caml

programs. It is a replacement of the original O’Caml

FFI for C code. OCamIL allows to call static methods

written in C# or in bytecode. This was widely used in

order to adapt the O’Caml standard library, replacing

the C code by calls to the .NET BCL. However, this

is limited and not type-safe: its main purpose is to

support safe, high-level communication.

5.2 O’JACARE.NET
We provide a high-level, safe interfacing of O’Caml

and C# through their object models, using an IDL

approach. We have developed a tool called O’Jaca-

ré.net that compiles IDL files and generates all nec-

essary wrappers to mix components written in both

languages. Details can be found in [10].

5.2.1 Comparing object models.
Type systems and object models can be interleaved

in many ways. There are important differences be-

tween the object models of O’Caml and C#. For in-

stance, class declarations allow multiple inheritance

and parametric classes in O’Caml but not in C#,

method overloading and class downcasting are only

supported in C# (but in O’Caml the type of self

can appear in the type of a method eventually overrid-

den in a subclass). The intersection of the two mod-

els corresponds to a simple class-based language, for

which inheritance and subtyping relations are equiva-

lent, overloading and binary methods are not allowed.

For the sake of simplicity, it does not offer multiple in-

heritance nor parametric classes. This model inspires

a basic IDL for interfacing C# and O’Caml classes.

5.2.2 Encapsulation.
In contrast to direct external calls presented above,

using O’Jacaré.net is safe and much more expres-

sive. O’Caml programs can allocate C# objects and

call instance methods. It is also possible to inherit

C# classes in O’Caml and redefine methods. Late-

binding is transparently performed between the two

languages. The other way around is also possible: li-

braries compiled by OCamIL can expose classes that

will be used in C# programs.

This requires a tricky implementation because O’-

Caml objects are no longer objects at run-time. The

mechanism that enables late-binding to run back and

forth between O’Caml and C# worlds is illustrated

in figure 4. In this example, a C# component defines

the well-known didactical classes Point and Colored-

Point that are exposed in an IDL file.

The compilation of this file generates the correspond-

ing O’Caml wrappers, allowing to allocate objects

and call methods upon the foreign C# classes as if

they were native. New O’Caml classes, such as colo-

red point ml in the figure, can inherit from them.

However, a complete and proper cross-language late-

binding mechanism cannot be implemented with such

a simple design. Let us assume that Point defines a

method toString, and that ColoredPoint both de-

fines a method getColor and overrides the definition

of toString by concatenating the results of a call

to the method getColor and a call to the method

toString of the superclass. If we redefine the getColor

method in O’Caml, and expect the toString method

to be specialized through late binding, we need to

produce an additional stub in each language: a call

to toString on colored point ml traces back to the

ColoredPoint class, which has no idea of the O’Caml

instance and thus of the redefinition of getColor.

The two stubs hold a reference to each other. The

C# stub, named ColoredPointStub, overrides each

method as a callback to the O’Caml stub callback co-

lored point and the latter defines each method as

a non-virtual call to ColoredPoint, the base-class of

the former. Following figure 4, the O’Caml class mi-

xed colored point inherits from the O’Caml stub class.

Thanks to the non-virtual call, a call to the toString

method traces back to the implementation of Colo-

redPoint Then the virtual call to getColor is late

bound to ColoredPointStub, which virtually calls the

O’Caml corresponding method on callback colored-

point, falling back on O’Caml late-binding mecha-

nism.

5.2.3 Blending two object models.
O’Jacaré.net allows to partially handle both object

models. [10] gives examples of C# objects downcast-

ing and multiple inheritance of C# classes in O’Caml.

We need the IDL glue to interoperate between O’-

Caml and C#: because of design and semantics dif-

ferences, encapsulation is needed in both ways. How-

ever, we benefit from sharing the same runtime envi-
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Fig. 4: Relationship between classes

ronment. The communication between components is

type safe and we take advantage of unified garbage

collection and thread management.

6. APPLICATIONS
Adapting O’Caml to .NET is interesting for both com-

munities. We believe it can help make popular O’-

Caml applications, and that new possibilities are of-

fered by interoperability. Let us mention a few of

them.

O’Caml is given access to new libraries. O’-

Caml programs can use libraries ranging from graph-

ical toolkits to remoting facilities. They can be dis-

tributed as applets that run inside a browser’s win-

dows. See figure 5 for an example of O’Caml applet,

that runs a raytracer (the winning entry of the ICFP

2000 programming contest). Using O’Jacaré.net,

the same O’Caml program can be given a graphical

user interface written in C#.

See also figure 6 for an O’Caml toplevel embedded in

a graphical interface written in C#.

O’Caml benefits from new tools. We can already

use .NET tools such as debuggers or profilers on OCa-

mIL programs. It is also possible to integrate the O’-

Caml language in IDE such as Visual Studio.NET.

.NET is enriched by O’Caml. It is important to

promote programming paradigms such as functional

programming. Moreover, the O’Caml object layer

can interest OO programmers and encourage them

to give O’Caml a try. O’Caml is particularly good at

tree manipulations or symbolic computations, some of

the fields where languages such as C# cannot stand

the comparison. Syntactical tools such as Camlp4

[11], which was successfully compiled by OCamIL, can

open new tracks for writing compilers, using O’Caml

as a target language. The possibility to embed an

O’Caml toplevel component in C# applications also

offers interesting perspectives.

7. RELATED WORK
The approach described for O’Jacaré.net (two run-

time environments running side by side) has also been

used in other projects.

The Haskell interpreter, Hugs98 for .NET [12], allows

.NET classes. Its implementation is based on a mech-

anism similar to O’Caml / O’Jacaré.net. At the

level of source language, it allows a basic communica-

tion with the .NET platform which allows thorough

communication to be built upon and used through

a high level language construction. Automatic code

generation with a dedicated tool is needed to achieve

it. As for execution, it provides two virtual machines

(interpreter and CLR) running simultaneously. The

Dot-Scheme [13] project implements a FFI (Foreign

Function Interface) to the .NET platform from PLT

Scheme. Here again, execution is performed by two

virtual machines. At the language level, the imple-

mentation (based on CLR introspection capabilities)

allows an easy and direct .NET classes manipulation.

The current trend is to directly produce bytecode for

either Java (cf MLj [14]), or .NET. For .NET, a lot

of works have been done :

• for SML: SML.NET [15] and MoscowML

for .NET [16];

• for O’Caml: F# [17] and OCamIL.
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Fig. 5: An applet running a raytracer written in O’Caml.

The main interest to use the same runtime is to facili-

tate memory management (GC) and multi-threading.

F# and OCamIL illustrate two different views of in-

teroperability. F# conception is focused on inter-

operability. Its purpose is to manipulate the .NET

proposed object model in a functional / imperative

language similar to CamlLight. The outcome is a

new Caml dialect using .NET object model. But the

.NET object model is really far from the O’Caml ob-

ject model. The advantage is to directly manipulate

CTS types, with no additional tool and in a natural

way. It provides a comfortable programming and al-

lows an implementation as direct as possible (which

guaranties better performance).

On the other hand, the used object model is not in-

tegrated as well in the functional paradigm as the

O’Caml model. In many cases, it is mandatory to

help the type inference by giving types annotations

for CTS. Then, parametric polymorphism and row

polymorphism become a kind of interfaces polymor-

phism when .NET methods are called.

On the contrary, OCamIL does not modify the orig-

inal language. There are no new constructs coming

from the target architecture and the interoperability

is managed accross the O’Caml object model.

There are two main consequences :

• the difference between the two object models for-

bids a direct compilation from O’Caml objects to

the CTS;
• this inadequacy makes it necessary to generate

stub classes (we compile IDL files with our tool

O’Jacaré.net).

To put it shortly, F# is for the C# programmer who

wants to use functional programming, and OCamIL

is for the O’Caml programmer, who wants to take

advantage of the .NET environment without changing

his favorite language.

MLj and SML.NET join together the two approaches

by proposing the essence of SML on the Java and

.NET platforms, and integrating the C# object model

(but it is true that without object features in the orig-

inal languages there is no decision to select an ob-

ject model). MoscowML for .NET only allows static

method calls.

From the Scheme side, the Bigloo compiler allows to

compile to the JVM or the CLR runtimes. As for Dot-

Scheme, the .NET features are nicely incorporated in

the Scheme language by using special functions and

macros. The Scheme language fits well in an inter-

operability setting: its syntax is easily extensible and

its dynamic typing facilitates the integration of new

features. Dynamic typing is more in the spirit of the

Java and .NET platforms that propose many services

of instrospection.

Although Eiffel is not a functional language, its .NET

version [18] encounters similar difficulties than OCa-

mIL. The two object models have a multiple inheri-
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Fig. 6: A toplevel session in a C# window, demonstrating culture-specific ordering.

tance, parametric classes and no overloading. How-

ever their techniques of compilation strongly differ.

Eiffel relies on CTS interfaces to emulate multiple in-

heritance.

8. RETYPING TECHNIQUES AND FU-
TURE WORK

For the sake of compatibility and front-end indepen-

dence, OCamIL currently adopts a back-end approach

that leads to retype an intermediate language from

scratch. We are currently developing an alternative

implementation which retrieves source types from the

O’Caml type-checking step. Let us compare the pros

and cons of each technique.

8.1 What hinders the strict back-end ap-
proach

As mentioned in subsection 4.2, the retyping tech-

nique requires the front-end to be slightly modified.

The heart of the problem are data types with non-

uniform representations such as sumtypes. Here is a

sample sumtype definition:

type t = Zero | One | Node of t

The sumtype t declares two constant constructors and

a non-constant constructor. As for the O’Caml run-

time, these are respectively represented by integers 0,

1 and a pointer to a block containing another value

of type t. This is homogeneous in the O’Caml run-

time but the retyping algorithm eventually infers two

different types, int and block, for values of type t.

Consider the following function and its compiled rep-

resentation in Clambda code:

O’Caml code Clambda code

let cut x = let cut = closure(cut):

match x with x ->

| Node n -> n if (isint x) then x

| x -> x else (field 0 x)

Type Inferred type

t -> t Sumtype -> Sumtype

The isint primitive tests the bit of tag that dis-

tinguishes integers from pointers on blocks. In or-

der to take the duplicity of the parameter x into ac-

count, the grammar of reconstructed types needs a

new item Sumtype, that represents the union of int

and block. The function cut above receives the type

Sumtype -> Sumtype. We do not want to use the

general-purpose type any here to give a chance to

Sumtype values to be mapped to a more precise and

adequate type than Object. Of course, applying cut

to constants requires boxing operations. There is

something wrong though, as the following example

reveals:

O’Caml code Clambda code

let hell a b = let hell = closure(hell):

match a with a -> b ->

| Zero if (isint a) then

(if (a != 0) then b

-> One else 1)

| _ -> b else b

Type Inferred type

t -> t -> t Sumtype -> int -> int

The type of the parameter b is problematic. Looking

at the O’Caml source code we know that a and b are

both of type t. But looking at the Clambda code, one

is tempted to claim that b is an integer! The only in-
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formation that the re-typing algorithm has about b is

that its type is unifiable with int (because of the sub-

expression: if (a != 0) then b else 1). Following

the policy of being as accurate as possible, b is typed

to be an integer, and the function hell receives the

type Sumtype -> int -> int. Later on, when com-

piling an application such as hell One (Node Zero),

the retyping algorithm detects inconsistency and aborts.

In general, the algorithm cannot backtrack and give

b a correct type: the definition of hell and its appli-

cations can reside in separately compiled modules.

Fortunately, there is a simple workaround. Changing

the representation of sumtypes a little bit is a quick

modification of the compiler. Because constant con-

structors can be encoded as empty blocks (the tag of

the block coding the constructor), we uniformly repre-

sent sumtypes by blocks 3. This avoids the multiplic-

ity of representations for the same type that caused

types reconstruction errors. Although this is achieved

by a slight modification of the compiler, this somehow

betrays the spirit of the back-end approach.

8.2 Types propagation
The retyping of the Clambda intermediate language is

not accurate enough, entailing costly data structure

allocation (object arrays). Data access is slowed down

by dynamic typechecking and boxing operations. Re-

trieving exact types allows to compile data to ade-

quate representations: for instance each constructor

of a given sumtype can be implemented as an ob-

ject with fields holding the parameters of construc-

tor, with their exact types. We propose to modify

the implementation of O’Caml in order to propagate

typing information along intermediate languages from

the type-checking step until the Clambda code. Main-

taining OCamIL up to date with the latest O’Caml re-

lease will be harder because types are likely to evolve

along with O’Caml development, but as explained in

the previous subsection a strict back-end implemen-

tation quickly reaches its limits anyway. Future work

will focus on implementing and exploiting type prop-

agation, and we expect important performance im-

provements. Type propagation also has applications

in debugging O’Caml programs, because the gener-

ated CIL will have more adequate types with respect

to the O’Caml source program.

9. CONCLUSION
Java’s success has popularized bytecode-based run-

timesthat offer modern techniques to improve safety,

such as typed bytecode, garbage collection and built-

in security policies. The .NET CLR is based on a

3A more complex policy can be imagined for sumtypes: rep-
resented by integers if made of constant constructors only,
and represented by blocks otherwise. However this is not ap-
propriate for O’Caml polymorphic variants which can be in-
crementally extended, for example by adding a non constant
constructor to a set of constant constructors.

similar design, and tries to improve security. These

two platforms help portability, interoperability and

offer a convenient target for compiler implementors.

The OCamIL project helps to evaluate the .NET plat-

form and the O’Caml implementation with respect to

each other. The .NET CLR is presented as a runtime

of choice to run multi-languages applications, which

implies a stricter control over pieces of code and the

addition of new features to the execution platform, in

order to support more programming features. How-

ever, these efforts have been mainly object-oriented:

originally for C#, Visual Basic and C++. Logical

and functional paradigms are not natively supported.

Closures and advanced flow-control (even exceptions)

implementation is too costly. Likewise, parametric

polymorphism does not fit well in the object models

of today’s runtimes. Fortunately, there are promising

developments towards these directions (such as ILX

and generics).

Symmetrically, language implementations need to ad-

apt to new runtimes. Compiling to a typed virtual

machine raises new issues that were not relevant in

dedicated functional virtual machines [19]: now type

information is needed down to bytecode generation.

To address efficiency issues, types have to be as ac-

curate as possible, ideally by propagating the static

type-checking step information. Appel’s slogan “Run-

time Tags Aren’t Necessary” [20] does not hold any-

more.

For the sake of compatibility and front-end indepen-

dence, OCamIL has adopted a back-end approach

that leads to retyping an intermediate language from

scratch. We are currently developing an alternative

implementation which retrieves source types from the

O’Caml type-checking step. The solution needs to

modify the implementation of O’Caml in order to

propagate typing information along intermediate lan-

guages from the type-checking step until the Clambda

code, which is successfully experimented with the de-

velopment version of OCamIL.

Despite these inadequacies, the .NET platform has

proven to be an interesting framework to develop a

compiler for. The OCamIL compiler and toplevel al-

low the development of O’Caml applications for the

.NET platform, with the guarantee of compatibility

with O’Caml (including advanced programming fea-

tures) and managed CIL code production. Other .NET

languages can consume O’Caml components, for in-

stance the OCamIL toplevel can be embedded inside

a C# application, to produce dynamically compiled

O’Caml code.
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ABSTRACT 

Model-Driven Architecture standardized by OMG facilitates separating the platform-independent part (PIM) and 

the platform-specific part (PSM) of a system model. The platform-independent artifacts are mainly UML models 

created with CASE tools. Due to this separation, PIM specified by the developers can be reused across several 

implementation platforms of the software. PSM is ideally generated automatically from PIM via model 

transformation steps performed by model compilers. Beyond the topology of the visual models additional 

constraints must be specified, which ensure the correctness of the attributes among others. Dealing with OCL 

constraints provides a solution for the unsolved issues, because topological and attribute transformation methods 

cannot perform and express the problems that can be addressed by constraint validation. This paper discusses the 

need for combining UML and OCL, it introduces the compilers in general, it shows the architecture of our OCL 

Compiler for .NET, and it presents the lexical and syntactic analysis as well as the semantic analysis and code 

generation techniques in detail. The OCL Compiler has been implemented as a module of our n-layer 

multipurpose modeling and metamodel-based transformation system called Visual Modeling and Transformation 

System (VMTS). The OCL Compiler module facilitates validating (i) constraints contained by the metamodels at 

the time of the model instantiation process, and (ii) constraints contained by the transformation steps during the 

metamodel-based graph transformation. An illustrative case study is also provided, which introduces how VMTS 

generates source code from a statechart diagram, and how it validates specific properties using the OCL 

Compiler. 

Keywords 
OCL Compiler, .NET, Constraints, Constraint Validation, UML, Metamodeling, VMTS 

 

1. INTRODUCTION 
Model transformation is a possible solution for 

realizing model compiler. Its methods are vital in 

several applications, for instance the Object 

Management Group’s (OMG) Model-Driven 

Architecture (MDA) standard [OMG03a] strongly 

builds on model compilers, which automatically 

create a platform-specific model from the platform-

independent models specified by the modelers. 

Software model transformation provides a basis for 

model compilers, which plays a central role in the 

MDA architecture. 

There are many CASE tools that support drawing 

UML diagrams and other features like code 

generation and reverse engineering. However, 

support for OCL attached to model transformation 

and mappings between models are rarely found in 

these tools. There are several tasks that a CASE tool 

should offer in order to provide support for OCL. For 

example, syntax analysis of OCL expressions and a 

precise mechanism for reporting syntactic errors help 

in writing syntactically correct OCL statements. An 

important feature is the semantic analyzer, which 

reports as many errors as possible in order to help the 

user develop solid OCL code.  

Often we need to specify a model more precisely than 

a topology-oriented visual modeling language 

facilitates it. It is a prevalent case that we want to 

define expressions and constraints on our model. The 
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Object Constraint Language (OCL) [OCL03a] is a 

formal language for analysis and design of software 

systems. It is a subset of the industry-standard 

Unified Modeling Language [UML03a] that allows 

software developers to write constraints and queries 

over object models. A constraint is a restriction on 

one or more values of an object-oriented model or 

system. There are four types of constraints. (i) An 

invariant is a constraint that states a condition that 

must always be met by all instances of the class, type, 

or interface. (ii) A precondition to an operation is a 

restriction that must be true at the moment before the 

operation is executed. Obligations are specified by 

postconditions. (iii) A postcondition to an operation 

is a restriction that must be true at the moment that 

the operation has just ended its execution. (iv) A 

guard is a constraint that must be true before a state 

transition fires. Besides these, OCL can be used as a 

navigation language as well. 

Our n-layer metamodel-based model storage and 

transformation software package is called Visual 

Modeling and Transformation System [Lev04a] 

[Vis03a]. VMTS is implemented using Microsoft 

.NET Framework [Mic03a] and illustrates an 

approach, where model storage and model 

transformation can be treated uniformly, and what 

links them together is the notion of the metamodel. 

Modeling environments built on metamodeling are 

highly configurable (visual) modeling tools allowing 

constraints to be specified in advance. VMTS uses 

graph rewriting for model transformation as a 

powerful tool with strong mathematical background 

[Lev04a]. The atoms of graph transformation are 

rewriting rules, where each rewriting rule consists of 

a left hand side graph (LHS) and a right hand side 

graph (RHS). Applying a graph rewriting rule means 

finding an isomorphic occurrence (match) of LHS in 

the graph to which the rule is being applied (host 

graph), and replacing this subgraph with RHS. 

Replacing means removing elements which are in 

LHS but not in RHS, and gluing elements which are 

in RHS but not in LHS. The graph transformation is 

defined as an ordered sequence of rewriting rules, in 

other words, we control the transformation process by 

sequencing the rewriting rules. Previous work 

[Lev04a] has introduced an approach, where LHS 

and RHS of the rules are built from metamodel 

elements. It means that an instantiation of LHS must 

be found in the host graph instead of the isomorphic 

subgraph of LHS. Hence LHS and RHS graphs are 

the metamodels of the graphs which we find and 

replace in the host graph.  

Often it is not enough to match graphs using the 

topological information only. There are cases in 

which we want to restrict the desired match by other 

properties, e.g. we want to match a subgraph with a 

node which has a special property, or which has a 

unique relation between the properties of the matched 

nodes. The metamodel-based definition of the 

rewriting rules facilitates assigning OCL constraints 

to the pattern rule nodes contained by the 

transformation steps, and with OCL these conditions 

can be expressed easily. A precondition 

(postcondition) assigned to a rewriting rule is a 

Boolean expression that must be true at the moment 

when the rewriting rule is fired (after the completion 

of a rewriting rule). If a precondition of a rewriting 

rule is not true then the rewriting rule fails without 

being fired. If a postcondition of a rewriting rule is 

not true after the execution of the rewriting rule, then 

the rewriting rule fails. A direct corollary of this is 

that an OCL expression in LHS is a precondition to 

the rewriting rule, and an OCL expression in RHS is 

a postcondition to the rewriting rule. A rewriting rule 

can be fired if and only if all conditions enlisted in 

LHS are true. Also, if a rewriting rule finished 

successfully, then all the conditions enlisted in RHS 

must be true. 

Constraints (pre- and postconditions) facilitate 

specifying precisely the execution of the steps 

contained by the transformation. Using constraints for 

each step, we can define the cases in detail, in which 

the step can be fired, and, of course, in which not.  

OCL Compiler

Metamodel

OCL constraints

in rewriting rule

Models

Instantiation

Validation

Code / binary

Matches

Matching

Checking

Rewriting

results

Firing the

rewriting rule

Use meta

elements Instantiation

 
Figure 1. Block diagram for checking constraints 

during the rewriting process 

Fig. 1 presents a block diagram to illustrate the 

method how VMTS checks the rewriting rule 

constraints during the rewriting process. It is possible 

in VMTS that LHS and RHS use different 

metamodels, but for the sake of simplicity in the 

block diagram they have a common metamodel. The 

rewriting rule contains OCL constraints. VMTS does 

not interpret the constraints during the rewriting, but 

an assembly is used that is generated by the OCL 

Compiler. The rewriting process uses the matches 

found by the matching process and the compiled 

assembly to validate the constraints on the matched 

parts of the host graph. The rewriting process 

generates the rewriting result if and only if a match 

satisfies the constraints (preconditions), and the step 

is successful if and only if the rewriting result 
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satisfies the postconditions. In Fig. 1 the rewriting 

result is also an instance model of the metamodel, 

because LHS and RHS use the same metamodel. 

One of the most important parts of the constraint 

validation method is that our constraint checking 

approach does not interpret the constraints; OCL 

Compiler generates C# code and compiles it to an 

assembly, which validates the metamodel and the 

rewriting rule constraints. This method facilitates 

determining the complexity of the constraint 

validation method. 

This paper introduces the steps necessary for the 

implementation of the OCL Compiler for .NET, 

which is capable of compiling OCL constraints into 

source code and a binary file that checks the OCL 

constraints on the rewriting rules of a transformation 

that realizes an MDA model compiler. Our example 

is a UML statechart model. 

The rest of this paper is organized as follows: Section 

2 introduces the concept of a compiler in general, it 

presents the architecture of our OCL Compiler and it 

discusses the lexical and syntactic analysis as well as 

semantic analysis along with the code generation in 

detail. In Section 3 we illustrate a case study how to 

design a C# form behavior using Visual Studio.NET 

Form editor, and how VMTS generates the user 

interface handler code based on the statechart model. 

In this way the programmer needs to write the 

application-specific parts of the code only. Finally, 

conclusions and future work are delineated in Section 

4. 

2. CONTRIBUTION 
This section presents the general considerations 

related to compilers and their modules shortly and 

examines the VMTS OCL Compiler in detail.  

Preprocessing
Lexical 

Analysis 

Syntactic 

Analysis

Semantic 

Analysis

Platform 

Independent 

Optimization

Code 

Generation

Platform 

Dependent 

Optimization

Inner Representation

Analysis

Synthesis

 Figure 2. The steps of the compilation 

Implementing a compiler is a complex task consisting 

of several well-defined subparts. The input of a 

compiler is a textual file written in the source 

language, and the output is a textual file or a binary in 

the target language. The source language and the 

target language can be the same or different. The two 

main parts of the compilation are: (i) the analysis of 

the source language input, and (ii) the generation 

(synthesis) of the target language output based on the 

retrieved semantic information. Fig. 2 introduces the 

steps of the compilation process.  

Compiler Architecture 
The OCL Compiler is a part of VMTS, therefore the 

generated code and the compiled assembly have to fit 

in this environment. The block diagram of VMTS 

and the place of the OCL Compiler in a metamodel-

based model transformation system are depicted in 

Fig. 3. The user interfaces (Adaptive Modeler, Rule 

Editor) are functionally separated from the model 

storage unit (AGSI Core - Attributed Graph 

Architecture Supporting Inheritance), which uses an 

RDBMS (Microsoft SQL Server 2000) to store the 

model information. Besides this the AGSI Core 

exposes its interface to any other applications which 

may use other technique to process AGSI data.  

 
Figure 3. Block structure of VMTS  

The OCL Interface provides a unified interface for 

the user interface modules to access constraint 

validation. If it is required, it uses the OCL Compiler 

and loads the compiled binary (Compiled 

Constraints). AGSI Core stores and handles the 

models as labeled graphs: it simply uses nodes and 

edges. In OCL constraints these nodes and edges 

appear with their names as types, instances and 

associations. The main purpose of the AGSI Interface 

is to provide a linkage between the OCL expressions 

and the model over which the expression should be 

evaluated. AGSI provides type information from the 

AGSI Core objects. During the compilation and the 

constraint validation process we run only select 

commands on the AGSI Core data, therefore AGSI 

Interface does not support operations modifying the 

model. 

Lexical and Syntactic Analysis 
Lexical and syntactic analyses are realized by code in 

the ANSI C language, it is generated by the tools Flex 

[Fle99a] and Bison [Bis98a]. We chose these tools 

because (i) the compiler is implemented using 

Microsoft Visual Studio and it was easy to integrate 
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the Flex and Bison tools into this environment, and 

(ii) the VMTS is executed also in the .NET 

environment. 

The first step of the lexical analysis is the 

tokenization, which distinguishes between the 

identifiers (name) and the keywords of the language. 

Tokenization is achieved by a table, which contains 

the keywords. The result of this process is a sequence 

of tokens, which contains the meaning of the source 

program. 

The task of the syntactic analysis is to find the 

deduction which generates the source code of the 

program, starting from the sentence symbol (S). The 

analysis is the same process but in the opposite 

direction. The analyzer reads the sequence of the 

tokens, and using the production rules it generates an 

Abstract Syntax Tree (AST), which is a model of the 

program that we want to compile. The AST is a direct 

association between the rules in the grammar and the 

nodes in the tree, and it is purely an abstract 

representation of the syntax, modeled as a tree 

[Ake03a] [Ham98a]. The inner nodes of the AST 

contain no terminal symbols, while the leaves contain 

the tokens. 

Original rules Reworked rules 

A -> b c? d A -> b d  |  b c d 

A -> b c* d A -> b optionalC d 

optionalC -> /* empty */ 

           | optionalC c 

A -> b c+ d A -> b optionalC d 

optionalC -> c | optionalC c 

Table 1. Reworked EBNF rules for Bison 

The UML specification [UML03a] uses EBNF 

notation [Ext96a] for the grammar specification, 

which we had to modify in certain places to be able to 

process it with Bison. We had to rework the ? 

(optional element), the * (0..* multiplicity) and the 

+ (1..* multiplicity) notations. Table 1 presents the 

original EBNF and the modified rules for Bison. The 

/* empty */ notation means the empty symbol. 

The generation of the AST is possible if and only if 

the program is syntactically correct [Loe03a]. 

Semantic Analysis 
OCL allows certain abbreviations in numerous places 

and leaving out some identifiers if they do not cause 

misconceptions (e.g. the left self identifier). Before 

we can start the semantic analysis we must perform a 

syntax tree transformation, which inserts the missing 

identifiers into the AST.  

In the OCL Compiler we cannot use the traditional 

symbol table, because the symbols are not in the code 

to be compiled, but it must be obtained from another 

place, namely, from the VMTS model database. The 

most important pieces information we need during 

the compilation are: (i) we have to decide about an 

identifier appearing in a type name position whether 

it is already defined, and whether it is visible for the 

context where it is appeared, (ii) during the OCL 

property selection we have to check the selected item 

of the class: whether it is an attribute, operation or 

association (and in this case whether it is navigable). 

For these tasks we implemented a class 

(TypeHandler) which hides the duality of the 

types from the other part of the OCL Compiler. We 

can consider this class as a dynamic symbol table of 

the types.  The TypeHandler class contains the 

typeOfCall function: 

String typeOfCall(String typeName, String 
propertyName, ’dot’|’arrow’) 

A type name is passed to the function along with a 

property name as a parameter, and the function 

returns a type name, which describes the type of the 

retrieved object when selecting the given property on 

an object of the given type. The third parameter is 

‘dot’ or ‘arrow’ depending whether the function call 

refers to an OclAny or a Collection class. For 

the built-in types the function determines the result 

with the help of the System.Reflection namespace 

[Mic03a], and for the model types the AGSI Interface 

returns the answer. 

In summary, the semantic analysis performs two 

activities: it maps string-based path names onto types, 

and maps OCL specific operations onto the 

appropriate semantic model constructs. 

Code Generation 
Code generation is realized using the 

System.CodeDom namespace of .NET Framework 

[Mic03a]. It means that the code generation is a 

syntax tree composition, from which the framework 

generates the source code. Using CodeDOM the 

generated source code will be syntactically correct in 

all cases; our task is only to deal with the appropriate 

semantic content. 

The OCL Runtime (Fig. 3) contains C# language 

implementation for each predefined OCL types. 

Using these classes the operations contained by the 

constraints can easily be expressed in the C# 

language. While the current version of C# does not 

support class templates, the implementation of the 

collection types is more complex, than it would be 

with generics. The Set, Sequence and Bag classes are 

implemented as abstract classes in OCL Runtime, and 

when it is required, the compiler inherits from the 

adequate base class to create a new typed collection 

class. The task of the inherited collection classes is 
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the type conversion, while the fundamental 

operations are implemented by the base classes.  

 

Figure 4. The input and the output of the OCL 

Compiler 

Fig. 4 introduces the input and output of the OCL 

Compiler. In case of rewriting rules OCL Constraints 

are assigned to rule nodes; recall that rewriting rules 

are created from metamodel elements, therefore we 

also need the metamodel to access the properties of 

the meta types used in the rewriting rules.  

The model data is stored in the database and the 

instantiation of the model elements, in fact, does not 

mean the creation of a .NET object, hence no .NET 

types exist in OCL Runtime. Type handling is 

realized with the OclType abstract class and its two 

descendants: OclBasicType and 

OclModelType. 

In the CodeDOM tree there are well-defined nodes 

for certain syntax tree nodes. For each invariant, pre- 

and postcondition there is a public method with a 

bool return type. The methods of invariant 

constraints do not have parameters, while the 

methods of pre- and postconditions have the same 

parameters as the corresponding operation defined in 

UML. Finally, every OCL expression is an instance 

of the OclExpression class. It has an evaluate 

method, which returns the result of the expression. 

The evaluating method can be overridden in the 

descendant classes; it contains the code of the subtree 

starting from the oclExpression tree node. 

3. A CASE STUDY 
Using a case study we introduce how VMTS 

generates source code from a statechart diagram, 

applying graph-rewriting-based transformation 

methods. Furthermore we present how it validates 

specific properties using an assembly generated by an 

OCL Compiler during the transformation process 

with the help of constraints enlisted in the rewriting 

rules. The goal of this method is that if the statechart 

is specified in detail, then the generated code will 

handle the user interface of the system described by 

the statechart model. 

The Cinema Ticket form is the main form of the 

application, which is used on mobile platform to 

order cinema tickets using a cellular phone.  

In Fig. 5 a screenshot of the Cinema Ticket form is 

presented, and its operation is modeled with a 

statechart diagram (Fig. 6). The user interface edition 

of the “Cinema Ticket” form is accomplished with 

the form designer of the Visual Studio .NET, but the 

handler code is automatically generated from the 

statechart model.  

When the form appears, the “Order” list is empty 

(lbOrders), the combo boxes (cmbCinema, 

cmbFilmTitle and cmbDate), the numeric up-down 

control (nudTickets) and the “Close” button 

(btnClose) are enabled, and the rest of the buttons are 

disabled. The user can create an order by selecting 

the desired “Cinema”, “Film” and the exact date, and 

by specifying the number of the tickets. If a cinema is 

selected from the “Cinema” combo box, the Title of 

the “Film” combo box automatically refreshes its 

value, and similarly, if a film is selected, the “Date” 

combo box automatically loads the exact time when 

the movie starts. The “Add Order” and “Clear Fields” 

buttons (btnAddOrder and btnClearFields) become 

enabled when the value of the combo boxes or the 

numeric up-down control changes. Using the “Add 

Order” button, the user can add the actual values to 

the “Order list”.  

When the “Order” list contains at least one item, the 

“Order Tickets” button (btnOrderTickets) becomes 

enabled and naturally if an item is selected in the 

“Order” list, the “Remove” and “Edit” buttons 

(btnRemove and btnEdit) are also enabled. Using the 

“Order Tickets” button, the user can send the item of 

the “Order” list to the cinema as an SMS (or to 

cinemas if the list contains several cinemas). If the 

order was successful he gets a confirmation message. 

The incomplete statechart diagram of the “Cinema 

Ticket” form is presented in Fig. 6, where only three 

events are modeled: 

cmbCinema_SelectedIndexChanged, 

btnAddOrder_Click and 

lbOrders_SelectedIndexChanged. The complete 

statechart diagram is too large to present here. 
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Figure 5. Cinema Ticket form for mobile platform 

 

 

Figure 6. Statechart model of the Cinema Ticket 

form 

In Fig. 6 one can see that each event has at least one 

handler state. E.g. if the On_btnAddOrder_Click 

event is fired, then the btnAddOrder_Click state 

handles it. The On_lbOrders_SelectedIndexChanged 

event is managed by four states: 

lbOrders_SelectedIndexChanged, lbOrdersCount1, 

lbOrdersCount2, and After_lbOrdersCount. This 

event handler is decomposed into sub-states, because 

the handling code depends on the value of the 

lbOrders.SelectedItem property. 

The case study uses the statechart model (Fig. 6) as 

an input model and applies a rewriting rule (Fig. 7) to 

it. In the rewriting rule the LHS graph uses the meta-

elements of the Statechart metamodel [UML03a] 

[Vis03a] and the RHS graph uses the meta-elements 

of the CodeDOM metamodel [Mic03a] [Vis03a]. On 

the left hand side of the rewriting rule there are two 

states which correspond to the statechart state, and 

there is a transition between them with a 0..* 

multiplicity on the side of the target state. It means 

that applying this rewriting rule exhaustively to a 

statechart model, it matches all the states with their 

target adjacent states. The rule has to match the 

accessible adjacent states, because we need them to 

generate the state-transitions into the source code. Of 

course, it is possible that a state has no outgoing 

transitions, and the reason why we enable the 0 in the 

multiplicity is that we want to match states having 

only incoming transitions in order to generate 

CodeDOM tree for them as well. On the right hand 

side of the rewriting rule the CTypeDeclaration 

represents a type declaration for a class, structure, 

interface or enumeration. CMemberField can be used 

to denote the declaration for a field of a type, and 
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CMemberMethod to phrase the declaration for a 

method. CParameter represents a parameter 

declaration for a method, property, or constructor, 

and CSnippetStatement means a statement using a 

literal code fragment. The code generation means a 

syntax tree generation (CodeDOM tree) from which 

the framework generates the C# source code.  

 

Figure 7. Rewriting rule of the case study 

In a rewriting rule we can connect the LHS elements 

to the RHS elements, this relation between the LHS 

and RHS elements is called causality [Kar03a], which 

facilitates assigning an operation to this connection. 

Causalities can express modification or removal of an 

LHS element, and creation of an RHS element. In 

Fig. 7 the causalities are drawn as dotted lines. The 

create operation and attribute transformation, which 

is one of the most important parts of the rewriting 

process, are accomplished by XSL scripts. The XSL 

scripts can access the attributes of the object matched 

to the LHS elements, and they produce a set of 

attributes for the RHS element to which the causality 

point. VMTS stores models as labeled graphs, and 

each node and each edge have a property XML, 

which contains the attributes of the model element. In 

the current case study the VMTS rewriting engine 

concatenates the property XMLs of the matched 

states and transitions, and it uses the result as the 

input of the XSL script.  

A part of the XSL script used by the case study to 

generate the rewriting result is presented in Fig. 8. 

The XSL selects the name of the actual state (method 

name) for the methodName variable. The first part of 

the script creates a NODE type Element with the 

following properties: the name of the new element 

should be the value of the methodName variable, the 

return type should be void, the modifier attribute 

should be private, the meta type should be 

CodeMemberMethod, the RHSRuleNodeName should 

be CMemMethod, the ContainerName should be 

CinemaTicked (this is the name of the class which 

contains the methods). Finally, the CreatedProperties 

part is also added.  

<xsl:variable name="methodName" select="//Name"/>  

<xsl:template match="/"> 

  <RewriteResult> 

    <Element> 

      <ElementType>NODE</ElementType> 

      <Name><xsl:value-of select="$methodName"/></Name> 

      <ReturnType>void</ReturnType> 

      <Attributes>private</Attributes> 

      <MetaTypeName>CodeMemberMethod</MetaTypeName> 

      <RHSRuleNodeName>CMemMethod</RHSRuleNodeName> 

      <ContainerName>CinemaTicket</ContainerName> 

      <CreatedProperties> 

        <CodeMemberMethod> 

          <Name><xsl:value-of select="$methodName"/></Name> 

          <ReturnType>void</ReturnType> 

          <Attributes>private</Attributes> 

        </CodeMemberMethod> 

      </CreatedProperties> 

    </Element> 

    

    <Element> 

      <ElementType>NODE</ElementType> 

      <Name>sender</Name> 

      <Type>object</Type> 

      <MetaTypeName>CodeParameterDeclarationExpression 

     </MetaTypeName> 

      <RHSRuleNodeName>CParameter</RHSRuleNodeName> 

      <ContainerName><xsl:value-of  

      select="$methodName"/></ContainerName> 

      <CreatedProperties> 

        <CodeParameterDeclarationExpression> 

          <Name>sender</Name> 

          <Type>object</Type> 

        </CodeParameterDeclarationExpression> 

      </CreatedProperties> 

    </Element>  

... 

    

    <xsl:for-each select="//InternalTransition/Statement"> 

      <xsl:call-template name="codeSnippetStatement"/> 

    </xsl:for-each> 

... 

    

  </RewriteResult> 

</xsl:template> 

  

<xsl:template name="codeSnippetStatement"> 

  <Element> 

    <ElementType>NODE</ElementType> 

    <Name>Snippet</Name> 

    <Statement><xsl:value-of select="Value"/></Statement> 

    <MetaTypeName>CodeSnippetStatement</MetaTypeName> 

    <RHSRuleNodeName>CSnipStat</RHSRuleNodeName> 

    <ContainerName><xsl:value-of  

    select="$methodName"/></ContainerName> 

    <CreatedProperties> 

      <CodeSnippetStatement> 

        <Statement><xsl:value-of select="Value"/></Statement> 

      </CodeSnippetStatement> 

    </CreatedProperties> 

  </Element> 

  … 

</xsl:template>  

... 

Figure 8. A part of the XSL script used by the 

case study to generate the rewriting result 

The second presented XSL segment creates a 

parameter for the method, the third part selects the 
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Statements of the internal transitions, and it calls the 

codeSnippetStatement template for each Statement. 

Finally, a part of the codeSnippetStatement template 

is depicted. 

Constraint Validation 
We assign constraints to model elements and to the 

steps accomplished by generators to fully specify 

models and rewriting rules. With the help of these 

constraints we obtain a precise and consistent 

description of the transformation steps. In VMTS the 

main method to specify constraint validation is the 

relation between the pre- and postconditions and the 

OCL constraints assigned to the rewriting rules. 

When we initialize the controls in .NET, e.g. change 

the Text value of a text box, then it a TextChanged 

event is raised, or the SelectedIndex property of a 

combo box is set, when it is sent a 

SelectedIndexChanged event. This behavior of the 

controls affects the operation of the form in an 

inappropriate way. There is an example for that in the 

case study, when the user selects an item in the 

“Orders list” and clicks on the “Edit” button, the form 

has to show the properties of the selected order. 

Hence it has to change the SelectedIndex value of the 

“Cinema” combo box, the SelectedIndex value of the 

“Film” combo box and so on. The effect of these 

operations is that the “Add Order” and “Clear Fields” 

buttons become enabled, but we do not want them so, 

because it is not a real property modification. We can 

eliminate this undesirable operation with a constraint 

(postcondition of the rewriting rule):  

context CMemberMethod inv handle_changes: 

if self.Type = ‘EventHandler’ then self.Statements.Count > 

0 and self.Statements[0].Value = ‘if (!m_bHandleChanges) 

return;‘ 

 

This invariant constraint describes that if the type of 

an CMemberMethod object is EventHandler, then it 

should have more than zero Statement, and the value 

of the first statement should be ‘if 

(!m_bHandleChanges) return;’. A snippet statement is a 

code fragment, and this snippet guarantees that the 

event handler functions do not handle the events if 

the value of m_bHandleChanges variable is false. 

In the “Cinema Ticket” order we require that the 

number of ordered tickets for a film to be at least 1 

but maximum 12. Therefore if the user would like to 

add an order to the “Orders list”, we have to validate 

that the value of the “Number of tickets” control is 

between 1 and 12. Therefore if the value of the 

nudTickets.Value is not proper, we have to prevent 

adding the actual values to the “Orders list”, until the 

user does not modify the “Number of tickets” field. 

The constraint that describes this condition is the 

following (postcondition of the rewriting rule):  

context CMemberMethod inv name_length: 

if self.Name = ‘btnAddOrder_Click’ then 

self.Statements.Count > 1 and self.Statements[1].Value = 

‘if (nudTickets.Value < 1 || nudTickets.Value > 12) return;‘ 

 

Using the following constraint (precondition of the 

rewriting rule), the rewriting rule validates that the 

states with the generated CodeDOM tree are not 

unreachable (isolated) states in the statechart 

diagram. It means that starting from the start state we 

can reach these states.  

context state inv constraint_unreachable: 

self.IsStartState or self.InTransitions->size() > 0 

 

To validate the code which is generated by the OCL 

Compiler, please refer to [Vis03a]. 

When we generate source code from a statechart 

model, there is usually a function for each state in the 

generated source code, which implements the 

behavior of the state (the transitions and the internal 

transitions as well). In form-based, event-driven 

development the event handler methods of the 

controls provide the operation logic of the forms. 

Therefore the goal of the case study is to generate the 

skeleton of the user interface handler code; VMTS 

generates that part of the event handler methods for 

which it has enough information in the statechart 

diagram. E.g. based on the incoming and outgoing 

transitions and their conditions, the generator can 

produce a complete event handler function from 

several model states. An example in the case study is 

the lbOrders_SelectedIndexChanged event handler 

method, which is generated from four states, and its if 

branches are generated from the transition conditions. 

Furthermore the transformation generates the code 

fragments recommended by the constraints; a part of 

this code can be assertion code. An assertion checks a 

condition and displays a message if the condition is 

false. Assertions support the testing procedure and 

contribute to the correct operation. 

Based on the presented principles, the whole process 

of the case study is the following: The OCL Compiler 

generates the constraint validation assembly, the 

matching process searches for topological matches in 

the statechart model (host graph). Then the 

Validation Module uses the validation assembly and 

checks the LHS graph containing constraints 

(preconditions) continuously at matching time or after 

the matching process on the found matches (this 

option if configurable in the system). If and only if a 

match satisfies the preconditions, the rewriting 

process generates the rewriting result with the help of 

a user defined XSL script. The Validation Module 
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checks the RHS graph containing constraints 

(postconditions) on the rewriting result. The rewriting 

rule is finished successfully if and only if the 

rewriting result satisfies the postconditions. 

private void cmbCinema_SelectedIndexChanged(object sender, 

System.EventArgs e) 

{ 

   if (!bHandleChanges) return; 

   bHandleChanges = false; 

   btnAddOrder.Enabled = false; 

   btnClearFields.Enabled = false; 

   if (lbOrders.SelectedItem == null) 

   { 

      btnRemove.Enabled = true; 

      btnEdit.Enabled = true; 

   } 

   if (lbOrders.SelectedItem != null) 

   { 

      btnRemove.Enabled = false; 

      btnEdit.Enabled = false; 

   } 

   bHandleChanges = true; 

} 

 

private void lbOrders_SelectedIndexChanged(object sender, 

System.EventArgs e) 

{ 

   if (!bHandleChanges) return; 

   btnAddOrder.Enabled = true; 

   btnClearFields.Enabled = true; 

} 

 

private void btnAddOrder_Click(object sender, System.EventArgs 

e) 

{ 

   if (!bHandleChanges) return; 

   if (nudTickets.Value < 1 || nudTickets.Value > 12) return; 

   addActualValuesToOrderList(); 

   btnOrderTickets.Enabled = true; 

   cleareFields(); 

   btnAddOrder.Enabled = false; 

   btnClearFields.Enabled = false; 

} 

Figure 9. Generated event-handler source code 

A part of the generated code is presented in Fig. 9. 

These C# functions form the generated 

lbOrders_SelectedIndexChanged, 

cmbCinema_SelectedIndexChanged and 

btnAddOrder_Click event handler methods based on 

the discussed statechart diagram (Fig. 6).  

4. CONCLUSIONS AND FURTHER 

WORK 
In this paper an OCL Compiler component of an n-

layer multipurpose modeling and metamodel-based 

transformation system is presented. This work has 

introduced the need of combining UML and OCL 

during the modeling process, and discussed the steps 

(lexical and syntactic analysis, semantic analysis and 

code generation) of implementing a metamodel-based 

OCL Compiler module.  

Based on the OCL Compiler and the possibilities 

provided by VMTS, a case study has been presented 

to show the applicability and the practical relevance 

of the presented tools. It has been shown that the 

metamodel-based graph rewriting method can be 

applied to transform statechart models to a syntax 

tree, generate source code from it, and to validate the 

rewriting rule constraints during the transformation 

In statechart diagrams VMTS facilitates assigning 

function names as actions to the events. The event 

handler methods generated by the current version of 

the transformation are not fully specified ones; the 

user has to complete them on the source code level. 

As the next step of this method we will implement the 

feature to edit the event handler code at modeling 

time, and the transformation will use the specified 

event handler code snippets during the code 

generation. Furthermore, future work includes the 

design and implementation of branch conditions. 

With the help of branch conditions VMTS will 

support branch logic in the execution order of the 

rules during the transformation process, using RHS 

graphs containing constraints.  
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ABSTRACT 
Model-Driven Development is a suitable approach for improving productivity and quality in the software 
development process by raising the level of abstraction of software artifacts from code to models. In this 
context, code generation has traditionally been the star feature. Working on models also provides more reusable 
solutions to problems that have to be solved in an ad-hoc manner using the .NET technology: interoperability 
between applications, integration of applications, legacy system recovery, software evolution, maintainability, 
etc. One mechanism for dealing with models is model transformation. Although several tools follow this 
approach to generate code that targets the .NET platform, there are no tools based on .NET technology that 
provide model manipulation such as transformations. In this paper, we present a platform that permits the formal 
representation of models and an operator to transform models in a declarative way. This platform has been 
implemented using the F# functional programming language, presenting its advantages over an implementation 
using an imperative programming language such as C#. The platform has been integrated into the Visio 
modeling environment by means of an add-in to deal with formal models through visual metaphors (visual 
notation). To our knowledge, this solution is the first approach for dealing with cross-model semantic 
interoperability on the .NET technology. 

Keywords 
Model-driven development, model transformation, graphical notation, MS Visio 2003, F#, Office managed 
COM add-in, cross-language interoperability. 

 

1. INTRODUCTION 
Model-Driven Development (MDD for short) 
[Sel03] is a suitable approach to combat the 
complexity of software development by means of 
principles such as abstraction and modularity, which 
improve the quality, reuse, and scalability of 
software artifacts. This discipline also improves the 
productivity and quality in the software development 
process to obtain automatically error-free code that is 
easy to maintain. Following this approach, a software 
artifact is modeled at a high level of abstraction 

where technical details are not as important as 
semantics. The structure and semantics of a software 
artifact are modeled by using an ontology or 
metamodel (a vocabulary that provides constructs to 
specify a model in a determined manner). A 
metamodel can be domain-independent such as 
UML, or domain-specific, taking into account 
specific types of software systems, such as banks, 
electronical circuits, business modeling, etc. 
In accordance with [Cza00], the MDD approach 
based on UML-like metamodels is called Object-
Oriented Analysis and Design, while the MDD 
approach based on domain-specific metamodels is 
called Domain Engineering. Microsoft has shown a 
growing interest in the MDD discipline by adding 
designers to the Visual Studio environment in order 
to build software artifacts by means of models. This 
technology should be expanded to cover domains of 
interest to their customers, such as code 
visualization, business modeling, etc., thereby 
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applying Domain Engineering from a commercial 
standpoint [Coo04]. 
In MDD, models defined by means of metamodels 
are usually transformed into code, providing the final 
application that can be directly compiled and 
executed on a specific platform, such as .NET. There 
are lots of tools that provide code generation based 
on models in the .NET world, called model 
compilers: from visual modeling environments (such 
as Visio, Rational XDE [Rat] among others) to 
development environments (such as the Visual 
Studio .NET).  
However, generating code from models forces the 
programmer to work on code in order to face well-
known problems in the software engineering field: 
round-trip, application integration, legacy system 
recovery, refactorization, software evolution, 
maintainability, etc. These problems can be solved at 
a more abstract level by dealing with models directly, 
obtaining the same advantages that the MDD 
discipline obtains for the software development 
process. This is the point where model 
transformations come into play [Sen03]. To provide 
support for model transformations, two main issues 
have to be taken into account: model representation 
to structure the information in some accessible 
manner and a transformation mechanism to 
manipulate such models. Although this issue is 
becoming well-known in the research field [Cza03], 
to our knowledge, there are no tools based on the 
.NET technology to achieve transformations of this 
kind. A solution of this nature would improve the 
productivity and the quality in the integration of 
.NET-based applications at a high level of 
abstraction, rather than just benefiting from the 
cross-language interoperability that the .NET 
Framework provides at code level. Therefore, a 
solution of this nature would achieve cross-model 
interoperability. 
In this paper, we provide a solution along these lines. 
We present a mechanism that takes advantage of the 
MS Visio modeling tool in order to describe the 
structure of visual models in a formal manner. This 
mechanism uses a platform to represent and store 
software artifacts in four layers, where metamodels 
and models are taken into account. Models defined 
on the platform can be transformed in a declarative 
fashion by using the platform operator generate, 
which permits the translation of a model between 
different metamodels. 
This platform has been developed using the 
functional language F# [Fsh]. Taking into account its 
advantages over conventional OO languages such as 
C#, models are formally described in an algebraic 
fashion. 

Our solution takes advantage of the .NET cross-
language interoperability and the Office extension 
mechanism by means of managed COM add-ins. It 
extends the Visio tool by using the most suitable 
language in each context: F# to implement the 
definition of formal models and their manipulation, 
and C# to integrate this functionality into the Visio 
tool.  
The structure of the paper is as follows: in Section 2, 
we discuss and compare the C# and F# programming 
languages, evaluating their suitability in our solution; 
Section 3 presents a platform that enables the 
definition of models in an algebraic fashion; Section 
4 presents the add-in that integrates this platform into 
the Visio modeling environment, enabling the 
manipulation of formal models by means of 
graphical metaphors (graphical notation); Section 5 
describes the F# definition of the model 
transformation mechanism that is provided by the 
platform; finally, Section 6 summarizes our 
contributions. 

2. F# versus C# 
F# is a functional programming language that targets 
the .NET platform. F# has been developed at MS 
Research Cambridge and is a version of the Caml 
programming language [Cah00], which belongs to 
the ML languages family. F# is well integrated in the 
Visual Studio environment1 and provides certain 
features that are inherited from Caml, which make it 
interesting for our purposes. 

F# is based on the lambda-calculus model [Rea93] 
by means of a strict (eager) evaluation strategy. 
Therefore, it permits the definition of a program 
independently from the evaluation strategy used, that 
is without mixing functionality and control logic as is 
necessary in C#.  

F# provides richer constructs to declare types like 
sum types, among others. A sum type permits the 
definition of a type by means of constructor patterns, 
each of which may have arguments. Sum types allow 
us to describe the signature of an algebraic 
specification [Ehr85], where the name of the type is 
the sort, and the constructor patterns are the 
constructors of a sort. This comparison allows us to 
deal with models from an algebraic point of view, 
where semantics of models can be described formally 
by means of Abtract Data Types. This feature is not 
feasible in C# intuitively, although it can be 
simulated in the same way that such constructors are 
invoked from C# code by means of static methods. 

                                                           
1 Although we used  F# version 0.6.4.1 for this solution. 
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F# provides a conditional pattern matching 
mechanism that enables the definition of functions 
over sum types in an intuitive way by applying a 
pattern to each constructor in order to perform a task. 
This mechanism can be simulated in a more complex 
way in C# by means of the switch statement and the 
addition of if statements inside each case of the 
switch statement. 

The F# compiler infers the types of the declaration of 
a function statically (the types of its arguments and 
the type of its closure, i.e. the type of the returned 
value), so that these types do not have to be indicated 
in the definition of the function. This feature makes 
the definition of F# programs easier. 

As all values are functions in F#, we can use lists of 
functions whenever we need them, rather than using 
delegates, as it happens in C#. This also provides 
parametric polymorphism that is used to provide 
some parametric functions that deal with lists without 
knowing the types of their elements: map to apply a 
function to the elements of a list, find to search the 
elements of a list that validate a condition, exists to 
know if some elements of a list validate a condition, 
etc. This feature, called generics, has not been added 
to the current release of the .NET Framework, 
although it will be added to the next release [Yu04]. 

Although F# is a functional language, it also 
provides imperative features such as references 
(pointer to a value), which allow us to manipulate the 
memory state whenever necessary for the sake of 
efficiency. Furthermore, the last and the most 
important feature of F# is its full interoperability 
with languages that target the .NET platform, such as 
C#, by means of the ILX extensions [Sym01] to the 
IL language. 

All these considerations have encouraged us to use 
F# for the implementation of our solution to deal 
with models from a formal standpoint, on the 
grounds that we can use C# to integrate our solution 
to tools based on the .NET technology, such as the 
Visio modeling environment. 

3. ALGEBRAIC REPRESENTATION 
OF MODELS BY MEANS OF F# 
Our approach constitutes a platform that uses several 
metadata layers to describe any kind of information. 
In our work, we consider software artifacts in four 
abstract layers (as shown in Figure 1): 
− The M0-layer collects the examples of all the 

models, i.e., it holds the information that is 
described by a data model of the M1-layer. 

− The M1-layer contains the metadata that describes 
data in the M0-layer and aggregates it by means of 

models. This layer provides services to collect 
examples of a reality in the lowest layer. 

− The M2-layer contains the descriptions 
(metamodels) that define the structure and 
semantics of the models located at the M1-layer. 
A metamodel is an “abstract language” that 
describes different kinds of data.  

− The M3-layer is the platform core, containing 
services to specify any metamodel with the same 
common representation mechanism. It is the most 
abstract layer in the platform. It contains the 
description of the structure and the semantics for 
metamodels. This layer provides the “abstract 
language” to define different kinds of metadata. 

The core of the prototype is an algebra that provides 
a set of sorts and constructors to define models and a 
set of operators to manipulate them. To implement 
this algebra, we have used the F# programming 
language for two main reasons: to bring a formal 
model transformation approach closer to an industrial 
programming environment, such as .NET, and to 
benefit from the functional programming advantages 
presented above.  
 
 
 
 
 
 
 
 
 

Figure 1. Graphical representation of the four-
layered platform. 

An Algebra for Representing Models 
The algebra aims to represent models of any kind as 
algebraic terms in order to automate model 
transformation tasks in a precise, formal way. 
Achieving this objective implies choosing a basic 
specification language that permits us to describe any 
piece of data. 
We have developed a platform based on this algebra 
that permits the representation of software artifacts in 
the four meta-layers explained above. Four main 
sorts permit the definition of a model as a term in the 
algebra: 
1. Concept 

A concept represents an entity that can be 
described by means of properties. The constructor 
of this sort is defined in F# notation as follows: 
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where NilConcept represents a null concept term; 
the first argument of the constructor Concept is a 
term of the sort Concept that represents its 
metaconcept in the next upper abstraction layer, 
and the second argument is its identifier.  

2. Property 
A property is a relationship that relates either a 
concept or a property (subject of the property) to a 
concept (the object of the property), following the 
RDF philosophy to describe metadata [W3C]. 
Such relationships are specified by means of the 
Property sort.  

We express the constructor of this sort in F# 
notation as follows: 

 
 
 
 

where NilProperty represents the null property term 
and the arguments of the constructor Property are the 
following elements in order of appearance: 

− Parent property indicating its type. 
− Identifier of the property. 
− Minimum cardinality of the property that 

indicates the minimum amount of instances of 
the range concept, which must be related to the 
subject node. 

− Maximum cardinality of the property that 
indicates the maximum amount of instances of 
the range concept that can be related to the 
subject node. 

− Subject element that receives the property. This 
can be a concept or another property, because a 
property may involve other properties.  

− Object element that constitutes the value of the 
property. A property cannot be the object of 
another property on the grounds that it does not 
provide additional information. 

3. Schema 
In our context, a schema term represents a 
collection of concepts and properties that describe 
such concepts. 

4. Level 
A level term represents a layer in the platform. 
Four terms of this sort constitute the four-layer 
structure of the platform. The term M3-layer 
represents the most abstract layer in the platform 
and contains a basic vocabulary to define 
metamodels at the M2-layer, i.e. a simplified 
meta-metamodel. This schema contains the term 
Concept and the term Property; the latter relates 
two concept terms, constituting the minimal 
structure that we use to represent a model at a 
lower layer. The four layers of the platform are 
defined as values that can be accessed by means 
of references (pointers to a value). This simplifies 

the definition of transformation rules and 
enhances efficiency. 

For instance, the Relational Metamodel is a schema 
term that contains the concepts and properties that 
constitute the terminology to define a relational 
schema, as shown in Figure 2. For instance, Table 
and Column are represented by means of concept 
terms, which are related to each other through a 
property table/Column in the relational metamodel at 
the M2-layer. This metamodel allows the definition 
of the concept Invoice as a table. In an identical way, 
the concept Code is defined as a column, which is 
related to the table Invoice by means of an instance 
of the property table/Column, i.e. by means of the 
invoice/Code property. 
 
 
 
 
 
 
 
 
Figure 2. Definition of metamodels and models on 

the platform. 

4. VISIO AS A VISUAL 
ENVIRONMENT FOR DEALING 
WITH ALGEBRAIC MODELS 
Taking into account the four-layered platform based 
on the functional implementation of the presented 
algebra, we have developed an add-in for MS Visio 
2003, called Platform Integrator. This add-in permits 
the association of a graphic metaphor with a formal 
metamodel in the Visio modelling environment and 
the automatic definition of its models as algebraic 
terms. 
The customization of the Visio modeling visual 
environment is performed by means of add-ons, i.e. 
sets of stencils that provide the graphical information 
needed to define the graphical notation for a 
metamodel. To extend the tool, a type of module, 
called an add-in, is used to add functionality. Given 
the easy extension that such add-ins provide by 
means of managed COM (Component Object 
Model), Visio is the selected tool to embed our 
model repository. The formal definition of models, 
which  our add-in provides, allows us to transform 
models as we present in the following section, rather 
than merely defining the models graphically. 

Property = NilProperty 
| Property of (Property * string * Cardinality *  
Cardinality * Node * Concept) 
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Outside the Add-in 
The add-in architecture is divided into three layers: 
the interface that graphically represents metamodels 
and models; the middle layer that permits the 
association of such graphics to algebraic 
representation of models; and the persistence layer 
that stores all the information. 
In the middle layer, the module Platform Integrator 
enables the definition of associations between the 
graphical elements of the interface of Visio and the 
algebraic terms that define software artifacts in the 
four-layered platform. Such associations are stored in 
the same platform as instances of UML classes at the 
M0-layer by means of the UMLSupport library. 
The persistence layer consists of two types of storage 
units: the one provided by Visio and the one 
provided by model repository of the platform. 
In Visio, graphical models are stored by means of 
two types of files: .vss files that store the model 
defined in the shapesheet, and .vst files that provide 
the templates with masters (stencils), which enable 
the definition of shapes in the shapesheet. Visio 
provides several templates with several kinds of 
masters to define a large variety of models by 
default. Nevertheless, a user can define new 
templates to define other types of models. 
The four-layered platform stores the information in a 
RDF repository on the grounds that the concepts and 
properties used in the platform are equivalent to RDF 
resources and properties, respectively. The repository 
used is Redland [Bec01], which we have embedded 
in a visual studio project and compiled on the .NET 
platform by means of the managed C++ 
programming language. In this repository, we store 
schemas that belong to any layer of the platform, and 
we store associations between graphical elements of 
the modeling environment and algebra terms.  

Inside the Add-in 
The graphical elements of the Visio interface are 
related to platform elements by means of the module 
Platform Integrator. To present both the definition of 
a graphical metaphor related to a metamodel and the 
definition of formal models by means of this 
association, we focus on the M2-layer and the M1-
layer of the platform. These layers store information 
of metamodels and models, respectively. In this way, 
a schema of the M2-layer is related to a Visio stencil, 
while a schema of the M1-layer is related to a Visio 
shapesheet. To graphically represent the concepts 
and the properties that constitute a metamodel at the 
M2-layer, we use the masters that define the chosen 
stencil. In the case of the graphical representation of 
elements that constitute a model at the M1-layer, we 

use shapes that are defined by means of masters of a 
stencil. 
The association mechanism that relates a formal 
model to a graphical representation has been 
modelled in Figure 3 using UML notation. In this 
model, the SchemaWrapper class contains the 
information needed to relate a schema to its visual 
representation, while the class NodeWrapper 
contains the information that relates a concept or a 
property to a specific image. Specializations of both 
classes identify whether a schema is a metamodel 
(GraphicViewWrapper) or a model 
(GraphicModelWrapper), and whether either a 
concept or a property is a metamodel element 
(GraphicPrimitiveWrapper) or a model element 
(PictureWrapper). In the case of a metamodel, an 
instance of the GraphicViewWrapper class relates a 
schema of the M2-layer to a stencil, and an instance 
of GraphicPrimitiveWrapper class relates a node of 
the schema to a master. In the case of a model, an 
instance of the GraphicModelWrapper class relates a 
schema of the M1-layer to a shapesheet, and an 
instance of the PictureWrapper class relates a node 
of the schema to a shape. 

Storage of UML Software Artifacts 
The association between Visio graphical elements 
and platform elements (defined in the UML class 
diagram in Figure 3) is stored in the same four-
layered platform. In this way, the platform is used as 
an object-oriented repository on the grounds that it 
enables both the definition of UML models at the 
M1-layer and the definition of their instances at the 
M0-layer.  
 
 
 
 
 
 
 
 
 

Figure 3. UML Model of the association 
mechanism between graphical elements and 

algebraic terms. 
To achieve this, we have specified part of the UML 
metamodel as a schema at the M2-layer of the 
platform, taking into account classes and 
associations. The class diagram in Figure 3 has been 
specified in a schema at the M1-layer of the platform 
as an instance of this UML metamodel. Therefore, to 
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define associations between elements of the platform 
and Visio graphical elements, a schema can be 
defined at the M0-layer of the platform by 
instantiating the classes that constitute the model at 
the M1-layer. 

Definition of Graphic Metaphors for 
Metamodels 
To define a metamodel by means of Visio, we 
associate a schema of the M2-layer of the platform to 
a stencil. Then, each of its masters is related to a 
node of the schema by means of the interface in 
Figure 4, completing the graphical metaphor related 
to the metamodel. The formal metamodel can be 
directly defined on the platform by means of the 
Visio interface; it can also be loaded from the 
platform. 
To define a master in the interface shown in the 
Figure, an association between a metamodel of the 
platform and a stencil must be selected. Then, a 
master of the stencil and a node of the schema are 
selected and related by means of a new association. 
After this, the hidden properties of a node (i.e. the 
properties that are not related to a master directly) 
can be accessed. They are shown in the list that 
appears at the bottom of the interface, and they can 
also be navigated recursively by means of the tree, 
placed on the left part of the interface. 
Once a metamodel is graphically defined in Visio, it 
can be used to define visual models by means of the 
drag-and-drop mechanism, by dropping masters of 
the stencil onto the shapesheet. We enrich this 
mechanism so that the shape is not only graphically 
defined in the shapesheet but also its contents are 
defined in the platform. This functionality is 
embedded in the Platform Integrator module, 
providing this functionality automatically in a 
transparent manner to the user. Thereby, we not only 
define a graphical model but also provide the 
semantic information related to a metamodel. 

Therefore, we can define formal models in a visual 
manner so that they can be manipulated by means of 
transformations as we explain in Section 5. 

5. TRANSFORMATIONS 
The operator generate permits the translation of a 
model of a specific metamodel into a model of a 
different metamodel. The semantics of the operator is 
defined denotationally by means of the pattern 
matching mechanism of F#. 
The operation generate defines an evaluation 
strategy operationally (by means of the pattern 
matching mechanism) in order to enable the 
definition of transformation rules in a declarative 
manner. In this way, transformation rules are defined 
like axioms that do not take into account the rule 
evaluation strategy embedded in the operator 
generate. In this section, we introduce the likeness 
relation2, which enables the definition of 
transformation rules based on metamodels. Then, we 
describe the structure of a transformation rule. 
Finally, we define the operational semantics of the 
operator generate. 

Semantical Relationships between 
Metamodels 
In our approach, transformations are based on 
metamodels. Applying a transformation to a source 
model involves two metamodels: a source metamodel 
that describes the structure and semantics of the 
source model, and a target metamodel that provides 
the structure and semantics for the new model to be 
generated. Two types of transformations can be 
distinguished taking into account the target 
metamodel: 

                                                           
2 We have chosen the name likeness instead of 

equivalence, on the grounds that the equivalence relation 
is defined between elements of different metamodels, 
which cannot be equal. 

Figure 4. Interface to graphically define concepts and properties of a metamodel. 
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− Intra-metamodel: when both the target and the 
source metamodels are the same. In this paper, 
we do not discuss this type of transformation. 

− Inter-metamodel: when both the target and the 
source metamodels are different. 

By basing our transformations on metamodels, we 
can specify them from an abstract point of view 
taking into account the metainformation that 
constitutes both the source and the target 
metamodels. This way, transformation rules can be 
viewed as patterns that can apply to any model of the 
source metamodel. To define such rules, we 
introduce the likeness relation between elements of 
two metamodels. 
The likeness relation is based on mappings between 
the elements of both the source and the target 
metamodels. A mapping is a property that is an 
instance of a property, called Likeness, defined at the 
M3-layer. A mapping relates a concept of the source 
metamodel to a concept of the target metamodel. For 
example, indicating that a Table in the relational 
metamodel is like a Class in the UML metamodel. A 
set of mappings conforms a likeness relationship 
indicating that the concepts, which participate in 
these mappings, represent a similar semantic 
meaning in their respective metamodels. 
A likeness relationship between elements of two 
metamodels may involve more than one element of 
either the source or the target metamodels. Thus, we 
distinguish between: 
− Simple likeness relationships: specified by means 

of only one mapping. 
− Complex likeness relationships: specified by a set 

of mappings involving several elements from 
either the source or the target metamodels. For 
example, to define an equivalence relationship 
between a foreign key of the relational 
metamodel and an aggregation of the UML 
metamodel, we have to relate the foreign key, the 
unique constraint and the not null value constraint 
concepts to the aggregation concept. This is 
because these three concepts of the relational 
metamodel provide the necessary knowledge to 
define an aggregation between two classes in the 
UML metamodel, such as the cardinalities of the 
aggregation. 

A likeness relation between two metamodels is 
defined as the union of all likeness relationships 
established between the elements of both 
metamodels. As a first approach to provide cross-
model semantic interoperability on the .NET 
platform, we only focus on simple likeness 
relationships. 

Transformation Rules 
The operator generate is applied to a schema of the 
source metamodel and defines a new schema of the 
target metamodel. To achieve the transformation, this 
operator is based on a likeness relation defined 
between both the source and the target metamodels. 
By means of this relation, the operator knows what 
should be generated from a set of concepts of a 
source model. 
To process the elements of the source schema, the 
operator generate makes use of transformation rules 
defined declaratively. Each one of them is divided 
into two functions: a condition and a body. When a 
group of elements of the source model is processed, 
the condition checks their properties in order to 
select which generation function should be applied. 
These conditions take into account the order of 
precedence that exists between the concepts of a 
specific metamodel when this order is used to define 
a model. For instance, when we define a relational 
schema, we cannot define a column if the table that it 
belongs to is not defined previously. On the other 
hand, the body of the transformation rule involves 
the definition of concepts and properties in the target 
schema. 
The operator generate automatically generates 
models among different metamodels taking into 
account a set of transformation rules, which are 
applied following a specific evaluation strategy. The 
set of transformation rules is defined independently 
of the evaluation strategy chosen. To achieve this 
issue, all the transformation rules must have the same 
declaration so that the operator generate knows how 
to apply them. By declaration, we mean the 
declaration expression of a function in a F# interface 
(.mli), which involves the symbol that identifies the 
function value, the types of the arguments and the 
type of the function value (i.e. the type of the 
closure). Therefore, we denote the declaration 
expression of a function as follows: 
 
 
 
This is the value declaration inferred statically by the 
compiler where val is a reserved construct that 
indicates the declaration of a value; function_name is 
the symbol that identifies the function; arg1_type -> 
… -> argn_type are the types of the argument list of 
the function; and closure_type is the type of the 
closure (which is viewed as the type of the returned 
value in imperative programming). 
As a transformation rule is divided into a condition 
function and a body function, we present their 
declarations in the following subsections. 

val function_name :  
 arg1_type -> … -> argn_type  
-> closure_type 
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5.1.1 Condition function 
A condition function is the mechanism that indicates 
when a transformation rule can be applied. There is 
one, and only one, condition function for each 
function body. This means that a condition can 
indicate the suitability of only one transformation 
rule in a specific context, although many 
transformation rules can be applied to the same 
group of elements of a source model. The declaration 
expression for a condition function is as follows: 
 
 
where condition_name is a symbol that identifies the 
condition, the first argument is the source schema to 
be translated, and the second argument is the current 
node of the source schema to be translated. 
The condition function checks wheter or not the 
specified node validates a set of requirements in 
order to determine if it can be translated into the 
target schema by means of the body function of the 
transformation rule. Finally, the closure of the 
condition function is a Boolean value indicating the 
suitability of the transformation rule that contains the 
condition. 

5.1.2 Body function 
The body function of a transformation rule 
materializes a likeness relationship, defined between 
elements of both the source and the target 
metamodels. This materialization involves both the 
definition of new elements into the target schema and 
specific mappings between the elements of the 
source schema, which are involved in the 
transformation rule. Such mappings provide support 
for traceability. Given a transformation process 
between two models, traceability [Got94] enables the 
identification of elements that are related by means 
of the application of a transformation rule and that 
belong to different models. Traceability support 
enhances mechanisms such as change propagation 
and round-trip between models.  
To explain the semantics of the operator generate, 
we use the generation of a UML model from a 
relational schema as an example. The materialization 
of a likeness relationship at the M1-layer (between 
models) is obtained by four steps, shown in Figure 5: 
1. The concept is reified in its metaconcept; that is, if 

the concept to be processed is the table Invoice, 
we obtain the metaconcepts Table of the relational 
metamodel. 

2. Once we know the corresponding metaconcept of 
the source metamodel, we navigate the likeness 
relationship that relates it to a concept of the target 
metamodel. In the case of a table of the Relational 

Metamodel, we obtain the concept Class of the 
OO Metamodel. 

3. The operator generate instantiates the concept of 
the target metamodel, which becomes a 
metaconcept for its instance, i.e., the concept 
Class of the OO metamodel becomes the 
metaconcept for its instance OO-Invoice. The new 
concept, which has been generated in the new 
target schema at the M1-layer, is similar to the 
original concept in step 1, through the likeness 
relationship that we have defined before. 

4. Finally, the operator instantiates the likeness 
relationship defined at the M2-layer between the 
Metaconcept of the source Concept and the 
Metaconcept’ of the new generated Concept’. The 
instantiation defines a new mapping in the 
traceability schema at the M1-layer, which is a 
property that has the source Concept as domain 
and the target Concept’ as range. 

 
 
 
 
 
 
 
 
 

Figure 5. Description of the transformation 
process 

The declaration of a body function is as follows: 
 
 
where body_name is the symbol that identifies the 
body function, the first argument is a schema that 
contains the specific mappings between elements of 
both the source and the target models, and a node is 
the element of the source model to be translated. A 
body function knows the source and the target 
models by means of the mapping schema, which 
contains this information. 
The type of the closure of a body function applied to 
a mapping schema and a node is the unit type3. A 
body function carries out side effects by accessing 
the layers of the platform (term of type Level) by 
means of references to them. Although these side 
effects decrease the level of abstraction of our 
functional approach, they avoid having to pass a 
whole layer as an argument for each transformation 
rule in order to improve efficiency. Side effects 
                                                           
3 This type describes a set which possesses only a single 

element, which is denoted by (). This means that this 
function simulates the notion of procedure, just as the 
type void does in the C language. 

val condition_name : Schema -> Node  
-> bool 

val body_name : Schema -> Node  
-> unit 
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produced by a body function involve the insertion of 
new elements into the target schema and new 
mappings into the mapping schema, both of which 
are located at the M1-layer. To understand the 
application of a transformation rule in more detail see 
[Bor04]. 

The Operator generate 
The operator generate carries out the evaluation of a 
set of transformation rules on a source model, which 
is defined at the M1-layer of the platform. This 
obtains a new target model and a traceability model 
between the elements of the source models and the 
elements of the new  generated model. The generated 
models are also defined at the M1-layer, as shown in 
Figure 5. The operator generate is a function whose 
declaration is as follows: 
 
 
 
where the first argument is a list of pairs of functions, 
in which the first element is a condition function and 
the second is a body function (i.e. each pair is a 
transformation rule); the second argument is the 
name of the source model placed at the M1-layer; the 
third argument is the name of the schema that 
contains the likeness relationship between the source 
and the target metamodels (i.e. the schema that 
provides the likeness relation); and the fourth is the 
name of the new target schema to be generated. This 
function returns a Boolean value indicating whether 
or not the model transformation has been performed 
correctly. 
The evaluation process carried out by the operator 
generate is split into three steps: initialization of new 
schemas at the M1-layer, solution search, and 
transformation. 
First, the operator defines two empty schemas at the 
M1-layer of the platform: 
− Definition of the traceability model.  
− Definition of an empty target schema as instance 

of the target metamodel with the name specified 
as the fourth argument. The target metamodel is 
known by means of the model of likeness 
mappings of the M2-layer, which is specified as 
the third argument. 

Second, the operator searches for a solution for the 
source model transformation. This solution consists 
of a list of ordered nodes of the source model. The 
application of transformation rules to the ordered 
nodes produces the target schema. This step is 
needed because F# does not provide any mechanism 
to support the evaluation of the nodes of a schema in 
an automated and intuitive way. This inconvenience 

is due to the definition of a schema as a list of nodes, 
or even as a set. In other languages, this problem is 
avoided by means of a backtracking mechanism, 
such as in CLIPS [Cli], or by means of the 
commutativity property, such as in the algebraic 
language Maude [Cla02]. A solution is reached when 
all the nodes of the source model, whose parent 
participates in a likeness relationship in the specified 
likeness relation, have been added to the solution list. 
In the case that no solution is found, the 
transformation process is stopped and the operator 
returns a false value.  
 
 
 
 
 
 
 
 
 

Figure 6. F# definition of the apply_axiom 
function. 

Last, the list of transformation rules given as first 
argument is applied to the nodes of the solution list 
provided by the second step. The application of 
transformation rules is reached by means of the 
apply_solution function, which uses the pattern 
matching mechanism of the F# programming 
language, as shown in the code in Figure 6. The 
apply_solution function is recursive (indicated by the 
construct rec) and applies the apply_rule function to 
the first node h (head) of the list. This function 
searches for a suitable transformation rule in the list 
by means of its respective condition function, and 
applies the body of the rule to the node h. It inserts a 
set of nodes into the target schema and inserts the 
corresponding mappings into the traceability schema. 
To transform the entire list of nodes of the source 
model, the apply_solution function is applied to the 
rest of nodes of the solution list t (tail) recursively. 
When no node is left, the transformation is 
concluded. 
The function generate produces side effects due to 
the application of transformation rules to the 
elements of the source model. These side effects are 
changes to the state of the M1-layer, which involve 
the addition of the generated target model and the 
traceability model to the M1-layer. 

6. CONCLUSION 
In this paper, we have presented a solution for 
transforming models by means of the Visio modeling 

val generate :  
 (bool * unit) list ->  
 string -> string -> string  
-> bool 

let rec apply_solution list_solution_concepts 
list_transformation_rules sch_m1_source 
sch_m1_mappings = 
 match list_solution_concepts with 
 | [] -> true 
 | h::t -> 
   let _ = apply_axiom  
   list_transformation_rules 
    sch_m1_source sch_m1_mappings h
  in 
   apply_solution t list_transforamtion_rules  
    sch_m1_source sch_m1_mappings 
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environment following a MDD approach. To achieve 
this, we built a platform that permits the definition of 
software artifacts following a four-layered approach, 
which involves metamodels and models, from an 
algebraic point of view. The platform provides a 
mechanism to transform models in a declarative way 
between two metamodels. This mechanism is 
embodied by the operator generate that receives a list 
of transformation rules that are applied to a source 
model in order to translate it into a model of a target 
metamodel. The application of a transformation 
provides support for traceability between the source 
model and the generated one. 
The platform has been implemented with the F# 
programming language. We have also discussed its 
advantages over other languages that target the .NET 
platform, such as C#. 
The platform has been integrated into the Visio 
modeling environment by means of an Office 
managed COM add-in. This allows us to deal with 
formal models in a visual manner through graphical 
metaphors. The platform also acts as a repository of 
formal models. This feature has been used to store 
the associations between the graphical elements of 
the Visio interface with the formal definitions stored 
in the platform, in a UML-based manner. 
To our knowledge, this is the first approach to 
support cross-model semantic interoperability from a 
modeling environment based on .NET technology. 
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ABSTRACT 

Dynamic program slicing methods are very attractive for debugging because many statements can be ignored in 
the process of localizing a bug. Although language interoperability is a key concept in modern development 
platforms, current slicing techniques are still restricted to a single language. In this paper a cross-language 
dynamic program slicing technique is introduced for the .NET environment. The method is utilizing the CLR 
Debugging Services API, hence it can be applied to large multi-language applications. 
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Program slicing, dynamic slicing, cross-language slicing, .NET Framework 

 

1. INTRODUCTION 
 

At the end of the seventies, when programming 
languages reached the level of maturity to directly 
support the construction of large software systems, an 
urging need for the extension of debugging, reverse 
engineering and software maintenance capabilities 
emerged. Science’s answer to this challenge was 
program slicing [Tip95a]. The original goal of 
program slicing was to map mental abstractions made 
by programmers during debugging to a reduced set of 
statements in source code. As a consequence, it has 
always been highly desirable to integrate ‘program 
slicers’ with existing debugging environments. 

A program slice contains all statements that might 
directly or indirectly affect the values of variables in 
a set V at a program location p. The pair C=(p,V) is 
usually referred to as a slicing criterion, and the 

contributing statements as the program slice with 
respect to slicing criterion C. 

Since the original article of Weiser [Wei84a], many 
slightly different notions and algorithms have been 
developed to calculate program slices. As 
programming languages and existing technologies 
evolved, new features such as procedures, pointers, 
polymorphism, inter-process communication 
capabilities were also introduced, invalidating earlier 
definitions.  

Weiser’s original method is based on calculating 
consecutive sets of indirectly relevant statements 
based on control flow and data dependency analysis 
[Kri03a, Wei84a, Tip95a]. Later more advanced 
methods have been introduced by Ottenstein et al. 
calculating slices based on solving a reachability 
problem in the program dependency graph (PDG) 
[Ott84a]. A PDG is a directed graph with statements 
and control predicates in its vertices and edges 
corresponding to data and control dependences. A 
slicing criterion can be represented as a vertex in the 
PDG, and a slice with respect to this criterion 
contains all those vertices from which the vertex of 
interest can be reached.  

What Weiser’s and the PDG approach have in 
common is that they completely rely on statically 
available information to calculate program slices, 
therefore this method is called static slicing. Static 
slices have been specifically proposed for 
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maintenance and program understanding: one is able 
to use static slices to observe only parts of the 
program that may be relevant from one specific point 
of view [Bes01a]. However, making no assumptions 
about the program’s input has a degrading effect on 
the precision of the obtained slice. Besides statements 
that actually affected the value of the variable under 
consideration, those that potentially did are also 
included in the slice. Although obtained with 
relatively small effort, the main disadvantage of 
slicing statically is usually the size of the slice.  
While static slicing neglects actual program input, 
dynamic slicing [Agr91a, Bes01a, Tip95a, Zha03a] 
takes it into consideration. Static slicing can be 
simply thought of as a method which calculates 
statements possibly affecting the value of a variable 
of interest. The notion of dynamic slicing is much 
closer to running the program against a specific test 
case in a unit test: only dependences along a specific 
execution path are regarded. This approach implies 
that different occurrences of the same statement have 
to be considered. As a consequence, unlike a static 
(or classical) slicing criterion, a dynamic slicing 
criterion consists of a triple (I, o, V), where I 
stands for program input, o is the occurrence of a 
statement and V is the set of variables under 
consideration. 

As previously mentioned, a wide range of 
applications of program slicing have already been 
studied. But the highest potential is probably in 
debugging applications, where dynamic slicing is of 
great importance. One of the emerging concepts of 
modern real-world software systems is that they are 
built of a set of modules not necessarily written in the 
same programming language. During the whole 
lifecycle of such a system new features are added 
regularly as new modules, and existing legacy parts 
can also be refactored or integrated in such a way. 
Therefore, given a framework that directly supports 
cross-language programming, one has the capability 
to effectively slice real-world programs. 

Introduced in 2001, designed with language 
interoperability as the key concept in mind, the .NET 
Framework is a platform where not only the widely 
studied inter-procedural  but also ‘cross-module’ and 
‘cross-language’ dynamic slicing techniques can be 
established. A module can be thought of as the 
equivalent of a .NET assembly. The term ‘cross-
language’ means that each assembly might be 
composed of source code written in a different 
language. One of the most promising candidates for 
implementing a tool with this kind of capability is the 
.NET Debugging Services API. 

Until now, the dynamic slicing community used the 
Java platform as its primary environment. Many 
interesting approaches have already been proposed, 

including slicing at bytecode level [Ume03a], 
bytecode transformation and JVM hacking. 

However, there was no standard way to implement a 
debugger until Java Platform Debugger Architecture 
(JPDA) introduced in JDK 1.3. Besides having all 
primitives necessary to implement a debugger, JPDA 
also supports a number of debugging modes 
including in-process and out-of-process debugging. 
JPDA is an advanced API with many features similar 
to ones present in .NET. Since .NET was released 
more than five years after Java, we can rightly assume 
the presence of an additional set of features that could 
possibly support dynamic slicing. 

In this paper we propose a pilot solution for cross-
language dynamic slicing in the .NET Framework. 
Our main goal was to develop a dynamic slicing 
algorithm that takes advantage of the sophisticated 
debugging capabilities of the .NET platform. We also 
managed to implement a test application that is 
capable of dynamically slicing multi-module 
programs written in a C#-Visual Basic .NET mixed 
language environment. 

 

2. OVERVIEW OF THE .NET 
ARCHITECTURE FROM THE 
POINT OF PROGRAM SLICING 

 

In this section we give a brief overview of 
Microsoft’s .NET architecture and explain why it is a 
perfect candidate for cross-language dynamic 
program slicing. We introduce the key concepts 
necessary to thoroughly understand the debugging 
capabilities of the framework. 

.NET was originally designed to replace the classical 
Windows Programming Interface (WIN32 API), 
Component Object Model (COM) technology and its 
Distributed version (DCOM) and also to compete 
with the Java platform in the enterprise sector. As 
such, .NET offers all advantages of Java, along with 
language neutrality. All .NET languages use the same 
fully object-oriented runtime library. The philosophy 
behind this idea is the observation that it is easy to 
learn a new programming language; the hard part is 
when programmers are forced to learn many different 
class libraries and also legacy APIs. Using .NET, one 
is given the freedom to choose any of the 20+ 
supported languages and can get on with only one 
common library. This makes it easy to modify, 
transform or even integrate legacy systems. 

However, some sophisticated machinery is needed to 
deliver these special features. To keep things simple, 
we propose a bottom-up overview of the architecture. 
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The Common Language Runtime (CLR) is the 
managed code lattice that everything else is built on. 
.NET uses just-in-time (JIT) compiled bytecode 
similar to HotSpot mechanism in Java. 

Figure 1: An assembly before and after jitting 

 

Being also a fundamental part of the runtime’s 
support for multi-language features, the Common 
Type System (CTS) provides basic value types, 
reference types, type safety, objects, interfaces, and 
delegates. It serves as a framework that helps the 
establishment of cross-language interoperability and 
type safety along with rapid execution capabilities.  

The Common Language Specification (CLS) is the 
smallest subset of the CTS that all languages 
supported by the framework need to share. For 
example, two .NET languages can share values of 
non-CLS types but there will be languages which are 
unable to understand them.  

 

 
Figure 2: Overview of the .NET architecture 

 

All .NET languages compile to an intermediate 
language code called Common Intermediate 
Language (CIL). The compiled code is organized into 
assemblies. Assemblies are portable executables - 
similar to dll’s - with the important difference that 
assemblies are populated with .NET metadata and 
CIL code instead of normal native code. Figure 1 
illustrates the way in which assemblies are jitted. 

Figure 2 shows the details of the technology we have 
covered so far.  

Companies tend to develop their specific solutions to 
a given problem, build custom libraries and user 
interfaces for their enterprise level applications. 
Modules are written separately in time and space, 
using different tools and compilers. In a later phase 
they are integrated, ideally in a seamless way. 
Unfortunately, in practice, this is rarely the case. A 
multi-language development platform supporting a 
large number of programming languages completed 
with a cross language and dynamic slicing capable 
debugger is a large step towards automatic – or at 
least towards seamless system integration. 

In addition, with the help of cross-language program 
slicers programmers are able to identify bugs more 
precisely and at a much earlier stage. With the help of 
its sophisticated, carefully designed architecture and 
outstanding debugging capabilities, .NET is the 
platform that probably most closely matches the 
needs. In the case of program slicing, there is a two 
way symbiosis. Slicing improves software quality, 
and improved features of platforms like .NET may 
simplify slicing to a level where the power of its 
practical application appears. 

However, it is not only the technical side that might 
benefit from such a framework. Microsoft is devoted 
to satisfying scientific needs as well with Rotor. Our 
approach focuses mainly on the possibilities of 
debugging from the scientific aspect. Debuggers are 
not toys, they are in fact serious tools in the hand of 
programmers. With the advanced features of .NET, a 
new generation of slicing capable debuggers is closer 
than ever before. 

 

3. TECHNICAL OUTLOOK 
 

In this section we give a brief overview of the basic 
architecture of JPDA widely used in the Java slicing 
community. The advanced architecture and the 
success of JPDA in slicing prompted us to introduce 
a similar approach in the .NET environment. We 
intend to show how .NET Debugging Services – the 
.NET counterpart of JPDA - can be used to generate 
call trace of the program being sliced. 

JPDA is a multi-layer architecture dedicated to the 
direct support of debugger application development. 
Since JPDA fits in the philosophy of Java, debuggers 
based on this architecture are intended to run on a 
variety of physical platforms, virtual machines and 
also JDKs. 
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The main three layer of JPDA are: 

1. Java Virtual Machine Debug Interface 
(JVMDI): all debugging services provided 
by the VM 

2. Java Debug Wire Protocol (JDWP): 
specifies communication standards between 
the debugger and the process being 
debugged 

3. Java Debug Interface (JDI): the top level 
interface for debugger developers. 

JVMDI is the lowest layer of JPDA. It exposes both 
state inspection and controlling capabilities of 
applications running in a virtual machine to debugger 
developers. Basically, JVMDI is an event-driven 
interface. However, it has also indirect controlling 
capabilities totally independent of events. Default 
JVMDI clients are in-process, that is they run in the 
same virtual machine as the application that is being 
debugged. On the other hand, the framework also 
contains higher-level, out-of-process debugger 
interfaces. 

JDWP is a communication protocol between the 
virtual machine being debugged and the debugger 
process. This protocol ensures that a single debugger 
is able to work either locally or (in a distributed way) 
on a remote computer. A very important aspect of 
JDWP is it independence of transport mechanisms. 
Every different JDWP implementation might employ 
different transport techniques through a simple API. 

JDI is the highest level JPDA interface providing 
information that is of great importance in case of 
debuggers and also other tools that need access to the 
running state of a virtual machine. 

In the Microsoft world, with the release of .NET, a 
new Debugging API and scripting strategy has also 
been introduced. Script engines can now compile or 
interpret code for the Microsoft Common Language 
Runtime (CLR) instead of integrating debugging 
capabilities directly into applications through Active 
Scripting [Pell]. .NET Debugging Services is not 
only able to debug every code compiled to IL written 
in any high level language, but it also provides 
debugging capabilities for all modern languages. 

The CLR supports two types of debugging modes: in-
process and out-of-process. In-process debuggers are 
used for inspecting the run-time state of an 
application and for collecting profiling information. 
These kinds of debuggers do not have the ability to 
control the process or handle events like stepping, 
breakpoints, etc. 

Out-of-process debuggers run in a separately process 
providing common debugger functionality. 

The CLR Debugging Services are implemented as a 
set of some 70+ COM interfaces, which include the 
design-time application, the symbol manager, the 
publisher and the profiler. 

 

 
Figure 3: CLR Debugging architecture 

 

The design-time interface is responsible for handling 
debugging events. It is implemented separated from 
the CLR while the host application must reside in a 
different process. The application is interpreted by a 
script and has a separate thread for receiving 
debugger events that run in the context of the 
debugged application. When a debug event occurs 
(assembly loaded, thread started, breakpoint reached, 
etc.) the application halts and the debugger thread 
notifies the debugging service through callback 
functions. 

The symbol manager is responsible for interpreting 
the program database (PDB) files that contain data 
used to describe code for the modules being 
executed. The debugger also uses assembly metadata 
that also holds useful information from the point of 
debugging. The PDB files contain debugging 
information and are generated only when the 
compiler is explicitly forced to do so. Besides 
enabling the unique identification of program 
elements like classes, functions, variables and 
statements, the metadata and the program database 
can also be used to retrieve their original position in 
the source code. 

The publisher is responsible for enumerating all 
running managed processes in the system. 

The profiler tracks application performance and 
resources used by running managed processes.  

The CLR Debugging Services API called ICorDebug 
[Stall] is implemented by COM interfaces. It can be 
directly reached from managed or unmanaged code 
but there are also higher level managed wrapper 
classes used by MDbg [Stall]. Using these interfaces 
we can start a process for debugging and register our 
managed or unmanaged callback functions. As 
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mentioned earlier, querying run-time information of 
program elements is another important application. 

We generated the call trace of our programs using the 
CLR debugger. First we set a breakpoint to the entry 
of our application and we stepped along until the end. 
The step (or step in) debugging operation goes along 
sequence points in the original source code. Sequence 
points which can be identified using metadata and the 
program database divide the statements in high-level 
languages. We also used ICorDebug to query the 
function call stack at every step. 

ICorDebug has not been standardized yet and it is not 
likely to be. According to Mike Stall [Stall] it makes 
more sense to standardize the compiler’s output 
(metadata, symbols, IL format). We have also studied 
the other two significant .NET implementations 
namely Microsoft’s SSCLI (Rotor) and Mono 
sponsored by Novell. Rotor has the same debugging 
architecture as the Microsoft .NET Framework so it 
would be easy to compile and run our existing tracer 
application on that platform. On the other hand, 
Mono developers decided against implementing the 
debugging API provided by the .NET CLR and Rotor 
and have their own debugging mechanism. 
Fortunately, the module generating call trace 
accounts for only a very small part of our dynamic 
slicing framework so it would take relatively small 
effort to port it to Mono. 

 

4. ARCHITECTURE & ALGORITHM 
 

In this section we will review the architecture (Fig.  
4) of our dynamic slicing framework. It consists of 
two phases called Phase 1 and Phase 2. While Phase 
1 executes mainly preprocessing steps, Phase 2 runs 
the slicing algorithm. The whole framework was 
developed and compiled using Microsoft Visual 
Studio 2005 beta. 

The current implementation of our dynamic slicing 
algorithm, that is capable of processing source code 
only line-by-line, makes the first step of Phase 1 - 
‘beautification’ - necessary.  Beautification is a 
preprocessing step that enables the debugger to 
generate a call trace that is the input of our dynamic 
slicing algorithm. Beautification requires a language- 
specific parser transforming the original code to an 
equivalent version split along sequence points. As a 
result of the beautification step the source code lines 
can be directly mapped to sequence points that the 
debugger is capable of stepping along. As a 
consequence, the mapping between lines and 
sequence points makes it possible to use the output of 
the debugger as the direct input of the dynamic 
slicing algorithm. 

Since the CLR Debugger is language-independent 
and parsers can be developed for any language, it is 
possible to generate slices that span across multiple 
assemblies compiled from different languages. 

 

 
Figure 4: Architecture 

 

In case of C#, we compile the beautified source files 
by calling the C# compiler csc.exe with the /debug+ 
switch to generate debugging output. The last step of 
Phase 1 is the building of the call trace which is 
written to a plain text file. We trace information of 
every single statement reached during the execution 
of our program using .NET Debugging Services API. 
As we have already mentioned, the 
ICorDebugStepper interface is used to step along the 
application. At each step a triple of data is stored, 
namely:  

1. The name of the source file name we are in 
2. The exact line number in the source file where 

the statement of interest resides 
3. The state of the call stack at that point 

Each element of the triple holds meaningful 
information for our dynamic slicing algorithm. Since 
the analyzed application can be built-up of multiple 
assemblies (and multiple source files), therefore the 
correct place including the source file name and exact 
line number always have to be recorded. The call 
stack is used for tracking function calls. 
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Phase 2 first loads the call trace file produced in 
Phase 1. A typical call trace can be seen in Listing 1. 

Although in a real application we store fully qualified 
names, for the sake of clarity we have used 
abbreviations in Listing 1, so M stands for MainNameSpace.MainClass.Main, R for MainNameSpace.MainClass.RecursiveProdSum, A 
for OtherModule.Functions.Add and P for Prod. 
 

 
Listing 1: Call Trace 

 

A screenshot of the framework with source code 
corresponding to the call trace in Listing 1 can be 
seen in Figure 6.  

The next step is to parse traced source files for every 
assembly in the program. We use here the same 
parser as in the beautification step. Being similar to 
existing dynamic slicing algorithms in this aspect 
[Bes01a, Xu01a, Zha03a], our approach also 
necessitates storing referenced and defined variables 
at every statement. The main task of the parser is to 
collect referenced and defined variables at every 
statement. This is illustrated in the following code 
fragment. 

Listing 2: Simple C# code fragment 

 

Line 2 defines variable i, line 5 references i and n, 
line 7 defines sum and references sum and i, line 11 
references sum. 

While parsing source files, a Control Dependence 
Graph (CDG) [Kri03a] is also created. Control 
dependence describes the ability of a program 
statement to affect the execution of another program  

statement. If node m is control dependent on node n it 
means that there is an edge from n to m. Figure 5 
illustrates the CDG of the code fragment given in 
Listing 2. 
 

Listing 3: Intra-procedural version of our 
dynamic slicing algorithm  

 
For example, nodes 1, 2, 3, 4, 5, 11 and 7, 8, 9 are 
neighbors; 7, 8, 9 are control dependent on 5. 

The call trace for our example program is the 
following in regular expression style: 
"1,2,3,4(,5,7,8,9){n},5,11". The slicing criterion is 
(<n=2>, 111, {sum}). 

According to the definition given in Section 1, <n=2> 
is the current program input, 111 denotes the first 

idx01: MainClass.cs 10 M idx02: MainClass.cs 11 M idx03: MainClass.cs 12 M idx04: MainClass.cs 13 M idx05: MainClass.cs 14 M idx06: MainClass.cs 20 M,R idx07: MainClass.cs 22 M,R idx08: Functions.cs 10 M,R,A idx09: Functions.cs 11 M,R,A idx10: MainClass.cs 23 M,R idx11: Functions.cs 15 M,R,P idx12: Functions.cs 16 M,R,P idx13: MainClass.cs 24 M,R idx14: MainClass.cs 25 M,R idx15: MainClass.cs 20 M,R,R … 

loopcond← ∅  varstore← ∅   foreach var∈{slicing_crit_vars} loop  varstore←varstore∪ (var,Ref) end foreach  foreach stmt in {backward call trace} do  if stmt is Assignment then   found:= false   foreach var∈{stmt.definedvars} do    if (var,Ref)∈varstore then     varstore[(var,Ref)]←(var,Def)     found:= true    end if   end foreach   if found then    slice:=slice∪ {stmt}  addToVarStoreAndLoopCond(stmt)   end if  else   if stmt is control statement then   if stmt∈loopcond then    slice←slice∪ {stmt}    addToVarStoreAndLoopCond(stmt)   end if  end if end loop  proc addToVarStoreAndLoopCond(stmt)  foreach var∈{stmt.referencedvars} do   varstore←varstore∪ (var,Ref)  end foreach   foreach parstmt in {stmt.parents} do    loopcond←loopcond∪ parstmt  end foreach end proc  1 int n = askUser();  2 int i = 0;  3 int sum = 0;  4 int prod = 1;  5 while (i < n)  6 {  7 sum += i;  8 prod *= i;  9 i++; 10 } 11 Console.WriteLine(sum); 
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Figure 5: Control Dependence Graph 

 

occurrence of the statement in source code line 11 in 
the call trace and sum is the only variable of interest. 
In other words, we are interested in statements that 
affect the value of variable sum when we reach the 
11th line for the first time with n=2 being the input of 
the program. 

At this point we have all information necessary to 
develop our backward dynamic slicing algorithm. 
First we will show it in an intra-procedural form then 
extend it to the more interesting inter-procedural 
version. 

We have a set (called varstore) whose elements are 
(Variable, Action) pairs where Action can be 
either Def or Ref. Varstore is responsible for 
storing the last Action for every variable of interest. 
Def denotes variable definition; similarly Ref denotes 
referencing that variable. 

When the algorithm starts, varstore contains all 
variables of interest with Ref Action. For the 
previous example: (sum, Ref). When a variable with 
Ref action is encountered on the left side of an 
assignment, the line number is added to the dynamic 
slice (if not already in) and the variable’s Ref Action is changed to Def. (We are not interested in 
assignments defining a variable with Def action, 
because the earlier definition would be killed 
anyway.) The Action of referenced variables with 
Def Action is changed to Ref. Referenced variables 
not already in varstore are added with Ref Action. (For example, encountering i++ would first 
change the Action of i to Def and then Ref).  

After processing a statement we always add its parent 
according to the CDG to another set called loopcond. Loopcond stores those control flow 
statements (loop or condition) that have to be added 
to the slice during the first visit. When a control flow 
statement is encountered, we check whether it is in loopcond. In this case we process it similar to 
assignments (set Ref variables, add parents to loopcond, increase dynamic slice). 

The outcome of the algorithm run against code 
fragment in Listing 2 is shown in Table 1. 

The algorithm is linear in the number of lines in the 
call trace; memory usage is also linear with respect to 
the number of variables in varstore. 

 

trace Varstore loop-
cond 

Slice 

11 (sum,Ref) - - 
5 (sum,Ref) - - 
9 (sum,Ref) 5 - 
8 (sum,Ref) 5 - 
7 (sum,Ref),(i,Ref) 5 7 
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7 
9 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9 
8 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9 
7 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9 
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9 
4 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9 
3 (sum,Def),(i,Ref),(n,Ref) - 3,5,7,9 
2 (sum,Def),(i,Def),(n,Ref) - 2,3,5,7,9 
1 (sum,Def),(i,Def),(n,Def) - 1,2,3,5,7,9 

Table 1: Algorithm example 

 

The algorithm starts exactly the same way in the 
inter-procedural case as the previously introduced 
intra-procedural version. However, when the last line 
of a function (eg. in Listing 1 Functions.cs line 11) is 
reached, the line from where the function was called 
have to be identified even in the case of multiple or 
recursive calls (eg. in Listing 1 MainClass.cs line 22). 
Also, all local variables that are parameters of the 
called function have to be localized. 

The calling statement can be found in linear time in 
the call trace so the algorithm would become 
quadratic. However, some preprocessing can be done 
to preserve the linearity of our algorithm. A unique 
ID is given to every function call. Note that the 
blocks of the same ID-runs do not have to be 
continuous (eg. for Listing 1 this would be 
1,1,1,1,1,2,2,3,3,2,4,4,2,2,5,…). At a given block of 
IDs the ending index of the previous block of the 
same IDs can be stored (eg. for statement at idx10 
we store idx7, for idx13 store idx10 as shown in 
Listing 1). So we can find the calling statement in one 
step even for multiple or recursive calls.  

In order to achieve constant-cost retrieval of the 
index that marks the end of the previous block with 
the same IDs, an indexing data structure should be 
created and populated in a preprocessing step. At this 
point we are aware of the statement that calls the 
function and can further investigate the in/out (ref in 
C#) and out (out in C#) actual parameters.  

The algorithm selects parameter variables of the 
caller function with Ref Action in varstore (we 
call them formal parameters of interest). If there is 
no variable satisfying this criterion, we can safely 
disregard the whole function. 

 

Start 

1 2 3 4 5 

7 8 9 

11 
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Listing 4: Inter-procedural slicing algorithm 

 

Since functions can be identified based on the 
signature of the calling statement, formal parameters 
can be identified according to their order. Now we 
can recursively call our dynamic slicing algorithm by 
setting up a new varstore with all formal 
parameters of interest with Ref Action. When the 
algorithm returns to the caller we can identify all 
formal input parameters (nothing or ref in C#) 
referenced from the generated slice by checking the varstore of the called function and determine their 
actual parameter pairs. We consider them as 
referenced variables from the caller’s point of view. 
So they are added to the varstore with Ref Action 
or their Action value is changed to Ref if already in varstore. We modify loopcond in the exactly 
similar way as in the case of assignments and of 
course also add the function call to the slice. 

It can be seen that we store unique varstore and loopcond information for every function call. 
Listing 6 shows the pseudo code of the inter-
procedural version of our dynamic slicing algorithm. 
As its name suggests, variable callTrace stores 
information generated with the help of .NET 
Debugging Services. The algorithm walks from the 
end to the beginning of the call trace. Index actLine 
decreases at every step of the algorithm. Variable funcEnd stores the location where the currently 
processed function is called. If this point is reached 
we go back to the caller. The statements are identified 
by source files (which can belong to different 
modules) and the line number in the source file. 
When the algorithm detects that the execution passed 
the last line of a method, the source file and line 
number (funcEnd) are identified where the 
invocation of this method is performed. Actual output 
parameters referenced according to varstore are 
looked up and their formal output parameter pairs are 
matched. Afterwards, the dynamic slicing algorithm 
is called recursively.  

Returning from the recursion, the referenced formal 
input parameters and their actual counterparts are 
also identified. They are added to varstore and the 
algorithm continues.  

Function addToVarStoreAndLoopCond is almost 
the same presented in Listing 3 except for that loopcond and varStore are referenced by context. 

 

5. IMPLEMENTATION 
 

In the screen shot shown in Figure 6 we used slicing 
criterion (<n=42>, 151, {sum}). The example 
contains two files from different assemblies 
(MainClass is in the main module and Functions class 

Function: doSliceFunction(Context context, int funcend) context.CalculateStartingVarStore() funcID:= -1; while actLine > funcEnd do begin  TraceLine trace = callTrace[actLine]  if funcID = -1 then funcID:= trace.FuncID   //when a new function reached  if trace.FuncID <> funcID then  begin   callPos:= rle[actRLELine].PrevBlockEnd   actRLELine:= actRLELine - 1   TraceLine traceMI:= callTrace[callPos]   MethodInvoke mi:=  source[traceMI.src].Statement[callPos]   actualParamsOut:=  mi.Outputs.SelectReferenceds(context.VarStore)   formalParamsOut:= mi.Actual2Formal(actualParamsOut)   Context newContext:= new Context(formalParamsOut)   doSliceFunction(newContext, callPos)   formalParamsIn:= newContext.SelectReferenceds(     mi.Parameters)   if formalParamsIn.Count > 0 then   begin    actualParamsIn:= mi.Formal2Actual(formalParamsIn)    context.VarStore.InsertThemAsRef(actualParamsIn)    slice←slice ∪ {mi}    foreach parstmt in {stmt.parents} do     context.loopcond←context.loopcond ∪ parstmt    end foreach   end if   actRLELine:= actRLELine — 1   actLine:= actLine - 1   continue  end if   //normal statement Statement stmt:=  source[trace.src].Statement[trace.line]  if stmt is Assignment then   found:=false   foreach var∈{stmt.definedvars} do    if (var,Ref)∈context.VarStore then     context.VarStore[(var,Ref)]←(var,Def)     found:=true    end if   end foreach   if found then    slice:=slice ∪ {stmt}  addToVarStoreAndLoopCond(stmt)   end if  else   if stmt is control statement then   if stmt∈context.loopcond then    slice←slice ∪ {stmt}    addToVarStoreAndLoopCond(stmt)   end if  end if  actLine—- end while 
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which is used in the main module is located in 
another module). 

In order to test the algorithm proposed earlier, we 
have implemented a pilot application that is capable 
of slicing programs that satisfy certain restrictions. 
These restrictions imply that the source code might 
contain only static functions with arbitrary program 
constructions (assignment, condition, loop, method 
invocation). The program can be built of multiple 
modules (assemblies) each containing multiple source 
files.  

Since the CLR Debugger is language-independent 
and parsers can be developed for any language, it is 
possible to generate slices that cover multiple 
assemblies compiled from different languages. 
Unfortunately the only parser we have is for C#. 

We used an earlier version of Marcel Debreuil’s C# 
source code parser library which employs the 
ANTLR parser generator. We compiled our 

algorithm using Microsoft Visual Studio 2005 beta 
codenamed Whidbey. 

 

6. CONCLUSION AND FURTHER 
WORK 

 

In this paper we have shown how to utilize the .NET 
Debugging Services API in dynamic program slicing. 
Motivated by the Java Platform Debugger 
Architecture, our pilot solution can be effectively 
used to investigate dynamic dependences among 
modules compiled from any CLS-compliant 
language. We have also shown that by directly 
supporting cross-language programming, the .NET 
Framework offers significant surplus over Java. 

.NET-languages, mainly C#, VB.NET and managed 
C++ have some very noteworthy elements such as 

Figure 6: Example run of our slicing framework 
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delegates, the foreach loop, different kinds of 
parameter passing methods and the lock statement 
which justify further research related to both static 
and dynamic program analysis.  

C# language and .NET Framework are evolving 
quickly. In Microsoft .NET Framework version 2.0 
we intend to investigate generics, anonymous 
methods, partial types, yield keyword, nullable types 
and also some functional language implementations 
like Scheme [Bre04a] and Clean [Her04a]. 
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ABSTRACT 

Although dynamic languages are becoming widely used due to the flexibility needs of specific software prod-
ucts, their major drawback is their runtime performance. Compiling the source program to an abstract machine’s 
intermediate language is the current technique used to obtain the best performance results. This intermediate 
code is then executed by a virtual machine developed as an interpreter. Although JIT adaptive optimizing com-
pilation is currently used to speed up Java and .net intermediate code execution, this practice has not been em-
ployed successfully in the implementation of dynamically adaptive platforms yet. 
We present an approach to improve the runtime performance of a specific set of structural reflective primitives, 
extensively used in adaptive software development. Looking for a better performance, as well as interaction with 
other languages, we have employed the Microsoft Shared Source CLI platform, making use of its JIT compiler. 
The SSCLI computational model has been enhanced with semantics of the prototype-based object-oriented com-
putational model. This model is much more suitable for reflective environments. The initial assessment of per-
formance results reveals that augmenting the semantics of the SSCLI model, together with JIT generation of 
native code, produces better runtime performance than the existing implementations. 

Keywords 
Dynamic languages, structural reflection, prototype-based object-oriented computational model, Shared Source 
CLI, JIT code generation. 

 

1. INTRODUCTION 
Since the appearance of the first abstract machine 
(UNCOL, 1961 [Ste61]), the notion of using the 
specification of a computational processor without 
intending to implement it (abstract machine) has 
been used in many different contexts [Die00]. The 
main objective of the UNiversal Computer Oriented 
Language (UNCOL) was simplifying compilers de-
velopment by employing a unique universal interme-
diate code. 

A virtual machine involves a specific abstract ma-
chine implementation. The employment of specific 
abstract machines implemented by different virtual 
machines has brought many benefits to different 
computing systems. The most relevant are platform 
neutrality (USCD P-machine [Cla82] or Forth 
[Moo74]), application distribution (ANDF, Architec-

ture Neutral Distribution Format [OSF91]), direct 
support of high-level paradigms (Smalltalk-80 [Gol-
83], SECD [Lan64] or Warren Abstract Machine 
[War83]) and application interoperability (PVM, 
Parallel Virtual Machine [Sun90]).1 

Despite of the many benefits obtained from using 
virtual machines, its main drawback has always been 
execution performance. Consequently, there has been 
considerable research aimed at improving the per-
formance of virtual machine’s application execution 
compared to its native counterparts. Techniques like 
adaptive Just In Time (JIT) compilation or efficient 
and complex garbage collection algorithms have 
reached such a point that Microsoft and Sun Micro-
systems identify this kind of platforms as appropriate 
to implement commercial applications. Nowadays, 
there are a lot of commercial languages and plat-
forms that employ the concept of virtual machine to 
develop software products. 

In parallel with the dominant virtual platforms (Sun’s 
Java Virtual Machine and Microsoft .net) and its 
type-safe programming languages (Java and C#), a 

                                                           
1 The development of is project is funded by Microsoft 

Research as the second Rotor Request for Proposals, 
awarded in 2004. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
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profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to 
lists, requires prior specific permission and/or a fee.  
 
.NET Technologies’2005 conference  proceedings,  
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new approach of so called “dynamic languages” is 
emerging (examples are Python [Ros03], Ruby 
[Tho04] or Dylan [Sha96]). The main objective of 
these languages is to model the dynamicity that is 
commonly required in building software that is 
highly context-dependent due to the mobility of both 
the software itself and its users [ECO04]. Features 
such as meta-programming, reflection, mobility, dy-
namic reconfiguration and distribution are the do-
main of dynamic languages. Because of the benefits 
they offer, dynamic languages are employed in dif-
ferent scenarios such as adaptive programming 
[Mer03], dynamic aspect-oriented programming 
[Ort04] or high-level parallel software development 
[Hin03]. 

Dynamic languages, which also use abstract machine 
platforms, offer a much more relaxed type system at 
compile time that Java, C#, or any other type-safe 
language, in order to support their flexibility features 
–most part of the type system is dynamic. The un-
questionable benefits of type-safe languages could 
still be obtained with unit testing suites that are cur-
rently widely used –as an example PyUnit is the Py-
thon version of the well-known JUnit testing frame-
work. Using dynamic languages together with unit 
testing suites, the programmer can benefit both from 
the robustness of any type-safe language and from 
the flexibility of its dynamic features when needed 
[Mar03]. 

Dynamic Languages Performance 
Looking for code mobility, portability and distribu-
tion facilities, dynamic languages usually employ the 
concept of abstract machine. Since their computa-
tional model offers dynamic modification of its struc-
ture and code generation at runtime, the existing vir-
tual machine implementations are commonly devel-
oped by means of interpreters. Their flexibility and 
dynamicity capabilities make JIT native code genera-
tion (and its dynamic optimization) a complex task. 

The existing implementations of Python for the Mi-
crosoft .net platform (Python for .Net from the Zope 
Community, IronPython, and the Python for .Net 
research project from ActiveState) have been devel-
oped as compilers that generate virtual machine’s 
intermediate code which simulates Python features 
over the .net platform. The implementations that 
have used the Java Virtual Machine (Jython or JPy-
thon) have also employed the same approach. Micro-
soft and Sun platforms were created to support static 
languages that do not offer structural reflective fea-
tures such as adding attributes (fields) and methods 
at runtime. As these virtual machines do not support 
those primitives, additional code must be generated 
to support these features. 

ActiveState tried to modify different free implemen-
tations of the .net platform in order to compile Py-
thon Programming Language to .net native code, but 
they abandoned the project because the abstract ma-
chine design “was not friendly to dynamic lan-
guages” [Ude03]. As Java and .net virtual machines 
have been designed taking into account their static 
features in order to obtain the highest runtime per-
formance, it is difficult to add dynamic features to 
their existing implementations. 

The main disadvantage of dynamic languages is run-
time performance. The process of adapting an appli-
cation at runtime, as well as the use of reflection, 
induces a certain overhead at the execution of an 
application [Pop01]. However, as it happened with 
the implementation of Java Virtual Machine, speed-
ing up the application execution of dynamic lan-
guages might facilitate their inclusion in commercial 
development environments. Since the research done 
by Hölzle and Ungar in dynamic JIT optimizing 
compilers applied to the Self programming language, 
virtual machine implementations have become faster 
by generating binary code at runtime [Höl94]. 
Nowadays, dynamic adaptive HotSpot optimizer 
compilers combine fast compilation and runtime op-
timizations of those parts of the code that are exe-
cuted a higher number of times. These techniques 
have made virtual machines a real alternative to de-
velop many types of software products. 

The work presented in this paper employs these tech-
niques to natively support dynamic languages over a 
virtual machine. We will show how we are incorpo-
rating reflective features to the Shared Source CLI 
implementation of the Microsoft .net platform. Add-
ing dynamic reflective primitives to the platform 
internals will make it possible to compile dynamic 
languages directly to .net, obtaining performance 
benefits of using JIT native code generation. At the 
same time, applications developed in dynamic lan-
guages would be able to interoperate with any .net 
application or component, regardless of its program-
ming language. 

The rest of this paper is structured as follows. In the 
next section, we present the Microsoft Shared Source 
CLI and Section 4 introduces the set of reflective 
primitives to be added. Section 4 briefly describes 
the prototype-based object-oriented model as well as 
an analysis of how it can be incorporated to the 
SSCLI model. The specification of our new BCL 
reflective namespace is described in section 5 and 
section 6 summarizes the implementation issues. Fi-
nally, we analyze runtime performance (section 7) 
and section 8 presents the ending conclusions. 

152



2. SHARED SOURCE CLI 
The Microsoft SSCLI, Shared Source Common Lan-
guage Infrastructure (also known as Rotor), is a 
source code distribution that includes fully functional 
implementations of both the ECMA-334 C# lan-
guage standard and the ECMA-335 Common Lan-
guage Infrastructure standard, various tools, and a set 
of libraries suitable for research purposes [Stu03]. 
The source code can be built and run under Windows 
XP, FreeBSD 4.5 or Mac OS X. 

Rotor consists on 3.6 million lines of code that can 
be divided into 4 groups: 

• The Execution Environment. This is the virtual 
machine of the .net platform that includes the 
JIT compiler, the garbage collector, the class 
loaders and the common type system.  

• The Libraries. The SSCLI distribution includes 
the source code of its Base Class Library (BCL), 
runtime infrastructure and reflection (introspec-
tion) classes, networking and XML classes, and 
floating point and extended array libraries. 

• Compilers and Tools. Rotor includes a C# com-
piler (ECMA-334) and a Jscript compiler written 
entirely in C#. 

• Platform Abstraction Layer (PAL). This code 
implies the abstraction layer between the runtime 
environment and the operating system. 

Excluding the PAL section, we have performed 
modifications and enhancements in every part of the 
Rotor structure to develop our project. 

3. EXTENDING THE REFLECTIVE 
CAPABILITIES OF ROTOR 
Reflection has been recognized as a suitable tool to 
aid the dynamic evolution of running systems, being 
the primary technique to obtain the meta-
programming, adaptiveness, and dynamic reconfigu-
ration features of dynamic languages [Caz04]. Re-
flection is the capability of a computational system to 
reason about and act upon itself, adjusting itself to 
changing conditions [Mae87]. In a reflective system, 
its computational domain is enhanced by its own 
representation, offering at runtime its structure and 
semantics as computable data. 

The main criterion to categorize runtime reflective 
systems is taking into account what can be reflected. 
Following this classification, we can distinguish: 

• Introspection: The system’s structure can be 
consulted but not modified. Both Java and .net 
platforms offer this level of reflection. By means 
of the java.lang.reflect package (Java) and 
System.Reflection namespace (.net), the pro-

grammer can get information about classes, ob-
jects, methods and fields at runtime. 

• Structural Reflection: The system’s structure can 
be modified and the changes should be reflected 
at runtime. An example of this kind of reflection 
is the Python feature of adding fields –
attributes– or methods to both objects and 
classes. 

• Computational (Behavioral) Reflection: The 
system semantics can be modified, changing the 
runtime behavior of the system. For instance, 
metaXa –formerly called MetaJava [Gol97]– is a 
Java extension that offers the programmer the 
ability to dynamically modify the method dis-
patching mechanism. The mechanism most 
commonly employed in this level of reflection is 
Meta-Object Protocols (MOPs) [Kic91]. 

As mentioned above, the runtime reflective features 
of Rotor are restricted to the introspection level. 
However, the .net platform offers the facility to dy-
namically generate CIL code at runtime in a limited 
way (it only permits to create new types, not adding 
new methods to the existing classes) by means of its 
System.Reflection.Emit namespace. 
Dynamic languages offer the structural level of re-
flection in their computational model. This level of 
reflection is the one employed by dynamic languages 
to develop adaptive software. Much research on 
MOPs has revealed that computational reflection 
suppose a huge performance penalty in comparison 
with the benefits it provides [Tan03]. At the same 
time, many behavioral features could be simulated 
with structural reflection (e.g., adapting method in-
vocation semantics could be substituted by a method 
wrapping service developed with structural reflec-
tion). 

Reflective Facilities 
We have extended the .net CLI with a set of struc-
tural reflective primitives extensively used in dy-
namic languages, at the abstract machine level. A 
new namespace has been added to the Base Class 
Library (BCL): System.Reflection.Structural. 
We will show in Section 5 which are its specific 
primitives, but its functionality can be grouped into: 

• Attributes manipulation. It can be modified not 
only the structure of a class (altering the struc-
ture of all of its instances), but the composition 
of a single object. Attributes may be added, de-
leted or replaced. 

• Methods manipulation. Methods of classes can 
be added and erased dynamically. Therefore, the 
set of messages accepted by an object could 
change at runtime depending on their dynamic 
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context. At the same time, a new method could 
be placed in a sole object. The body of these 
new methods can be obtained as copies of the 
existing ones, or it dynamically generated by 
means of the System.Reflection.Emit name-
space. 

The programmer could combine these facilities with 
the introspective services already offered by the .net 
platform, making the CLI an ideal system to develop 
language neutral adaptive software. 

Conceptual Problems 
There exist conceptual inconsistencies between the 
class-based object-oriented computational model and 
structural reflective facilities. These inconsistencies 
were detected and partially solved in the field of ob-
ject-oriented database management systems. In this 
area, objects are stored but their structure or even 
their types (classes) could be altered afterwards, as a 
result of software evolution [Ska87]. 

The first scenario of modifying class’s structure (at-
tributes) implies updating the composition of every 
object that is an instance of this class. This mecha-
nism was defined as schema evolution in the data-
base field. The modification of class’s instances 
could be performed when the class is modified (ea-
ger) or when the object is up to be used (lazy) 
[Tan89]; it is only necessary to know at runtime the 
class an object is instance of. The dynamic evolution 
of class’s methods and attributes can produce situa-
tions where code access to attributes or methods that 
do not exist in a specific execution point; these situa-
tions should be checked by a dynamic type checking 
mechanism, employing exception handling. 

Another possibility that a reflective model supports is 
much more difficult to be modeled in a class-based 
language. How can an object's structure be modified 
without altering the rest of its class's instances? This 
problem was detected in the development of MetaXa, 
a reflective Java platform implementation [Gol97]. 
The approach they chose was the same as the 

adopted by some object-oriented database manage-
ment systems: schema versioning [Rod95]. A new 
version of the class (called “shadow” class in 
MetaXa) is created when one of its instances is re-
flectively modified. This new class is the type of the 
recently customized object. 

This model causes different problems such as main-
taining the class data consistency, class identity, us-
ing class objects in the code, garbage collection, in-
heritance or memory consumption, involving a really 
complex implementation difficult to manage [Gol97]. 
One of the conclusions of their research was that the 
class-based object-oriented model does not fit well to 
structural reflective environments. They finally stated 
that the prototype-based model would express reflec-
tive features better than class-based ones [Gol97]. 

4. PROTYPE-BASED OO MODEL 
In the prototype-based object-oriented computational 
model the main abstraction is the object, suppressing 
the existence of classes [Bor86]. Although this com-
putational model is simpler than the one based on 
classes, there is no loss of expressiveness; i.e. any 
class-based program can be translated into the proto-
type-based model [Ung91]. A common translation 
from the class-based object-oriented model is by fol-
lowing the next scheme (Figure 1): 

• Similar object's behavior (methods of each class) 
can be represented by trait objects. Their only 
members are methods. Thus, their derived ob-
jects share the behavior they define. 

• Similar object's structure (attributes of each 
class) can be represented by prototype objects. 
This object has a set of initialized attributes that 
represent a common structure. 

• Copying prototype objects (constructor invoca-
tion) is the same as creating instances of a class. 
A new object with a specific structure and be-
havior is created. 

In class-based languages where classes are first class 
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Figure 1. Translation between the class and prototype based computational model. 
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objects (Java, Smalltalk or C#), classes are repre-
sented by objects at runtime (e.g., in the .net platform 
instances of System.Type are objects that represent 
classes or another type). This demonstrates that, be-
sides not existing loss of expressiveness, the transla-
tion of the model is intuitive and facilitates applica-
tion interoperability, no matter whether the pro-
gramming language uses classes or not. This is the 
reason why this model has been previously consid-
ered as a universal substrate for object-oriented lan-
guages [Wol96]. 

Finally, this object-oriented computational model 
does model structural reflective primitives in a con-
sistent way –structural reflective languages such as 
Moostrap [Mul93] or Self [Ung87] have employed 
this model in a successful way [Ort05]. The proto-
type-based object model overcomes the schema ver-
sioning problem stated in Section 3.2. Modifying the 
structure (attributes as well as methods) of a single 
object is performed directly, because any object 
maintains its own structure and even its specialized 
behavior. As shared behavior is placed in trait ob-
jects, its customization implies the adaptation of 
types (schema versioning).  
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Figure 2. Structural reflective modification of 

objects. 
Figure 2 shows an example scenario. The initial 
point and p2 objects are clones of the pointProto-
type and their shared behavior is placed in the Point 
trait object. A new coordinate attribute has been 
added only to the point object. Employing the same 
approach, only the p2 object is capable to rotate its 
coordinates. Finally, all the derived objects from the 
Point trait object will be able to use the new dis-
tance method. 

Adapting Rotor’s Computational Model 
We have seen how the prototype-based object-
oriented model is capable of modeling structural re-
flection in a coherent way. However, the .net plat-
form employs a class-based model all over the CLI. 
Moreover, if we want to interoperate with any exist-
ing .net language or application, we must follow the 
class-based model. Therefore, our approach consists 

on continue using classes but the reflective primitives 
will offer a semantic of a prototype-based object 
model: 

• As classes are first class objects in the .net plat-
form, their structure is customized by means 
their System.Type instances. Altering their 
methods produces adaptation of shared behavior 
as if we were modifying a trait object in the pro-
totype-based object model. In case we adapt at-
tributes of System.Type objects, what we obtain 
is the customization of all the existing instances 
of the class adapted (schema evolution). Look-
ing for a good runtime performance, we have 
developed a lazy schema evolution mechanism 
[Tan89]. 

• Objects are treated as prototypes. Although in 
the class-based object model it is not possible to 
add specific behavior to a single object, neither 
to modify its attributes without adjusting its class 
structure, we permit to apply these structural re-
flective services to a specific class instance. Em-
ploying this model, we can dynamically add or 
erase both methods and attributes to a specific 
object, overcoming the abovementioned schema 
versioning problem. Of course, any compiler of 
a statically type-checked .net language (e.g., C#) 
needs to be modified to make the most of these 
reflective features; dynamic languages will em-
ploy them directly. 

As an example, we show in Figure 3 a Python syn-
tactic approach of a program that uses this combina-
tion of the class-based and prototype-based object 
model, when employing the structural reflective 
primitives (last feature shown in the example code is 
not really supported by the Python programming 
language). 

We first create a Point class with its constructor and 
the move and draw methods. An instance is then cre-
ated (point) and a draw message passed. Then we 
modify the structure of a single object adding a new 
z attribute and its respective draw3D method. Finally, 
we add a new behavior to the Point class (the getX 
method) and a new isShowing field to every Point 
instance, obtaining the schema evolution mechanism 
previously described. 

5. EXTENDING THE BCL 
The structural reflective features mentioned above 
require the enhancement of the .net platform seman-
tics. We have first implemented all of them in a new 
namespace called System.Reflection.Structural. 
The primitives were initially developed in C#, mak-
ing extensive use of the .net’s introspection facilities. 
This first implementation has empirically demon-
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strated the viability of the proposed computational 
model, giving us a first assessment of performance.  

class Point:
"Constructor"
def __init__(self, x, y):

self.x=x
self.y=y

"Move Method"
def move(self, relx, rely):

self.x=self.x+relx
self.y=self.y+rely

"Draw Method"
def draw(self):

print "("+str(self.x)+
","+str(self.y)+")"

point=Point(1,2)
point.draw()   # (1,2)
# Modify attributes of a single object
point.z=3
print point.z # 3
# Modify methods of a single object
def draw3D(self):
print "("+str(self.x)+

","+str(self.y)+
","+str(self.z)+")"

point.draw3D=draw3D
point.draw3D() # (1,2,3)
# Modify methods of a class 
def getX(self):
return self.x

Point.getX=getX
print point.getX() # 1
# Modify attributes of 
# every Point instance
Point.isShowing=0

 
Figure 3. Example Python code using structural 

reflection services. 
This is a resume of the most significant elements we 
have added to the BCL (all of them, static methods of 
the Structural utility class): 

• addMethod and removeMethod methods receive 
an object or class (System.Type) as a first pa-
rameter indicating whether we want to modify a 
single object or a shared behavior. The second 
parameter is a MethodInfo object of the Sys-
tem.Reflection namespace. This object 
uniquely describes the identifier, parameters, re-
turn type, attributes and modifiers of a method. 
The user could create a new method employing 
the System.Reflection.Emit namespace, and 
add it to an object or class by means of its Meth-
odInfo. 

• The invoke primitive executes the method of an 
object or class specifying its name, return type 
and parameters. When the programmer uses the 

invoke method to pass a message to an object, it 
is checked if the object has a suitable method. In 
case it exists, it is executed; otherwise the mes-
sage is passed to its class (its trait object). A 
MissingMethodException is thrown if the mes-
sage has not been implemented. 

• The addField, getField and removeField 
methods are used to modify the runtime structure 
of single objects or their common schema 
(classes). If the first parameter is an object, the 
rest of instances of its class will not be modified. 
Adding a field to a class ensures that all of the 
existing instances contain the specified attribute; 
removing it guarantees that none have that at-
tribute. 

Employing these primitives, the code in Figure 4 
shows the C# version of the Python reflective pro-
gram of Figure 3. 
RuntimeStructuralFieldInfo rsfi = new Run-

timeStructuralFieldInfo("z", 
typeof(int),3, FieldAttributes.Public); 

Structural.addField(point,rsfi); 
// Draw3D is the MethodInfo a new method 
// created with System.Reflection.Emit 
Structural.addMethod(point,draw3D); 
Object[] pars={}; 
Structural.invoke(point,draw3D.ReturnType, 

"draw3D",pars); 
// getX is another MethodInfo object 
Structural.addMethod(typeof(Point),getX); 
Console.WriteLine(Structural.invoke( 

point,getX.ReturnType,"getX",params) ); 
rsfi = new RuntimeStructuralFieldInfo( 

"isShowing", typeof(bool),false, FieldAt-
tributes.Public); 

Structural.addField(typeof(Punto), rsfi); 

Figure 4. C# structural reflective program. 
We have implemented other useful primitives such as 
{field, method}Exists, getFieldValue, al-

ter{Method, Field} or getMethod, as well as addi-
tional classes such as RuntimeStructucturalField-
Info or {Member, Method, Field}Collection. Now 
that we have confirmed that this set of primitives are 
suitable to offer the adaptable computational model 
presented, we are implementing part of them as an 
enhancement of the semantics of specific CIL in-
structions. As an example, the invoke primitive 
should not be only part of the BCL interface; its se-
mantics must also be included in the call and call-
virt CIL statements. In order to achieve this func-
tionality we are also modifying the semantic analysis 
module of the SSCLI C# compiler –it should be al-
lowed to invoke non-existing methods at compile 
time. 

6. IMPLEMENTATION 
The complexity of Rotor implementation prevented 
us from directly implementing the operations inside 
the runtime environment. A set of steps were defined 
to gradually incorporate structural reflection in Ro-
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tor. Modifying different parts of the system one by 
one –from BCL to the binary code generated at run-
time– has allowed us to refine the model using the 
experience gained. 

We have divided the development process into three 
steps: 

• Step 1: BCL-level implementation. In this step 
we have implemented all the reflective primi-
tives in C#, making use of .net introspective ca-
pabilities. The runtime environment was not 
modified in this step. The programmer should 
use all the reflective features explicitly by means 
of the BCL. 

• Step 2: VM-level implementation. In this second 
step we have moved the implementation of the 
BCL primitives developed in the previous step 
to an equivalent C implementation, included into 
the execution environment. The BCL interface 
was not modified, but the implementation was 
included inside the virtual machine getting sig-
nificantly better runtime performance. We used 
Rotor internal structures, data types and routines 
to our advantage. 

• Step 3: JIT-level implementation. The final step 
in our development has been modifying the Ro-
tor JIT code generation mechanism. We have ex-
tended some CIL instruction semantics modify-
ing the code generated by the JIT, in order to 
support structural reflection of existing .net ap-
plications. 

The Step 1 implementation employs a central data 
structure that uses four C# hash-tables to store rela-
tionships between added members and their owners 
(either classes or instances). When accessing mem-
bers, these hash-tables are consulted first and, if the 
member has not been reflectively added, the rest of 
the process continues searching in the class hierarchy 
using introspection. If the top of the hierarchy is 
reached without finding the appropriate member, a 
MissingMemberException is thrown. This implemen-
tation is much easier than developing this code inside 
the runtime environment, but its execution perform-
ance is significantly slower. 

Once the first step was developed and tested, we pro-
ceeded to include the implementation of these reflec-
tive services inside the execution environment. The 
most important decision to be done was finding the 
suitable place to put the data structure that stored the 
reflective information. Since direct object structure 
manipulation turns to be much more difficult than we 
expected, due to its fixed-size object design, we de-
cided to use each object’s Syncblock to store reflec-
tive data. Thus, we assigned each object (and class) a 
specific structure to store its reflective information. 

Although the VM-level implementation improved 
runtime performance considerably, reflective behav-
ior must still be explicitly stated by the programmer. 
That is to say, it is not possible to reflectively adapt 
legacy .net binary code, because structural reflection 
must be explicitly used. We are currently working on 
overcoming this lack, implementing the third step of 
the development process. 

Project Status 
Structural reflective primitives are being included 
into the CIL instruction semantics (3rd step). We have 
already included the attribute-manipulation ones. The 
new semantics has already been added to the ldfld 
and stfld CIL statements of the platform. 

The main idea to achieve the new behavior is to 
modify the native code generated by the JIT com-
piler. Instead of the original code that uses statically 
calculated member offsets, we generate a call to a 
helper function. This function explores the object 
structure in order to calculate member addresses us-
ing the reflective data included in the object’s 
Syncblock. 

Finally, we are working on modifying the JIT com-
piler to support reflective manipulation of methods. 
Our planned implementation will generate code to a 
new helper function, which will return the method 
address (depending on the stored reflective informa-
tion), performing the invocation of the returned ad-
dress. 

7. PRIMARY PERFORMANCE AS-
SESSMENT 
The use of a JIT compiler in a reflectively adaptive 
environment could introduce performance benefits in 
comparison with existing interpreted-based imple-
mentations. We have measured the performance of 
our second step implementation in comparison with 
four well-know Python platforms. This assessment 
will give us an idea of the benefits that could be ob-
tained in the future. 

We have measured execution time of all the primi-
tives described above in loops of 10,000 iterations, 
removing any I/O and graphical routines [Bul00]. All 
tests were carried out on a lightly loaded 3.2 GHz 
iPIV hyper-threading system with 1 Gb of RAM run-
ning WindowsXP. 

The specific well-known Python implementations 
used in our tests were: 

• CPython 2.4 (commonly referred as simply Py-
thon): This is probably the most widely used Py-
thon interpreted implementation; it is called 
CPython because it has been developed in C. 
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• ActivePython 2.4.0. Another interpreted distri-
bution of Python (from ActiveState) available 
for Linux, Solaris and Windows. 

• Jython 2.1 (formerly called JPython): A 100% 
pure Java implementation of the Python pro-
gramming language. It is seamlessly integrated 
with the Java 2 Platform. 

• IronPython 0.6: is a new promising implementa-
tion of the Python language targeting the Com-
mon Language Runtime (CLR). It compiles py-
thon programs into CIL bytecodes that run on ei-
ther Microsoft's .net or the Open Source Mono 
platform. Its current release is a pre-alpha 0.6 
version.  
We have not used Zope’s Python for .net be-
cause it is not really the same approach as Jython 
in Java; it provides an implementation of the Py-
thon language and runtime engine in pure Java. 
Python for .net is not a re-implementation of Py-
thon, just an integration of the existing CPython 
runtime with .NET. Neither have we employed 
ActiveState Python for .net because they have 
quit this research project caused by the poor per-
formance results obtained [Ude03]. 

Table 1 shows the measurement of each primitive 
execution called 10,000 times, expressed in millisec-
onds. As we can appreciate in this table, Jython and 
IronPython obtain the worst performance results in 
all of the tests –IronPython do not implement dele-
tion of members, neither class manipulation. The 
requirement to implement Jython as a 100% pure 
Java offers a great interoperability with any Java 
program, but it causes a significant performance pen-
alty. The same happens to IronPython: generating 
CIL code that simulates the Python reflective model 

over a platform that does not support it produces low 
performance at runtime. Probably, this performance 
penalty is caused by the amount of extra code that 
must be generated to support the reflective model. 

Figure 5 and Table 1 show how our BCL implemen-
tation of structural reflective primitives is faster than 
the two systems that generate intermediate code: 
Jython and IronPython. Note than, since the range of 
values of Jython and IronPython are considerably 
different from the rest of implementations, we have 
separated both scales in Figure 5. Therefore, the val-
ues of these two implementations are shown on the 
right of the figure, whereas the rest appear on the 
left. Our BCL implementation is more than 30 times 
faster than Jython. 
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Figure 5. Execution time (milliseconds) of each 

primitive over different implementations. 

Primitive Jython IronPython BCL ActivePython CPython 
1. Add int attributes to an object 20,679 36,032 1,632 590 541
2. Add Object attributes to an object 20,290 32,013 1,762 611 580
3. Add int attributes to a class 20,063 440 551 591
4. Add Object attributes to a class 20,320 460 661 610
5. Delete int attributes from an object 18,406 971 561 591
6. Delete Object attributes from an object 19,028 961 611 601
7. Delete int attributes from a class 18,536 200 540 561
8. Delete Object attributes from a class 18,896 210 581 560
9. Access attributes from an object 18,607 23,000 530 521 530
10. Access non-existing attributes from an object 20,019 21,017 1,191 641 601
11. Access attributes from a class 18,577 150 511 481
12. Access non-existing attributes from a class 20,028 370 611 571
13. Add methods to an object 22,592 30,230 3,364 640 480
14. Add methods to a class 23,192 2,000 720 560
15. Invoke methods added to an object 20,624 24,010 3,564 760 600
16. Invoke non-existing methods to an object 25,276 25,567 1,840 720 804
17. Invoke methods added to a class 21,064 2,680 720 680
18. Delete methods added to an object 18,504 1,240 520 520
19. Delete methods added to a class 18,464 280 520 520

Table 1. Measurement of 10,000 calls to each reflective primitives. 
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Figure 5 also illustrates how our system performance 
is not as good as the native interpreter implementa-
tion (CPython and ActiveState). However, the BCL 
implementation is the fastest when modifying class’s 
structure. This is due to the laziness of the schema-
evolution mechanism we have implemented. 

Best results are obtained by the two platforms that 
interpret the Python code by means of a C implemen-
tation: ActiveState and CPython. Both obtain quite 
similar results, which are significantly better than the 
BCL version when using objects –the most typical 
scenario– but worse when employing classes. 

As we have mentioned above, we are currently in-
cluding the structural reflective primitives into the 
JIT compiler. Although the project is still in an im-
mature point to release definitive performance re-
sults, we have enough information to get a first inter-
esting estimation. Executing the same test suite with 
the new attribute semantics added to the SSCLI run-
time environment, employs the 15.76% average time 
in comparison with the BCL version (the new im-
plementation is 10.88 times better that the first one). 
Furthermore, the execution of JITted structural re-
flective primitives requires an average of 11.58 % 
time in comparison with the time required in CPy-
thon. Figure 5 shows these values graphically (JIT). 

Although we have not developed the addition and 
deletion of methods in objects and classes, these first 
results give us an initial estimation of how the use of 
a JIT compiler can be employed to obtain good per-
formance of runtime adaptive applications. Certainly, 
since we have only developed part of the reflective 
computational model of Python –e.g. we have not 
implemented the Python feature of modifying the 
class an object is instance of–, the results obtained 
could not be directly compared with execution per-
formance of complete implementations of the Python 
programming language. What our work has revealed 
is that JIT compilation techniques are really appro-
priate to improve the performance of adaptive sys-
tems and languages. The key point is to modify the 
semantics of the abstract machine instead of generat-
ing intermediate code that simulates this adaptive 
behavior. Adding this semantics at the JIT compiler 
level is complex task, but appears to be worth the 
effort. 

8. CONCLUSIONS 
Abstract machines have been widely employed to 
design programming languages because of the many 
advantages they offer. Although performance was 
the main drawback in the past, modern techniques 
like adaptive (hotspot) Just In Time compilation have 
overcome this weakness. That is one of the reasons 

why virtual machine platforms are nowadays com-
mercially used. 

Currently, due to the special flexibility and adap-
tively needs of specific systems, the so called “dy-
namic languages” are becoming more and more used. 
These languages also make use of the process of 
compilation to an abstract-machine’s intermediate 
code. However, due to the complexity of its flexible 
semantics, the virtual machine is commonly devel-
oped as an interpreter. 

Looking for better performance results, there have 
been different attempts to implement Python and 
other highly dynamic languages for.net and Java 
platforms. They have resulted in systems with really 
poor performance, so bad that they were considered 
unusable. Some of them have abandoned this idea. 
We have evaluated two, Jython and IronPython, in 
comparison with other two interpreted versions –
CPython and ActivePython. The interpreted versions 
were much faster than the JIT compiled ones, when 
measuring their reflective features. Despite these 
results, we think that the use of a JIT compiler in 
reflective adaptive environments could obtain better 
performance than interpreting the intermediate lan-
guage. Since Java and .net platforms have not been 
designed with that purpose, modifying the semantics 
of the abstract machine (and, therefore, the imple-
mentation of the virtual machine) might produce the 
expected benefits. 

In order to obtain a first performance assessment, we 
have developed a set of structural reflective primi-
tives as part of the BCL .net platform. These primi-
tives implement the semantics of the prototype-based 
object-oriented model over the SSCLI class-based 
platform. This first implementation obtains better 
performance results that generating CIL code, be-
cause implies quite less code to execute at runtime.  

Finally, we have performed an initial assessment of 
performance results obtained with the inclusion of 
part of the structural reflective primitives into the 
SSCLI runtime environment. This initial evaluation 
gives us an estimation of the performance benefits 
that will be obtained in the future, when the whole 
reflective semantics will be included in the code gen-
erated by the JIT compiler. Although we have only 
added part of the reflective features of the Python 
programming language, the assessment presented 
reveals that using an adaptive-designed platform in 
conjunction with a JIT compiler involves important 
performance benefits to implement dynamic lan-
guages. 
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ABSTRACT
The .NET Compact Framework is designed to be a high-
performance virtual machine for mobile and embedded de-
vices that operate on Windows CE (version 4.1 and later).
It achieves fast execution time by compiling methods dy-
namically instead of using interpretation. Once compiled,
these methods are stored in a portion of the heap called
code-cache and can be reused quickly to satisfy future method
calls. While code-cache provides a high-level of reusability,
it can also use a large amount of memory. As a result,
the Compact Framework provides a “code pitching” mech-
anism that can be used to discard the previously compiled
methods as needed.

In this paper, we study the effect of code pitching on the
overall performance and memory utilization of .NET ap-
plications. We conduct our experiments using Microsoft’s
Shared-Source Common Language Infrastructure (SSCLI).
We profile the access behavior of the compiled methods.
We also experiment with various code-cache configurations
to perform pitching. We find that programs can operate
efficiently with a small code-cache without incurring sub-
stantial recompilation and execution overheads.

Keywords: Just-in-time compilation, Java virtual ma-
chines, .NET CLR, code-cache management

1. INTRODUCTION
In both .NET and Java execution systems, Just-In-Time
(JIT) compilers have been used to speed up the execution
time by compiling methods into native code for the un-
derlying hardware [7, 14, 10]. JIT compilation has proved
to be much more efficient than interpretation especially in
execution intensive applications [6, 7, 14, 16]. In the Mi-
crosoft .NET Framework, a method is compiled prior to
its first use. Afterward, the compiled methods are stored
in the code-cache for future reuse [9]. This code-cache is
located in the heap region .

The size of code-cache can be increased or decreased de-
pending on the program’s behavior. For example, in the
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default configuration of the Shared-Source Common Lan-
guage Infrastructure (SSCLI ) or frequently referred to as
Rotor, the initial code-cache size is set to 64 MB. Once
the accumulation of compiled method reaches this size, the
system can choose to either increase the code-cache size
or keep the same size and free all the compiled methods
not currently in scope (referred to as pitching) [10]. There
are two possible overheads of the “code pitching” mecha-
nism [10, 9]— the overhead of traversing through all the
compiled methods and the overhead of recompiling meth-
ods after pitching. However, pitching provides a means
to maintain a small code-cache as memory is periodically
reclaimed.

Currently, code pitching is employed in the .NET Compact
Framework (CF), which is used to develop applications for
smart devices with limited memory resources [9]. Such de-
vices include smart phones, Pocket PC, and embedded sys-
tems running Windows CE. In these devices, a pitching
policy can play a very important role since it can deter-
mine the amount of memory footprint for the code-cache.
If pitching occurs infrequently, the code-cache would oc-
cupy a large amount of memory. If pitching occurs too
frequently, a large number of methods would have to be
recompiled. The goal of this paper is to take a preliminary
step to study the effect of pitching on the overall perfor-
mance and memory utilization of .NET applications. To
date, there have been a few projects that investigate the
recompiling decision and method unloading in Java [16,
15, 3]. However, they are implemented into a virtual ma-
chine that does not support pitching. With the SSCLI, we
have an opportunity to study the mechanism that has been
built by a major software maker as a standard feature. Our
work attempts to study two important research questions.
They are:

RQ1: What are the basic behaviors of the compiled meth-
ods?—We investigate the access behaviors, compila-
tion frequency, and commonly used metrics such as
size and the number of methods.

RQ2: Can we improve the overall performance and mem-
ory utilization by manipulating the code-cache config-
uration?—We experiment with multiple code-cache
sizes and investigate the impacts of utilizing different
cache size enlargement policies.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related background information. Sec-
tion 3 describes our challenges and research questions in
detail. It also describes the methodology and constraints
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used to perform the experiments. Section 4 discusses the
experiments and results conducted in regards to the re-
search questions. It also contains the detailed analysis of
our findings. Section 5 presents the future work. Section 7
discusses prior research work in this area. The last section
concludes this paper.

2. BACKGROUND
This section discusses background information related to
this work.

2.1 Shared-Source Common Language Infras-
tructure (SSCLI)

The main objective of the CLI is to allow programmers
to develop component-based applications where the com-
ponents can be constructed using multiple languages (e.g.
C#, C++, Python, etc.). ECMA-3351 (CLI) standard de-
scribes “a language-agnostic runtime engine that is capable
of converting lifeless blobs of metadata into self-assembling,
robust, and type-safe software systems” [10]. There are
several implementations of this standard that include Mi-
crosoft’s Common Language Runtime (CLR), Microsoft’s
Shared Source Common Language Infrastructure (SSCLI),
Microsoft’s .NET Compact Framework, Ximian’s Mono project,
and GNU’s dotnet project. For this research, we use the
SSCLI due to the availability of the source code. More-
over, it seems to be the most mature implementation when
compared to Mono or GNU’s DotNet projects.

SSCLI is a public implementation of ECMA-335 standard.
It is released under Microsoft’s shared source license. The
code base is very similar to the commercial CLR with a few
exceptions. First, the SSCLI does not support ADO.NET
and ASP.NET which are available in the commercial CLR.
ADO.NET is a database connectivity API and ASP.NET
is a web API that is used to create Web services. Second,
the SSCLI uses a different Just-In-Time (JIT ) compiler
from the CLR. The latter provides a more sophisticated
JIT compiler with the ability to pre-compile code. How-
ever, the commercial CLR does not support code pitching.
Notice that both implementations of the CLI adopt JIT
compilation and not interpretation mode as in some earlier
Java Virtual Machine implementations [11]. Third, it is de-
signed to provide maximum portability. Thus, a software
layer called Portable Adaptation Layer (PAL) is used to
provide Win32 API for the SSCLI. Currently, the SSCLI
has been successfully ported to Windows, FreeBSD, and
MacOS-X operating systems.

One of the major runtime components related to this work
is the Just-In-Time (JIT) compiler. It is used to compile
methods within components into the native code for the
underlying hardware [14]. JIT compiler also ensures that
every instruction conforms to the specification by ECMA
standard. Once compiled, these methods reside in the code-
cache which is located in the heap memory. Instead of
recompiling a method each time it is called, the native code
is retrieved from the code-cache [9]. When more memory is
needed by the system or when a long running application
is moved to the background, the methods in the code-cache
are“pitched” to free up memory [9, 10].

2.2 Code Pitching Mechanism
The execution engine initializes the code-cache by allocat-
ing 8KB. The reserve code-cache size is set to the target

1European Computer Manufacturers Association

code-cache size which is defined by a variable. By default,
this variable is set at 64MB by the SSCLI designers. As
program execution continues, additional heap space is al-
located to the code-cache in 8KB increments as needed to
store the compiled methods. The total size of the allo-
cated heap space is called the committed code-cache size.
As the committed code-cache size approaches the target
code-cache size, the allocator will decide whether to allo-
cate more heap space beyond the target cache size or pitch
all unused methods. The allocator will not consider code
pitching until the target code-cache size, maximum cache
size or pitch trigger is reached. The default target cache
size is 64 MB whereas the maximum cache size is 2GB.

Once the target code-cache size is reached, the allocator
chooses between increasing the cache size or pitching un-
used code. If the reserved size is less than the target code-
cache size or the existing pitch overhead is over the accept-
able maximum (default 5ms), the allocator will attempt to
increase the code-cache size. During this attempt, if the
total needed memory is greater than the reserved size, less
than the hard limit, not at the pitch trigger point, and
pitch overhead is too high, it will expand the committed
code-cache size and the reserved size. Otherwise, it will
pitch all unused code. If there is still insufficient memory
after pitching, the code-cache size and the reserved size will
be increased until enough memory is available. If at any
point during the execution, the number of compiled meth-
ods reach the pitch trigger, pitching occurs regardless of
other cache conditions.

Currently, code pitching is used in the .NET Compact
Framework which is built for embedded devices. Obviously,
it is very important to strike a good balance of memory us-
age and performance overhead since such devices have a
very limited amount of memory. In addition, the Compact
Framework is often used in Windows CE which has the
maximum virtual process space of only 32 MB. Thus, the
amount of code-cache has to be small enough to work in
this computing environment but yet big enough to provide
efficient compilation of methods.

2.3 The DNProfiler
Rotor comes packaged with a sample profiler called the
DNProfiler. The DNProfiler provides callbacks to the CLR
allowing a user to see what is going on without having
to hard-code debug statements into the source or develop
complicated hooks. The profiler provides callbacks for shut-
down and initialization, JIT events, garbage collection, thread-
ing, etc... All the user has to do is provide handler code
in the DNProfiler to process information during callback
events. Once the DNProfiler is coded and compiled, the
user has to activate it by turning profiling on and setting
the profiling mask to what they want to monitor.

To gather data, the DNProfiler was modified to handle the
JIT events. Specifically, the beginning and end of method
compilation was monitored along with program initializa-
tion and shutdown and pitch events. A high performance
counter was used to provide the most accurate time results
possible.

The DNProfiler by itself cannot provide enough informa-
tion to conduct our work. In order to track code-cache
usage, we also modify the JIT compiler in the section of
code that is responsible for allocating space for compiled
code, garbage collection of unused methods, and maintain-
ing the data structures representing the code-cache.
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3. EMPIRICAL STUDY
As stated earlier, the behavior of compiled methods in
.NET framework has yet to be studied. In order to de-
sign an efficient pitching policy, a thorough understanding
of the behavior is needed. The current lack of this knowl-
edge has led us to the first research question.

RQ1: What are the basic behaviors of compiled

methods?

If a large number of methods is frequently used, then it may
not be suitable to pitch the code-cache frequently. Our
contribution is to profile the access behavior of compiled
method so that an efficient pitching decision can be made.
We conjecture that a significant performance gain or reduc-
tion in memory usage can be obtained by utilizing different
pitching policies. Thus, our second research question is:

RQ2: Can we improve the overall performance and

memory utilization by manipulating the code-

cache configuration?

In the default configuration of the SSCLI, the policy is to
perform pitching as the last resort. This may not be the
most optimal approach especially in the Compact Frame-
work where the amount of memory available on a system
may be limited. Our contribution is to identify a cache
size and suggest pitching policies that would result in small
cache footprint and minimal compilation overhead.

3.1 Variables and Measures
The JIT compiler relies on several variables to control cache
size and pitching. These variables are used to control the
compiler when to pitch, maximum and minimum cache size,
and cache growth characteristics. As will be described in
the next subsection, we utilize existing experimental ob-
jects written in C# to perform our experiment.

Throughout the experiment, we monitor the following vari-
ables. They provided useful insight into the operation of
the JIT compiler, specifically, its caching mechanism.

• Number of Pitch Events
When the compiler removes compiled code from the
cache it is called a pitch event. Pitching will preserve
methods that are currently in use, but will remove
the rest.

• Number of Recompilations
After a method has been pitched, each time it has
to be complied again is called a recompilation. A
method could be pitched and recompiled multiple times.

• Number of Different Methods
This is the number of unique methods compiled. The
number of unique methods does not include recom-
pilations and does not consider whether the method
has been pitched or not.

• Committed Code-Cache Size
The amount of heap space requested from the system
to store code is called the committed code-cache size.
The compiler asks for heap in increments of 8k.

• Code-Cache Usage
Code-Cache usage is the actual amount of memory
used to store compiled methods at a given time.

To address RQ1, we monitor the basic behavior of compiled
methods. Our goal is to derive at two important perfor-
mance metrics based on the results of variables above:

1. compilation frequency—we monitor how often meth-
ods are compiled and recompiled.

2. concentration of compiled methods—we monitor which
part in the execution methods are compiled the most.

We also observe the average size of compiled method and
compared them to the sizes of typical objects. In order
to do our experiments, we need to create an environment
where the amount of memory is similar to a typical Java
embedded device. To do so, we set the initial code-cache
size to 256KB. However, we would allow the SSCLI to en-
large the code-cache as necessary.

To address RQ2, we go a step further and prevent the SS-
CLI from enlarging the code-cache. The goal of our experi-
ment is to observe the behavior of compiled methods under
hard-limit and explore different code-cache configurations
to improve the overall performance. We also compare the
execution time among different configurations that result
in different number of pitch events.

3.2 Experimental Objects
To address our research questions, we need a set of pro-
grams that compiled a large number of methods. In addi-
tion, we must be able to manipulate the way these programs
are operated. As of now, there are very few benchmark pro-
grams available for the .NET platform. We have gathered
3 different programs that compiled a reasonable amount
of methods (over 1000). We also want to observe how the
code-cache would perform during the execution of smaller
applications. Therefore, we also experiment with using the
classic HelloWorld and Adaptive Huffman Compression to
get some insights on how many methods are needed to exe-
cute such as simple programs. To our surprise, HelloWorld
still requires over 300 compiled methods. This section de-
scribes the experimental objects:

• LCSC
This benchmark is based on the front end of a C#
compiler. The program parses a given C# input file
with a generalized LR algorithm. The benchmark is
available from Microsoft’s research web site [8], along
with the inputs that were used in performing the anal-
ysis.

• AHC
This program uses an adaptive Huffman compression
algorithm to process files. For this program there
were three separate inputs for use as test cases. This
benchmark is also available from Microsoft’s research
web site [8].

• Hello World
This is the classic ”Hello World” program written in
C#. It simply prints ”Hello World” to the console
and exits. Using such a simple program provided in-
sight into how many methods were needed just to
start and stop program execution. The specific file
used is available in the sscli/samples/hello directory.

• CodeToHTML
CodeToHTML is an example program found in the ss-
cli/samples/utilities/codetohtml directory. This pro-
gram parses a given C# or Jscript file and converts
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Application Minimum (bytes) Maximum (bytes) Average (bytes) Standard Deviation Number of Methods
LCSC 52 27024 1044.93 2587.04 1351
AHC 52 6320 317.04 474.21 514

Hello World 52 6320 299.95 472.37 327
CLisp 52 44008 425.66 1424.96 1168

CodeToHTML 52 44008 460.67 1543.39 1665

Table 1: Basic characteristic of the compiled methods in our benchmarks

% of space needed in the code-cache
Application 15% 30% 45% 60% 75%

LCSC 0.65% 1.08% 1.41% 1.77% 2.16%
AHC 0.03% 0.05% 0.07% 99.95% 99.96%

Hello World 19.81% 35.54% 49.28% 55.03% 79.38%
CLisp 6.27% 11.58% 16.66% 40.12% 94.85%

CodeToHTML 0.08% 0.18% 0.24% 0.28% 0.33%

Table 2: Code-cache usage based on percentage of execution

it to an HTML file. The generated HTML file dis-
plays formatted C# in a clearly organized manner.
The test cases used were the C# files from the LCSC
benchmark and are available for download from the
Microsoft web site.

• CLisp Compiler
This is a small compiler that converts a Lisp source
file to an executable. The compiler was used to com-
pile two sample source files, a Fibonacci series genera-
tor and a numerical sorting algorithm. This compiler
is found in the sscli/compilers/clisp directory.

4. RESULTS
In the following subsections, we present the results of our
experiments that answer two research questions proposed
in Section 3.

4.1 RQ1: Access Behavior
In this section, we discuss the basic behavior of these com-
piled methods. The issues that will be discussed in this
section include the number of compiled methods in each
application, the number of methods that are recompiled,
and the size of the compiled methods. Table 1 depicts the
size information of compiled methods in our benchmark
programs.
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Figure 1: Distribution of compiled methods based
on the number of compilations

It is worth noticing that typical objects in Object-Oriented
Languages such as Java and C# only have the average
object size of less than 100 bytes [4, 13]. However, the
average size of the compiled methods in each application
range from 300 bytes to 1000 bytes. It is also worth noting
that the smallest size for a compiled method is 52 bytes.
This is true across all applications. For the largest size,
a method can be as large as 44K bytes. Since the SSCLI
commits memory in increments of 8K bytes, five requests to
increment must be made just to hold the largest compiled
method in our applications. If no pitching is used, 1.5 MB
of memory is needed to stored the compiled methods in
LCSC (LCSC needs the largest amount of memory at 1.4
MB).

It is also worth noticing that even small applications such
as HelloWorld, a significant number of methods is still
needed to complete the execution (i.e. 327 methods in
this case). However, we also find that complex applica-
tions such as compilers or HTML generator only require
about 1500 methods. We suspect that both compilers and
HTML generator perform repetitive routines, many of the
methods can be reused over the length of execution.

In our experiment, we first study the code-cache usage of
every application. We set the cache size to be large enough
so that pitching does not occur. With the proposed set
of benchmarks, the size is set to 2 MB. We then monitor
the percentage of execution and the percentage of the con-
sumption of the code-cache. For example, LCSC requires
1.4 MB of space to store all compiled methods. When the
program consumes 15% of all the needed cache space or
212 KB, we observe the percentage of execution. In this
case, the program has only completed 0.65% of the total
execution time (see Table 2). It is worth noting that in
three out of five applications, about 50% of all the space
needed for the code-cache are consumed with in the first
few percents of execution.

We also monitor the distribution of methods based on the
number of compilations. We set the code-cache size to
256KB to emulate embedded devices environment and in-
duce some pitch events. We find that in two applica-
tions AHC and HelloWorld, all methods are compiled only
once. However, in larger applications, such as compilers
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and HTML converter, about 40% of methods are compiled
multiple times. Notice that CLisp and CodeToHTML re-
quire at most 3 and 4 compilations, respectively. How-
ever, LCSC requires methods to be compiled as many as
8 times. As stated earlier, most of these applications ex-
ecute repetitive tasks. Thus, many compiled methods are
reused. If pitch events are forced to occur more often, these
programs may need to have methods recompiled more fre-
quently. Figure 1 illustrates our findings.
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Figure 2: Distribution of recompiled methods over
the execution time

In terms of access behavior, we find that in all applica-
tions, methods are heavily accessed within the first 6% of
execution time. Then they are accessed moderately from
6% to about 30% of execution time. Afterward, they are
infrequently accessed. To investigate the number of recom-
piled methods, we set the code-cache size to 256KB to force
pitching. We find that about 70% of recompilation occur
during the first 6% of execution time (depicted in Figure
2) in all benchmark programs that perform recompilation
(excluding AHC and HelloWorld). The remaining 30% of
compilation occur during the remaining 94% of execution
time. Thus, many of these methods are short-lived but
during their lifetimes seem to have many accesses. This
is similar to typical objects where the majority are short-
lived [5, 12]. This behavior may provide an opportunity
for optimization by dynamically adjusting the heap size as
needed. For example, the heap size can initially be set to
be larger and then reduced after the first 6% of execution.
We are currently experimenting with this approach and will
report the result in the subsequent publication.

In summary, we find that compiled methods have the fol-
lowing behavior:

• The average size of a method is much larger than the
average size of a typical object.

• Even the simplest applications still require at least
300 methods to execute.

• In larger programs, a large number of methods is
reused. This conclusion is based on the fact that large
programs recompile a large amount of methods when
the cache size is small and pitching occurs frequently.

• The reuse often occurs toward the beginning of the
program execution.

4.2 RQ2: Optimizing Code-Cache Configu-
ration and Pitching Policy

In this section, we will apply different pitching policies to
LCSC and monitor the differences in the runtime behavior.
We choose LCSC because it accesses a large number of
methods and requires the largest number of pitch events.
In the SSCLI, there are two ways to set the size of the code-
cache. The first method (shall be referred to as Approach
1 ) is to set the initial code-cache to a certain size (e.g.
256KB). This however, is not the highest possible value.
When the amount of compiled methods reach 256KB for
the first time, the system will pitch all methods that are
not in scope but it will also consider whether to increase
the cache size. Thus, if the cache size is doubled, the next
pitch event will occur when the accumulation of methods
in the code-cache approaches 512KB. Figure 3 depicts the
pitch events using Approach 1. The initial code-cache is
set to 256KB.
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Figure 3: Monitoring pitch events using Approach
1
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Figure 4: Ratios between new methods and recom-
piled methods based on pitch events

Figure 3 illustrates the basic behavior of code-cache expan-
sion in Approach 1. The diamonds in the figure represent
the all the pitch events that occur in the system. In this ex-
ample, we have 6 pitch events throughout the execution of
LCSC. Table 3 depicts the number of pitch events in all ap-
plications with different target cache sizes (256KB, 512KB,
1MB, and 2MB). It is worth noting that the benefit gained
through this approach is in the reduction of the number of
pitch events during the initial execution period. For exam-
ple, by increasing the initial cache size from 256 KB to 512
KB, the number of pitch events decrease by two in LCSC.
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These two events occur during the first five percent of the
execution.

Figure 4 depicts the number of methods that are recom-
piled by applying Approach 1 in which the cache size can
be increased as needed. Notice that there are more meth-
ods rejitted after the later pitch events (4 to 6). This is
corresponding to Table 2 as methods are compiled during
the early part of the execution. As we continue to pitch
late into the execution, the methods that were compiled
and have recently been pitched are still being accessed and
must be recompiled.

It is worth noting that the initial target size can greatly
affect the number of pitch events in the system. This is
because the first pitch event will take longer to occur with
larger cache size. As shown in Figure 2, a majority of re-
peated invocations occurs within the first 10% of execution.
Thus, a larger initial heap size be advantageous by facili-
tating more reuse at the beginning.

Figure 4 initially appears to be contradicting Figure 2 as
the amount of recompiled (reJITed) methods do not be-
come significant until the fourth pitch event. However, we
find that 4 out of 6 pitch events occur in the first 3% of
execution. The fifth event occurs around the 33rd percent
and the last event occur at the 80th percent. Thus, most
of the recompilation events occur during the initialization
of the system.

The second method (shall be referred to as Approach 2 )
is to set the initial code-cache size to be the limit. Notice
that the limit must be big enough to contain the initial
method working set that can initialize the application. If
the cache size is too small to contain all methods during
initialization, the program may crash. Table 4 provides the
information about the pitch events and the total execution
time in LCSC when the Approach 2 is applied. Again,
we monitor the number of pitch events with respect to the
different cache sizes.

Notice that excessive pitching (as in the cases of 256K and
512K cache size using Approach 2) can result in significant
runtime overheads (864 seconds with 6700 pitch events ver-
sus 66 seconds with no pitching). We also find that a small
amount of pitching does not significantly affect the overall
performance; however, it can lead to a very significant re-
duction in memory usage. For example, if the cache size
is set to 2MB, there is no pitching in the system. The ex-
ecution time of this scenario is about 67 seconds. On the
other hand, if we set the heap size to 1MB (50% saving in
memory usage), there are 4 - 5 pitch events (depending on
whether Approach 1 or 2 is used), but the execution times
only increase by about 1 second or 1.5%. Thus, in the mem-
ory constrained systems pitching can be used to reduce the
memory footprint without incurring a substantial amount
of overhead.

Figure 5 depicts the usage of code-cache as LCSC is exe-
cuted. The x-axis represents the percentage of execution
completion and the y-axis represents the amount of mem-
ory in the code-cache used by the program. It is worth
noting that with 256KB initial heap size using Approach
1, the size of the code-cache increases to 1024KB within the
first 3% of execution. However, it will take another 30% of
execution to accumulate the compiled methods that would
result in another pitching. In this situation, it may not be
necessary to increase the cache size from 768K to 1024K.
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Figure 5: Code cache usage (256KB)

In addition, after the pitch event at the 33rd percent of the
execution time, the next pitch events does not occur until
the 81st percent. One possible improvement to the pitch-
ing policy is to reduce the cache size after the programs
are fully initialized. This may result in a few more pitch
events but a significant reduction in memory usage can also
be obtained.
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Figure 6: Code cache usage (1024KB)

Figure 6 depicts the usage of code-cache for LCSC with
1024KB cache size applying approach 2. It is worth noting
that there are no pitch events at all until after 2.25% of
execution. The figure also shows that after the first pitch
event, there are only two more pitch events at the 33rd and
81st percents. As a reminder, this is similar to the number
of pitch events in Figure 5 after 4% of the program have
been executed. Thus, a larger cache size clearly reduces
the number of pitching activities during the initial state of
execution.

In summary, we conclude that the following policies can be
used to improve the pitching performance.

• Moderate pitching activities have very little effect on
the overall performance of the system. However, ex-
cessive pitching can incur a large amount of over-
heads. Thus, the policy should favor reducing mem-
ory usage over a moderate increase in pitching activ-
ities.

• Larger initial cache size can significantly reduce the
number of pitch events during the program initializa-
tion. Thus, the policy should allocate a large enough
cache at the beginning.

• Once stabilized, the system compiled fewer methods
which means that we can potentially reduce the cache
size at the expense of more pitching activities. How-
ever, the number of pitch events should be moderate
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Applications 256k 512k 1024k 2048k 4096k 8192k 16384k 65536k
LCSC 6 4 3 0 0 0 0 0
AHC 0 0 0 0 0 0 0 0

CodeToHTML 3 2 0 0 0 0 0 0
Hello World 0 0 0 0 0 0 0 0

CLisp 2 1 0 0 0 0 0 0

Table 3: The number of pitch events with different code-cache sizes

Cache Approach 2 Approach 1
Size Execution Time (sec) Pitches Execution Time (sec) Pitches
256k 864.32 6774 68.81 6
512k 412.17 1470 68.64 5
1024k 69.45 5 69.44 3
2048k 66.88 0 68.38 0
4096k 66.78 0 68.16 0
8192k 67.52 0 68.38 0
16384 67.59 0 67.98 0
65536 67.58 0 68.19 0

Table 4: The number of pitch events and execution times with Approach 2

and not result in a substantial run-time overhead.
Thus, the policy should include reducing the cache
size after the initialization phase.

5. FUTURE WORK
Better benchmarks are needed that utilize more methods
that force the execution engine to pitch more frequently
especially for larger cache sizes. Ideally, pitching should
occur with heap sizes that are close to the default target
size. In addition, the benchmarks used in this experiment
do not demonstrate the diversity of applications the typ-
ical end user runs. More practical benchmarks are defi-
nitely needed to better simulate a real world system. On
the other hand, some of the chosen experimental objects
compile reasonable amounts of methods.

With that said, many of our results derive from experiment-
ing with these few benchmark programs. Thus, our con-
clusions or suggestions should not be viewed as generalized
ones. Instead, they should be viewed as potential solutions
to improve the performance of the code-pitching mecha-
nism in the SSCLI and .NET Compact Framework. Ob-
viously, experiments with more benchmark programs are
needed.

Future work will be focused on two primary goals. The
first goal is to develop better benchmarks in order to bet-
ter simulate real world uses of the SSCLI. These bench-
marks should focus on what a more average user would be
expected to run. New benchmarks should have network-
ing and other communication methods that are inherent to
their proper execution.

The second major goal is to develop a better code pitching
mechanism that selectively removes code from the cache,
as opposed to the all or nothing approach taken in the
current Rotor implementation. This improved collection
mechanism will likely correlate method usage and size to
enable the pitching mechanism to make a better decision
as to its usefulness in the future. In addition, the current
Rotor implementation does not decrease the size once the

code-cache has been expanded. We plan to investigate the
performance gain of decreasing the cache size after the ini-
tial phase of execution.

6. RELATED WORK
In [2], multi-level recompilation technique was introduced
as part of the Jalap̃eno Virtual Machine. The basic idea
is to use non-optimized compiler to compile a method the
first time it is called. During the execution, the virtual ma-
chine would keep track of all the ”hot” methods (frequently
accesses) and recompile them with higher optimization lev-
els.

Currently, the code pitching mechanism in .NET compact
framework as well as the SSCLI discards all compiled meth-
ods that are not in scope. The code-cache itself is sepa-
rately compartmentalized from the main heap memory re-
gion. This is different than work conducted by Zhang [16,
15]. In their work, the IBM’s Research Virtual Machine
(RVM) [1] was modified to incorporate code pitching. Un-
like the .NET CF and the SSCLI, the RVM intermixed
objects with compiled methods and therefore, the regu-
lar garbage collector is used to unload compiled methods.
Their framework attempted to adaptively balance the com-
pilation overhead and memory usage in the environment
where objects and compiled code are stored together. Their
main strategy is to identify what to unload and when to un-
load compiled methods. They reported that their strategy
can reduce the code size by 43% without incurring sub-
stantial overhead in memory unconstrained system. If the
memory is constrained, they can reduce the code size by as
much as 61%. They also claimed that a significant reduc-
tion in execution time (22%) can be obtained due to less
time spent in garbage collection.

It is worth noticing that they reported in their earlier work
that native IA32 code tends to be 6 to 8 times larger than
the bytecode written in Java. They also reported that on
average 61% of compiled methods are no longer accessed
after the first 10% of execution [16].
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7. CONCLUSIONS
We have performed experiments to demonstrate the effects
of code-pitching on the overall performance of .NET ap-
plications. We find that the compiled methods have the
following properties. First, they are much larger than typ-
ical objects with averages ranging from 300 bytes to 1000
bytes. Second, a large number of methods are repeatedly
accessed. Third, these accesses often occur within the first
6% of execution time. Fourth, methods are compiled pro-
lifically. Even the simplest programs such as HelloWorld
still require as many as 300 methods to execute.

Based on the above finding, we conduct multiple experi-
ments using different code-cache configurations. First, we
set the initial cache size to different values ranging from
256KB to 64MB. We allow the system to expand the cache
as needed. By setting a larger initial cache size (e.g. 512KB
versus 256KB), we can reduce the number of pitch events by
33% (from 6 events to 4 events). Having a large initial cache
size can be advantageous since most of the method reuse oc-
cur within the first few percents of execution. Larger cache
size may defer pitching and promote more reuse. Second,
we also find that excessive pitching can cause significant
overhead. However, a moderate amount of pitching barely
incur overhead. In our experiment we find that when the
cache size is set at 2MB, no pitching occur. However, if
we reduce the cache size by half, 4 to 5 pitch events would
occur but the overall execution time only increase by 1.5%.
Thus, we conclude that a well designed pitching policy can
greatly reduce the amount of code-cache footprint without
incurring substantial overheads. In addition, a policy to
reduce the code-cache size after the initial state can also
be employed to further reduce the code-cache footprint.
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ABSTRACT 
Most object-oriented platforms support run-time type information to provide access to class members like fields 
and methods. These solutions are often based on strings, textual names of types and members. Such approach 
makes the systems very fragile and sensitive to modification of names and to other changes. This paper illustrates 
an elegant and highly efficient solution for this problem which is also type-safe thanks to compile-time type 
checking. The introduced new language construct supports access to class members through multiple 
parameterized one-to-many associations. It can also be used in many languages and platforms which makes it an 
ideal candidate to be used in real world systems.   

Keywords 
Programming Tools and Languages, reflection, association, data binding, C#. 

1. INTRODUCTION 
Today’s most wide-spread and most heavily used 
programming paradigm is object-oriented paradigm 
with imperative languages, like C++, Java or C# [8, 
9, 10]. While the core concepts are quite solid, there 
are numerous possible ways to improve the quality of 
software. There are several current techniques to 
customize this approach. In C++ language, 
environment macros and templates [12] are heavily 
used constructs. Java and .NET are introducing 
generics [11, 18, 1, 16, 14, 7] (a kind of template 
implementation for parameterized types) and we are 
well aware of Design by Contract [4], as well as 
aspect-oriented approach and other extremely useful 
concepts. Many of these, although still under 
research, are leaking into the world of applied 
software technology [19].  
One of the main goals of these enhancements is to 

make the language and environment more type-safe 
which would result in more stable applications with 
less run-time errors. 
This paper introduces an elegant and efficient way to 
use typed reflection and so type-safe data binding. 
The next two sections introduce reflection and data-
binding. After getting familiar with the problem, a 
new language construct called navigation expression 
is introduced. Its features are discussed in detail, 
including multiple associations. The next section 
compares navigation expressions with a similar 
concept of delegates. Finally, an implementation plan 
is suggested and a formal definition of C# language 
changes is also proposed in the appendix. 

2. RELATED WORK 
There are reflection scenarios where programs use 
strings to identify type members like methods and 
fields. In some cases a more type-safe method can be 
used. One of these is data binding on the CLI 
platform. 

Reflection: Accessing Type Information 
at Run-time 
Reflection mechanism provides objects that 
encapsulate modules, types, methods, fields, etc [6]. 
With these constructs a program can examine the 
structure of types, create instance of types, and 
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invoke methods, access fields and properties. Similar 
language and virtual machine support exists in the 
Java platform [5] (reflection API); it is called  RTTI 
(Run-Time Type Information) in C++ [12]. 
According to the current C++ Standard [12], RTTI 
has far less features than the Java or .NET 
implementations: only type names, type equality and 
inheritance hierarchy can be determined at run-time, 
but no method list, method invocation, object 
creation, field access, etc. are allowed. But there are 
some currently researched theories and proof-of-
concept implementations of a full-fledged reflection 
mechanism API in C++ [20, 21]. 
These solutions are based on string literals to refer to 
member variables or methods. This highly flexible 
approach is necessary but makes the systems very 
fragile and sensitive to modification of names. 
This paper illustrates an extension to the current 
reflection models which could be very useful in 
certain scenarios. We are using the "data binding" 
scenario throughout this paper to analyze the problem 
and the way the new language construct solves it. 

Introduction to Data Binding 
Consider the following example: we have a generic 
component that displays data, and a program that uses 
this component. The configuration of the component 
determines which data is to be displayed; it also 
defines its format. The data to be displayed is called 
data source and is provided by the application. After 
configuring the component and binding it to a data 
source the application uses it to show the data to the 
user. 
This concept is called data binding in .NET and it is 
very flexible and frequently used. Here is an 
example: 

public class DataVisualizer { 
public object DataSource; 
public string DataMember; 
public void Render() { 

Console.WriteLine( DataSource.GetType(). 
GetField( DataMember ).GetValue( DataSource ) ); 

} }
public class Person { public string Name; }

public class MyApp { 
public static void Main() { 

DataVisualizer vis = new DataVisualizer(); 
Person p = new Person(); 
p.Name = “Stephen Albert”; 
vis.DataSource = p; 
vis.DataMember = “Name”; 
vis.Render(); 

} }

Figure 1 
The Render method uses reflection to extract data 
from the data source object (an instance of the Person 

class) which is based on DataMember holding a 
textual reference to the Name field of the Person 
class. 
Although it may not be a good idea to use strings to 
identify members, there are many examples where 
this flexibility is quite useful. Reflection is often used 
by generic frameworks and algorithms where type 
information is not known or cannot be expressed at 
compile-time. The most well-known platform feature 
which uses reflection is serialization [6, 17]. During 
this process an entire graph of objects is written to a 
stream or created from a stream. Other typical 
frameworks using this technology are object 
persistency layers (both in J2EE and .NET [7, 13, 2]), 
workflow engines, data access layers or data binding 
components. This paper uses the data binding as an 
illustration but the idea can be used in many other 
frameworks as well. The samples are in C# on the 
.NET platform but the main concept can be easily 
transferred to another language or platform.  

Open Problems 
The problem with string based member access is 
twofold. Since it uses strings, it is very easy to make a 
typographic error (1), which is mostly discovered 
only at run-time when Render() method is called (2). 
The reason for the errors also seems to be twofold. 
Firstly, the programmer could misspell the string and 
give a wrong identifier, hence the reflection 
mechanism cannot find the appropriate member by 
name. This causes a run-time error.
Secondly, there can be a type mismatch between 
DataSource and DataMember: the first one is the 
object which is being read, the second one is the 
expression which refers to a member. If the 
DataSource is an object without a "Name" field, it 
also causes a run-time error. This paper addresses 
both issues. 
With a suitable language construct the programmer 
can get a compile-time error which is preferred to 
run-time error [15, 22].  

1. NAVIGATION EXPRESSIONS 
The main purpose of DataMember is to traverse the 
object hierarchy graph along associations and to 
provide access to member variables (which can be 
fields or properties). DataSource is the root of the 
object graph. The example in Figure 1 shows only 
one hop, but certainly it can take more hops to get to 
the target member. A new language construct called 
navigation is defined in the next sample as follows 
(Figure 2): 

public sealed class DataVisualizer { 
public Navigation DataSource; 
public void Render() { 
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Console.WriteLine(  DataSource.ToString() ); } } 
public class MyApp {  public static void Main() { 

DataVisualizer vis = new DataVisualizer(); 
Person p = new Person(); 
p.Name = “Steve Albert”; 
vis.DataSource = new Navigation( p.Name ); 
vis.Render(); } } 

Figure 2 
Navigation construct aggregates data source and data 
member in one object and provides a run-time 
evaluation of the expression with type safety. 
Navigation instance has a strict root type at which the 
traversal begins – in this case class Person. It contains 
a dot-separated list of association names – type 
members. The object graph is traversed through these 
associations. 
The navigation expression can be not only in the right 
side of an equation, but in left side as well – it can be 
an lvalue – which makes it possible to use bi-
directional data binding. In this case the expression is 
used to set field and property values. 

Fields, Properties, Indexers 
A referenced type member can be a field, a property 
or an indexer. Properties are named groups of 
accessor method definitions that implement the 
named property [6,23]. Indexers are parameterized 
properties. The properties enable field-like access, 
whereas indexers enable array-like access [3]. 

Multiple Associations 
In many cases an association refers to multiple 
objects and navigation expression must support it. To 
be able to navigate through one-to-many associations, 
parameters should be passed to the navigation object 
at all those points where collections of objects are 
referenced. 
A one-to-many association must be an array or an 
indexer (parameterized property), a technique widely 
used in the CLI platform [6].  
Each association may have zero or more parameters, 
depending on its type. Field and property accessors 
have no parameter at all, arrays have as many signed 
integer parameters as the rank of the array, and also 
indexers can have any number of parameters of any 
type. 
The parameter list of the navigation expression is the 
concatenation of those parameters and can be derived 
by examining a particular navigation expression and 
the referenced members. Since indexers can be 
overloaded with different parameter lists [6, 23], one 
expression can actually refer to more than one 
parameter list. Expressions must also contain named 
parameters with types for unambiguous member 
traversal. 

A short sample for using navigations with one-to-
many associations (Figure 3): 

... string [] myStrings = new string [] { “a”, “ab”, “abc” }; 
NavigationArray nav1 = new NavigationArray( 

myStrings[int].Length); 
for( int i = 0; i < myStrings.Length; i++ ) 
Console.WriteLine(myStrings[i]+’:’+nav1[i].ToString()); 

Figure 3 
In the above sample (Figure 3) a navigation object is 
constructed with a string array being the root object. 
This refers to multiple strings and, for usability, an 
additional parameter should be supplied to choose 
from the collection of referenced strings. In this 
particular case only one parameter is 
necessary: a signed integer. In a more complex case 
more parameters could be used. 

Cast operators 
This version of navigation construct does not support 
casting members. This will be discussed in a separate 
paper. Navigation expression must be in pure format 
of member names separated by dots, with optional 
parameter lists like in Figure 4.  

// compiles, no parameters 
root.Member1.Member2 
// compiles, with parameters 
list[int].Column[string, State].Member 
// does not compile with cast operator 
((DataColumn) root.Member1).Member2 

Figure 4 

Root object ambiguity 
The root of navigation expressions could be 
ambiguous for object member access. Examining the 
first code expression in Figure 4, the root object (the 
root of the path) could be a reference to “root” or 
“root.Member1” (both are references). To avoid this 
situation, navigation expressions always use the first 
object reference as root reference. 
These syntax rules ensure that navigation is not an 
expression evaluated at run-time but rather a compile-
time appearance of the object hierarchy path.  

2. NAVIGATION TYPE DEFINERS 
Reflection is most often used when type information 
of parameters and objects is not known at compile-
time but can be acquired at run-time. In this way the 
component and the application development can be 
totally separated, which is crucial for generic 
frameworks and scenarios like data binding. 
Although strict type information is not known, the 
way an object is handled is very often hardcoded in 
the component.  
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For example a component that displays matrix data 
uses data source as a two-dimensional array. A 
component which displays a table uses data source as 
a list and each column refers to a specific data 
member. In these scenarios the data source must 
satisfy the demands of the component, preferably 
checked at compile-time. 
To support this requirement, navigation expressions 
are strictly typed. 
The component that uses the navigation as a data 
source determines the parameters and also the return 
type of the expression. The type declarations for 
Navigation and NavigationArray with respect to the 
above samples (Figure 2 and Figure 3) are as follows: 

navigation object Navigation;
navigation int NavigationArray( int i ); 

Figure 5 
Navigation declaration and instantiation with 
navigation expression are depicted in Figure 6. 
However, a more formal definition can be found in 
Appendix A: Formal C# language definition: 

navigation type TypeName( formal-parameter-list ); 
TypeName var = new TypeName(

navigation-expression ); 

Figure 6 
These types are generated automatically by the 
compiler from the navigation declaration. Variables 
of these types can only hold a reference to navigation 
instances which have the same number of parameters 
and the type of each parameter is the same or 
inherited from the appropriate type in the navigation 
declaration. The return type expression must also 
match the type in the declaration with equality or 
inheritance. 
In this way the component can safely use data source 
which conforms to its requirements and forms a 
matrix, a list, etc. A client application is verified at 
compile-time to check whether it supports the 
appropriate data source with type safe member 
references. 
All this results in a type-safe data binding. 

Inheritance and Access Modifiers 
The type where the navigation object is created must 
have access to the referenced members. Private 
fields, properties, indexes can be used only when the 
class itself declares a navigation to its own members. 
Protected members can be used in derived classes, 
internal members [6] in the same compilation unit 
(assembly) accordingly. Public members can be used 
anywhere. 

A navigation type declaration can be public, internal, 
protected or private just like a class declaration. 
These modifiers define the visibility of the navigation 
type just like class visibility does. Once a navigation 
type is instantiated, it can be used by any class. If a 
method of class A receives a navigation object as a 
parameter, the method can use it to access the 
referenced member independently of whether class A 
has access to the member referenced by the 
expression or not. 
The compiler checks, for all but the last of properties 
and fields and indexers in the association list, whether 
they are readable and all are accessible by the 
declaring class which creates the navigation object. 
No write-only members are allowed through the 
association path except the last one. An expression is 
read-only if the last member is a read-only member 
for the instantiating class, write-only if it is write-
only, and normal otherwise. 

Comparison to Delegates 
In CLI delegates are used as “object-oriented type-
safe function pointers” [6, 3]. They share common 
ideas with navigation expressions. In both cases a 
special language element is used for type definer 
which allows type-safety by identifying methods to 
invoke or members to be accessed later. The syntax is 
quite similar, too [23, 3] (Figure 7): 

void PrintInt( int i ) { Console.WriteLine( i );  } 
delegate void MethodDelegate( int a ); 
MethodDelegate del =  

new MethodDelegate( this.PrintInt ); 
del( 42 ); 
navigation int myNavigation( int ); 
string [] myStrings = new string [] { “a”, “ab”, “abc” }; 
myNavigation nav1 = new myNavigation(  

myStrings[int].Length ); 
Console.WriteLine( nav1[2] ); 

Figure 7 
The difference between the language constructs is 
that the delegates are applicable to methods but not to 
fields or properties (even though properties are 
implemented as methods in CIL). Moreover, 
delegates do not support navigation in the object 
hierarchy; they only have a reference to a class 
instance and a handle referencing a method of that 
type. Navigations hold an entire reference path to 
navigate through the object hierarchy and reach the 
addressed field or property through multiple 
associations. Data binding on .NET platform uses 
properties and not methods for member access. 
Hence in that case delegates are not applicable and 
cannot be used for data binding. 
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3. COMPILER IMPLEMENTATION 
A "compiler only" solution can be provided if only 
one language is taken into consideration. After 
checking syntax (see Section 5) and type consistency 
the compiler generates extra code in place of 
declaration, instantiation and usage (see Appendix 
B). 
Each navigation declaration is a type creator syntax 
element (similar to class, interface, delegate and 
array sign (‘[ ]’) [6, 23, 3]). The abstract type (class 
A) is constructed by the compiler and is unique for 
each navigation declaration. For each object 
hierarchy path, a unique class (class B : A) is 
generated by the compiler which finally derives from 
type created for navigation declaration. Class A 
contains two abstract methods for reading and writing 
members (GetValue and SetValue methods). 
Parameter lists are generated according to the 
navigation declaration. Derived Class B provides 
implementation for these abstract methods, using 
strict type information. 
Using reflection, dynamic navigation creation can 
also be supported but it is not recommended, since it 
ensures no type safety at all. In this scenario a 
program can create navigation expression instances at 
runtime, based on strings. 
To measure performance impact we have modified 
the Mono C# compiler. The compiler-generated type 
safe navigation expressions are 10 to 50 times faster 
than a reference solution with reflection. 
The advantage of this “compiler only” approach is 
that the runtime environment remains unchanged. 
Only language compilers should be extended to 
provide the new functionality. Similarly to delegates, 
a navigation declaration is also a type declaration and 
this type could be a basis for language 
interoperability which is essential on the CLI 
platform. 

4. CONCLUSION 
In this paper we have introduced a new C# language 
construct that provides more type-safe solution with 
compile-time errors rather than run-time errors. The 
new language construct called navigation supports 
access to class members through multiple 
parameterized one-to-many associations and similarly 
to delegates, a navigation declaration is also a type 
declaration. 
This solution is not only more type-safe but can also 
provide a huge gain of performance in many 
application scenarios. 

5. APPENDIX A : FORMAL C# 
LANGUAGE DEFINITION 
The following list is the extension to C# language 
grammar [23, Appendix A]. 

A.1.7 Keywords, Keyword: navigation 

A.2.2 Types 
Reference type: navigation-type 
Navigation-type: type-name 

A.2.4 Expressions 
Primary-no-array-creation-expression:

navigation-creation-expression 

Expression: navigation-creation-expression:  
 new navigation-type ( navigation-expression ) 
Navigation-expression:

expression 
 navigation-expression . identifier 

navigation-expression . identifier [ type-list ]
Type-list: type | type-list , type 

A.2.5. Statements 
Type-declaration: navigation-declaration 

A.2.13. Navigations, navigation-declaration: 
 attributesopt navigation-modifiersopt 
navigation type identifier( fixed-parametersot )

navigation-modifiers:
navigation-modifier 

 navigation-modifiers navigation-modifier 
navigation-modifier:
new | public | protected | 

internal | private 

6. APPENDIX B : ILLUSTRATION OF 
THE COMPILER GENERATED CODE 
Navigation declaration: 

public navigation string gridNavigation(  
int row, int column ); 

Generated code: 

public abstract class gridNavigation 
:BaseNavigation 
{

public abstract void SetValue(  
int row, int column, string value );

public abstract string GetValue(  
int row, int column ); 

}
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Navigation instantiation: 
string [][] birthData = new string [][] { new string [] { 

“Blaise Pascal”, “1623-1662”, “Clermont” }, 
new string [] { 
“Sir Isaac Newton”, “1642-1727”, “Woolsthorpe” },… 

}; … 
gridNavigation nav1 = new gridNavigation( 

birthData [int][int] ); 

Generated code: 
… public sealed class gridNavigation_nav1 :  

gridNavigation { 
String [][] rootObj; 
public myNavigation_1( string [][] root ) 
{

rootObj = root; } 
public override string GetValue( 

int row, int column) { 
return rootObj[row][column]; } 

public override void SetValue( 
int row, int column, string value) { 

rootObj[row][column] = value;  
} }
…gridNavigation nav1 =  

new gridNavigation_nav1( birthData );  

Navigation usage: 
public class DataGrid { 

public gridNavigation DataSource; 
public int RowNumber, ColumnNumber; 
public void Render() { 

for( int r = 0; r < RowNumber; r++ ) { 
for( int c = 0; c < ColumnNumber; c++ ) { 

Console.Write( DataSource[r, c] ); 
if( c < ColumnNumber – 1 ) 

Console.Write( “, “ ); } 
Console.WriteLine(); } } } 

Generated code: 
… for( int c = 0; c < ColumnNumber; c++ ) { 

Console.Write(DataSource.GetValue( r, c ) ); 
if( c < ColumnNumber – 1 )Console.Write( “, “ ); 

} …
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ABSTRACT 
In an ever-changing business environment, business models and rules have migrated from compiled source code 
to external metadata. This paradigm better known as adaptive object modelling (AOM) empowers domain 
experts to take control over application implementations, and allows them to change an application’s business 
model as the business evolves. The problem with the adaptive object modelling approach is that it only caters for 
an evolving business model and ignores the effects of expanding functional requirements. This paper presents 
the Expandable Software Infrastructure (ESI), an amalgamation of adaptive object modelling and component-
based software development. Unlike other adaptive object modelling implementations where metadata have only 
been used to describe the data and the executing domain, the ESI takes metadata further and utilizes it to 
describe the data, domain, behaviour and components - providing us with a truly expandable AOM. We 
highlight how the relatively complex task of adaptive object modelling can be executed simply and elegantly 
using the Microsoft .NET Framework and further describe how core .NET technologies such as ADO.NET, 
.NET Compact Framework, reflection and remoting sculpted the architecture of the ESI. We conclude with the 
notion of moving towards a standardized, intelligent architecture that executes on multiple platforms.  
 

Keywords 
Adaptive Object-Model, Adaptive Systems, Dynamic Object-Model, Reflection, Reflective Systems Meta-
Modelling, Meta-Architectures, Metadata, Domain Specific Language, Generative Programming. 

 

1. INTRODUCTION 
 
Business needs have developed beyond the capacity 
of statically structured systems that are unable or 
unwilling to adapt to changing business 
requirements.  

These requirements for flexible systems can briefly 
be described as: 

- Runtime configurability 

- Adaptability  

- Extendibility 

- Intuitive configuration 

Existing approaches to flexible systems have all 
excelled in at least one of the above mentioned 
objectives, but none have successfully adhered to all 
4 requirements. 

We present the Expandable Software Infrastructure 
(ESI) developed by E-Logics (Pty) Ltd: an adaptive 
object modelling system that makes use of various 
techniques found in configurable and/or flexible 
systems and component-based software 
development. The ESI’s goal is to realize all 4 
requirements through the use of metadata and can be 
briefly described as a metadata-driven component-
based framework. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
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The main contribution of our work is to make an 
effective use of the .NET Framework to successfully 
design and develop a flexible system, the 
Expandable Software Infrastructure (ESI) that 
conforms to all four above mentioned requirements. 
We also demonstrate how the ESI was influenced by 
the .NET framework and focus on the role of .NET 
Technologies such as ADO.NET, .NET Compact 
Framework, reflection and remoting in the ESI. 

This paper is structured as follows: Section 2 
describes the ESI and gives an overview of the high 
level architecture and metadata structure and a 
layered view of the ESI. Section 3 presents an in-
depth look at the physical architecture of the ESI and 
how .NET sculpted the architecture. Section 4 
scrutinizes existing approaches to flexible systems 
while Section 5 details some future work draws 
conclusions. 

 

2. THE ESI 
 

The Expandable Software Infrastructure (ESI) is 
both a software component infrastructure and an 
adaptive object model interpreter. Development of 
the ESI was driven by various business 
requirements. These requirements are to:  

- Develop changeable systems 

- Reduce development time and cost 

- Intuitively develop systems 

- Develop flexible systems 

- Develop vendor independent systems 

- Reuse common software components 

Essentially the ESI is an interpretive layer wrapped 
around traditional relational database systems, which 
allows domain experts to build, configure and deploy 
systems without the need to rewrite or recompile 
code. The ESI allows domain experts to concentrate 
on domain modelling, system configuration and 
maintenance while software developers concentrate 
on technical issues. 

The ESI owes its flexibility to the extensive use of 
metadata. Metadata is used to describe the domain 
model, software components, component variability 
and behaviour. This implies that most changes in the 
business environment can be catered for by making 
changes to metadata. Should the need for new 
functionalities arise, a component that sufficiently 
fulfils the requirements must be purchased or 
developed and then described in the metadata. The 
component’s variability refers to those parameters of 

the component that will be variable for different 
domains. It is then the responsibility of a domain 
expert to populate the variability for the executing 
domain. 

The ESI provides a range of tools to assist users with 
the tedious task of populating metadata. The most 
notable of these tools is the ESI management 
console. The management console provides an UML 
[13] modelling tool that users can use to describe the 
domain.  The management console also enables users 
to extend the ESI by describing new components and 
their variability. 

 
ESI Metadata 
The ESI metadata is a self-describing object model 
that can be divided into three layers, as illustrated in 
figure 1. 

 
 

 

The Core is used to describe those entities that are 
critical to the execution of any ESI implementation. 
Extended metadata are those data that describe the 
pluggable components while domain metadata is 
specific for a given implementation.  

The core ESI object model is loosely based on 
design patterns found in classic AOM 
implementations [2] namely: 

- TypeObject Pattern 

- Entity and EntityType Pattern 

- Property Pattern 

- Strategy Pattern 

The main differences between the core ESI object 
model and these classic AOM patterns are that the 
ESI architecture is split into a functional and a 
physical level and the ESI metadata is self-
describing.  
The advantages gained by this architecture are: 

- The physical relational database model can 
differ from the functional object model. 

Figure 1. ESI metadata 
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- Technical details stored in the physical 
layer can be hidden from domain experts, 
providing a more intuitive model. 

- One functional model can easily be 
migrated to a different physical 
implementation. 

- The core of the ESI can be extended. 
 

Figure 2 presents a graphical representation of the 
core ESI object model.  

 
 

Changing core metadata results in a new ESI 
assembly to be built. This assembly is generated by 
interpreting the stored metadata and generating a 
new dynamic link library (dll) using the reflection 
and emit libraries found in .NET. The newly built 
assembly now forms the base of all ESI systems.  

3. ESI AND THE .NET FRAMEWORK  
 
Before the acceptance of component-based 
frameworks such as J2EE and .NET, implementing a 
system such as the ESI was an extremely daunting 
and often impractical task. The following advantages 
of the .NET Framework [10, 14] made it the perfect 
candidate for the ESI: 

- Low learning curve 

- Ease of application deployment and 
maintenance  

- Comprehensive class library 
- Managed Code 
- Framework support 

The decision to choose the .NET framework was not 
only based on technical merit, but also on non-

technical factors such as available resources and user 
expectations.  

The architecture of the ESI was sculpted by the 
.NET Framework. ADO.NET, remoting, reflection 
and the .NET Compact Framework were the defining 
technologies in the structure of the ESI.  

ADO.NET and especially datasets enabled the 
implementation of a data abstraction layer that is 
vendor-independent and can also treat text-based 
data stores such as XML and CSV files similar to 
relational databases.  It also provided the ability to 
create an efficient client-side data cache that reduces 
network traffic and improves overall system 
performance.  

The .NET remoting infrastructure enables the ESI to 
execute in a distributed environment over either TCP 
or HTTP. This permits the ESI to provide rich client 
interfaces that can retrieve data over the internet and 
even through firewalls.  

.NET Reflection is used to extend the ESI at run 
time. New types and operations can be added to the 
ESI by defining them in the metadata. The ESI then 
uses reflection to load the type at runtime. The ESI 
also makes use of the .NET emit library to allow for 
the core ESI to be extended and recompiled by 
simply altering the metadata. 

The .NET Compact Framework allows the ESI to 
execute on mobile devices such as PDA’s.   This 
extends the range of applications that can be 
executed using the ESI.  

The ESI allows multiple deployment scenarios of 
which the most common is essentially a distributed 
client-server architecture as highlighted in figure 3.  

 
 

Figure 2. Core ESI Architecture

Figure 3. ESI deployment scenario
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As seen in Figure 4 the ESI can be broken into nine 
distinct components. Each of these components 
leverages the .NET framework to reach its goal. 

 
 
 

1. The Data Abstraction Layer: The data 
abstraction layer is responsible for 
performing basic Create, Read, Update and 
Delete commands (CRUD) on all the 
supported data sources.  

2. Meta Interpretation Layer: The metadata 
interpretation layer uses the data abstraction 
layer to load and save the metadata. 
Metadata are converted into runtime classes 
through the reflection API, and all classes 
built on top of the interpretation layer will 
use these classes as if they were compiled at 
design time.  

3. Remote Server Interface: The remote server 
interface is responsible for managing 
remote client connections and executing all 
server side operations such as data retrieval. 
The Remote Server Interface uses the .NET 
remoting infrastructure to provide basic 
remoting functions such as object 
serialization.  

4. Client Data Cache: The client data cache 
reduces network traffic and improves 
response time, by caching results in a 
disconnected data set. 

5. Client Data Service: The client data service 
is responsible for executing all client-side 

operations and managing access to the local 
data cache.   

6. Client View: The client view is a thin 
wrapper around a .NET dataset that presents 
users (typically GUI components) with a 
meta interpreted view on the data. Without 
a client view user interface components 
only see a dataset, with the client view user 
interface components see a collection of 
metadata objects.  

7. Remote Data Service: The remote data 
service is used by data services to 
communicate remotely with each other.  

8. UI Controls:  User interface controls 
provide users a view on the data and a 
mechanism to interact with ESI clients. 
Currently the ESI contains two sets of UI 
controls; Windows Forms controls and 
Mobile Controls. Windows Forms controls 
are extensions to .NET provided controls 
and allow for ESI-specific functionalities. 
Mobile controls are UI controls that execute 
on the .NET Compact Framework and often 
implement a subset of the functionalities 
provided by the Windows Forms version of 
the controls. 

9. Synchronization:  Synchronization is used to 
keep secondary and mobile servers in sync 
with the primary ESI server.  

 

4. COMPARISON WITH EXISTING 
APROACHES 
 
We categorize existing flexible system approaches 
into the following categories: 

- Configurable Systems 
- Adaptive Object Modelling 
- Component-based Software Development 

Configurable Systems 
A configurable system extends the traditional notion 
of a system by introducing a fixed set of parameters 
external to the system. These parameters can be 
modified to alter some runtime attributes or 
properties of a system.  The Gandiva software 
development system [11] can be seen as an example 
of a configurable system. 

Configurable systems are limited by a fixed set of 
parameters which are defined at compile time. 
Therefore the dimensions of configurability are fixed 
and the scope for adapting is limited.  

Figure 4. ESI layered architecture
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The ESI relates to configurable systems in that it 
allows users to configure the system using external 
attributes. ESI differs from configurable systems by 
allowing the definition of variability in metadata – 
enabling the extension of configurable parameters. 

Adaptive Object Modelling 
An adaptive object model (AOM) [14] is an object 
model where the domain representation is interpreted 
at runtime and can be altered or changed with 
immediate effect [1]. The adaptive model defines 
mechanisms to describe entities, attributes and 
relationships, as well as mechanisms to interpret the 
domain model and execute business rules. 
Browsersoft’s eQ! Foundation [15] is a good 
example of an industry stable AOM implementation 
written in Java.  

The biggest shortfall of the AOM approach is its 
internal structures are difficult to extend and 
maintain. This results in the situation where business 
requirements can easily be adapted although the 
functional requirements of the system cannot change 
easily. We can say AOM systems are adaptive 
although not adaptable [4, 5]. 

In addition to using metadata to describe the domain, 
the ESI also utilizes metadata to define software 
components, their variability and behavior. This 
provides the ESI with information that can be used to 
expand the system on a functional level. 

Component-based Software Development 
In component-based software development, software 
products are built on top of component 
infrastructures [9]. The component infrastructure 
provides a mechanism for business components to be 
plugged in and configured to produce a final 
software product or system. A software system can 
be extended by plugging in new components or 
replacing old components. The best known example 
of a component infrastructure is probably Enterprise 
Java Beans [16]. 

Although component infrastructures can be easily 
extended to provide new functionality, they often 
requires writing “glue” code to make the new 
functionalities available.  

The ESI provides a pluggable component 
infrastructure that enables it to expand on a 
functional level. Instead of having to write code to 
plug the new components into the framework, the 
ESI requires the component to be described in 
metadata.  

 

Table 1 summarizes which objectives are 
successfully met by each flexible system approach. 

 

 

 

The ESI is an ideal solution when implementing 
systems in a constantly changing environment, 
which requires flexible, configurable, intuitive and 
adaptable systems. 

These systems may span any number of domains, 
including: asset management, data warehousing, 
geographical information, decision support and 
supply chain optimization systems.   

5. CONCLUSION AND FUTURE 
WORK 
Developing an adaptive object modelling system is 
not an easy task. Choosing the correct technology is 
critical to simplifying this undertaking. The .NET 
Framework enabled a small team of software 
developers to conquer this mammoth task within 
reasonable time. This success can be broadly 
credited to .NET’s low learning curve, the 
comprehensive class library, ease of deployment, 
managed code and excellent support. 
The ESI overcomes the shortcomings of classic 
adaptive object modelling systems by introducing 
aspects from component-based software 
development. Although the infrastructure is currently 
being used by a number of industry applications 
there are a few shortcomings: 

- It is limited to the Microsoft Windows and 
Windows CE platform. 

- No web or thin client interface exists.  
- Does not conform to standards, therefore it 

is difficult to extend the ESI with a 
component that was not developed for the 
ESI. 

 Runtime 
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- The ESI currently lacks version control and 
change management.  

Apart from the shortcomings mentioned above we 
would like to see the ESI move towards an 
intelligent or adaptable architecture [9]. The simplest 
example of resource adaptation is that of network 
bandwidth. The system must detect low bandwidths 
and modify caching settings and request processing 
accordingly. Another goal for the ESI would be to 
make it platform independent. With recent 
developments in the ROTOR and MONO projects, 
we would like to see the ESI execute on one of these 
frameworks, thus enabling cross-platform execution. 
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ABSTRACT 
The emergence of more powerful and resourceful mobile devices, as well as new wireless communication 
technologies, is turning the concept of mobile ad-hoc networking into a viable and promising solution for 
ubiquitous information sharing. However, the inherent characteristics of mobile ad-hoc networks bring up 
important challenges for any embedded application developed with the goal of information sharing in the novel 
usage scenarios enabled by mobile ad-hoc environments. This paper proposes transparent system-level support 
for Windows CE.Net applications by means of a replicated file system, Haddock-FS. Haddock-FS is based on an 
adaptable optimistic consistency protocol that provides a highly available access to a weakly consistent view of 
file, while delivering a strongly consistent view to more demanding applications. In order to effectively cope 
with the network bandwidth and device memory constraints of these environments, Haddock-FS employs a 
cross-file, cross-version content similarity exploitation mechanism. 

Keywords 
Distributed file systems, optimistic replication, mobile ad-hoc networks, Windows CE.Net. 

 

1. INTRODUCTION 
The evolution of the computational power and 

memory capacity of mobile devices, combined with 
their increasing portability, is creating computers that 
are more and more suited to support the concept of 
ubiquitous computation [Wei91]. As a result, users 
are progressively using mobile devices, such as 
handheld or palmtop PCs, not only to perform many 
of the tasks that, in the past, required a desktop PC, 
but also to support innovative ways of working that 
are now possible. At the same time, novel wireless 
communication technologies have provided these 
portable devices with the ability to easily interact 
with other devices through wireless network links. 
Inevitably, effective ubiquitous information access is 
a highly desirable goal. 

Many real life situations already suggest that 
users could benefit substantially if allowed to 

cooperatively interact using their mobile devices and 
without the requirement of a pre-existing 
infrastructure. A face-to-face work meeting is an 
example of such a scenario. The meeting participants 
usually co-exist within a limited space, possibly for a 
short period of time and may not have access to any 
pre-existing fixed infrastructure. 12 

If each participant holds a mobile device with 
wireless capabilities, a mobile ad-hoc network 
[Cor99] may serve the purposes of the meeting. This 
way, a report held at one participant’s handheld 
device might be shared with the remaining meeting 
participants’ devices, while its contents are analyzed 
and discussed. Furthermore, each participant might 
even update the shared report’s contents, thus 
contributing to the ongoing collaborative activity. 

One interesting solution for ubiquitous 
information sharing is the use of a distributed file 
system. This approach allows already existing 
applications to access shared files in a transparent 
manner, using the same programming interface as for 
the local file system. However, the nature of the 
scenarios we are addressing entails significant 
challenges for an effective DFS solution to be 
devised. The following lines introduce the main 
                                                           
1 This work was partially funded by Microsoft Research. 
2 Funded by FCT Grant SFRH/BD/13859. 
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requirements imposed by such challenges that 
determined the architectural options of our 
contribution. 

High availability. The high topological 
dynamism of mobile ad-hoc networks entails 
frequent network partitions. Moreover, the possible 
absence of a fixed infrastructure means that most 
situations will require the services within the network 
to be offered by mobile devices themselves. Such 
devices are typically severely energy-constrained. As 
a result, the services they offer are susceptible to 
frequent suspension periods in order to save battery 
life of the server's device. From the client's 
viewpoint, such occurrences are similar to server 
failures.  

These aspects emphasize the need for high 
availability replication services, so as to minimize the 
effects of the expectable network partitions and 
device suspension periods. Pessimistic replication 
approaches, employed by conventional distributed 
file systems, such as NFS [Now98] or AFS [Mor86], 
are too restrictive to fulfill such a requirement.  

Adaptability to different correctness criteria. 
Optimistic replication strategies offer high 
availability as a trade-off for consistency. While 
certain applications are able to benefit from such 
increased availability, some application semantics 
demand stronger consistency guarantees. In order to 
be adaptable to a wider set of applications, replicated 
systems should offer multiple consistency levels: 
from a relaxed consistency, highly-available to a 
sequentially consistent mode of replica access. 

Adaptation to resource-constrained devices. 
Whichever strategy is taken, the memory and 
bandwidth limitations of mobile devices and wireless 
links, respectively, must be taken into account. For 
optimistic strategies, the update log is the main 
memory overhead, while network usage is typically 
dominated by replica synchronization.  

This paper describes Haddock-FS, a transparent 
replicated file system for Windows CE.Net 
collaborative applications, including .Net Compact 
Framework  applications. Haddock-FS is based on a 
highly available optimistic consistency protocol. In 
order to cope with the resource constraints of mobile 
devices, Haddock-FS employs content similarity 
exploitation mechanisms. The paper focuses on the 
main implementation issues regarding Haddock-FS 
and the Windows CE.Net development environment. 
Furthermore, a thorough experimental evaluation 
using actual embedded devices is presented. 

The rest of the paper is organized as follows: 
Section 2 introduces the main architectural aspects. 
Section 3 addresses application programming 
interface aspects, while Section 4 describes the 
implementation of Haddock-FS. Section 5 presents 

experimental results. Finally, Section 6 describes 
related work and Section 7 draws some conclusions. 

2. ARCHITECTURE 
This section briefly introduces the architecture 

of Haddock-FS, as originally proposed in [Bar04a]. 

File System Consistency 
Haddock-FS is a transparent, peer-to-peer 

replicated file system designed to support a broad set 
of usage scenarios that are made possible by mobile 
networks. It relies on a hybrid consistency 
architecture, based on epidemic propagation of 
replica updates, that accommodates for applications 
with differing consistency demands: a tentative view, 
supporting any-time, anywhere read and write access 
to shared files, at the cost of weak consistency 
guarantees; and stable view, offering sequentially 
consistent [Lam79] access to shared files as a trade-
off for reduced write availability.  

Each Haddock-FS mobile peer constitutes a 
replica manager that is able to receive file system 
requests and perform them upon its local replicas. 
The underlying replication mechanisms are 
transparent to applications, which may access 
Haddock-FS's services by using the same API as the 
one exported by the local file system. Provided the 
accessed files are locally replicated at a given 
Haddock-FS peer, the file system services will be 
available, independently of the current network 
connectivity. 

Update propagation is achieved by pair-wise 
reconciliation sessions between mutually accessible 
replica managers, where replica updates are 
epidemically propagated. Complementarily, 
Haddock-FS uses a primary commit scheme [Ter95], 
in which a single replica of each file, the primary 
replica, is responsible for selecting new stable 
updates and propagating such decision back to the 
remaining replicas. Each file is initially assigned a 
unique primary replica, at which it was originally 
created. After creation, primary replica rights may be 
transferred to other replicas, by exchanging a token 
that identifies the current primary replica. 

For each file replica, a replica manager 
maintains: a stable value, which holds a version of 
the file's stable contents and an update log, which 
records the data specifications of most recent update 
requests that have been accepted by the file replica. 

Content storage and propagation 
The inherent memory and bandwidth constraints 

of mobile devices and wireless links are severe 
limitations to the effectiveness of a distributed file 
system for ad-hoc environments. For this reason, 
Haddock-FS tries to reduce the size of update logs 
stored at each device, as well as of update data to be 
transferred during replica reconciliation. 
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This is achieved by exploiting the cross-file and 
cross-version similarities that exist within the 
replicated data held by Haddock-FS's mobile peers. 
Such approach is based on that of the Low-
Bandwidth File System (LBFS) [Mut01]. 

The basic idea of the content storage and 
transference scheme consists of applying the SHA-1 
[NIS95] hash function to portions of each replica's 
contents; each portion is called a chunk. The 
obtained hash values can be used to univocally 
identify their corresponding chunk contents. From 
this assumption, if two chunks produce the same 
output upon application of the SHA-1 hash function, 
then they are considered to have the same contents.  

A content-based approach is employed to divide 
replica contents into a set of variable-size non-
overlapping chunks, in order to minimize the effect 
of insert-and-shift operations in the global chunk 
structure of a replica [Mut01]. 

Haddock-FS extends the use of LBFS's strategy 
to both local storage and network transference of 
replicated file data. Our solution considers the 
existence, on each file system peer, of a common 
chunk repository which stores all data chunks, 
indexed by their hash value, that comprise the 
contents of the files that are locally replicated at that 
peer. The data structures associated with the content 
of locally replicated files simply store references to 
chunks in the chunk repository. This applies both to 
the update log and the stable value of each replicated 
file. Hence, the contents of an update or replica value 
consist of a singly linked list of references to data 
chunks, stored in the chunk repository (see Figure 1). 
So, if different files or versions of the same file 
contain data chunks with similar contents, then they 
will share references to the same entry in the chunk 
repository, thus reducing memory usage. 

Read accesses to a file's contents can be served 
by a single indirect memory access to the chunks 
referenced by the chunk references stored in the file's 
data structures. Serving a write request upon a local 
replica is, in turn, a more expensive operation. In 
order to optimize situations where already stored 
contents are modified in a partial region, an 
incremental chunk update algorithm [Bar04b] is 
used. Such algorithm ensures that only a minimum 

set of affected chunks, from the original contents 
chunk list, is actually re-evaluated. 

Update propagation between peers also makes 
use of the chunk repositories of each peer. When a 
chunk has to be sent across the network to another 
peer, only its hash value is firstly sent. The receiving 
peer then looks up its chunk repository to see if that 
chunk is already stored locally. If so, it avoids the 
transference of that chunk's content and simply stores 
a reference to the already existing chunk. Otherwise, 
the chunk contents are sent and a new chunk is added 
to the repository. 

3. Application Programming Interface 
Haddock-FS exports the same application 

programming interface (API) as the standard file 
system API of Windows CE.Net. Examples of such 
interfaces are the standard CreateFile, CloseFile, 
ReadFile and WriteFile. Therefore, any existing 
Windows CE.Net application that is originally built 
to access the local file system may transparently use 
Haddock-FS’s replicated file services. 

In particular, if one considers application 
programming using the .NET Compact Framework, 
programmers may continue to use conventional class 
libraries such as System.IO.FileStream or 
System.IO.File to access and manipulate file system 
objects of Haddock-FS. Since the implementation of 
these classes relies on the standard file system API, 
file system objects located within Haddock-FS’s 
name space may be transparently accessed. 

Nevertheless, some specific aspects of Haddock-
FS’s behavior are not controllable by the 
conventional file system API; namely, the aspects 
related to the replication protocol. This implies that 
some extended control must be provided beyond the 
conventional file system API. Such control should 
allow users to perform replication operations while 
running replication-blind applications that solely rely 
on the conventional file system API to manipulate 
Haddock-FS’s objects. Examples of such operations 
are switching from a tentative to a stable view of an 
opened file, and vice-versa, and to transfer primary 
replica rights to another accessible replica. 
Replication control should also be granted to 
programmers that wish to develop replication-aware 
applications for use with Haddock-FS. 

Replication control is provided by means of 
reserved control codes passed to the standard 
DeviceIoControl interface, also exported by 
Haddock-FS. The actual calls to DeviceIoControl are 
performed by a replication control class library, 
which replaces the interaction with DeviceIoControl 
with a more programmer-friendly interface. 
Currently, a replication control class library is 
available for use by .Net Compact Framework 
applications, which extends the standard 

Figure 1. Example of replica content storage.
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System.IO.FileStream class. Illustrative methods of 
the class are shown in Table 1. 
bool switchToTentativeView(); 
bool switchToStableView(); 
bool grantPrimaryRights(RepId destRep); 
Table 1. Example of replica control class methods. 

4. Implementation 
Haddock-FS is an Installable File System Driver 

[Mur98] for the MS Windows CE.Net embedded 
operating system. The current version supports the 
replica consistency protocol, as well as cross-file and 
cross-version similarity storage and network usage 
optimizations. All relevant file system functions are 
implemented. Interaction between peers is achieved 
using a remote procedure call library that was 
developed along with Haddock-FS. 

Installable File System Driver 
Haddock-FS’s API is exported by an installable 

file system driver (IFSD), in the form of a dynamic 
link library. Such programming interface is 
comprised of file system functions, which form the 
client side of each Haddock-FS’s peer. Using the 
LoadFSD function of the FSD Manager service of 
Windows CE.Net, the file system can be mounted at 
run time. 

The server side of each peer resides in a thread 
of the Device Manager process that is created when 
the file system is mounted. The server thread is 
continually waiting for remote procedure call 
requests from other peers across the network. Such 
requests are served upon access to the file system 
data structures stored in the address space of Device 
Manager process. On the other hand, the file system 
functions that are exported by the dynamic link 
library constitute the client side of each peer. Most of 
such functions access the shared data structures of 
the server thread. 

4.1.1 Data structures 
Haddock-FS maintains a collection of data 

structures in the address space of the Device 
Manager process, where the IFSD is loaded. Most of 
the exported file system functions access and modify 
such data structures when called. The most relevant 
data structures are as follows. 
 Chunk repository, as described in Section 2. 
 Root directory, which contains a hierarchical 

representation of the file system objects 
(directories and files) that are currently known 
by the local peer, including their relevant file 
system attributes; their creation, modification 
and access times and read-only, hidden or 
archive flags. In the case of locally replicated 
file objects, replication information is also 
included. 

 Open file table, holds entries for the files that are 
currently opened by some process. Each entry 
contains information about the current file 
pointer position, as well as the share mode and 
access type, specified when the file was opened. 

4.1.2 Exported File System Interfaces 
The file system interfaces that are exported and 

implemented by Haddock-FS’s IFSD may be 
grouped into the following categories [Mur98]: 

1. Device event interfaces, which handle the 
initialization and termination procedures of the file 
system driver. These events correspond, respectively, 
to the MountDisk and UnmountDisk functions. Such 
functions are not available to applications through 
the file system API. Instead, they are only called by 
FSD Manager in order to mount or unmount the 
IFSD. The MountDisk function is responsible for: 
registering a volume where Haddock-FS’s shared file 
system structure will be accessible to applications; 
initializing the local file system data structures and 
RPC services; and creating a server thread, which 
will handle all remote requests from other Haddock-
FS peers. Inversely, the UnmountDisk function 
handles deregistration of the file system volume and 
termination of the server thread. 

2. Path-based interfaces, which access or modify 
file system objects that are identified by their 
alphanumeric path names when the interface is called 
by applications, such as CreateDirectoryW. Every 
path-based function first decomposes and analyzes 
each path name argument so as to locate the 
corresponding element in the root directory structure. 
The requested operation is then performed. 

3. Handle-based interfaces, which access or 
modify files that are identified by a previously 
obtained file handle, such as ReadFile or WriteFile. 
A file handle is obtained by a call to the CreateFileW 
function, in which a path name is passed as an 
argument to identify the desired file. Additionally, 
other relevant arguments specify the intended share 
mode and type of access. Similarly to any path-based 
function, the supplied path name is used to obtain a 
reference to the corresponding file element in the 
root directory structure. If found, the open file table 
is examined to verify that no sharing conflicts will 
occur with the current entries in that table. Finally, if 
such requirement is fulfilled, a new entry is then 
inserted into an empty slot of the open file table and 
its position within the table is returned. Such integer 
value is a file handle that must be used by succeeding 
calls to handle-based file system functions to the 
same opened file. 

4. Find interfaces, which allow applications to 
iterate through the list of file system objects whose 
path name matches a given search string. Namely, 
FindFirstFileW, FindNextFileW and FindClose. 
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Remote Procedure Call Library 
The developed RPC library is based on the 

Winsock 2.0 network programming interface and 
incorporates an interface description language (IDL) 
and its respective compiler. The IDL allows 
programmers to specify the remote procedures that 
will constitute their distributed application (in this 
case, the Haddock-FS driver itself). Accordingly, the 
compiler automatically generates program code that 
allows the distributed application to call and serve 
the specified remote procedures. 

It should be emphasized that no native RPC 
services are available in Windows CE.Net. Although 
the available DCOM services of Windows CE.Net 
are based on an underlying RPC library, its interfaces 
are not directly available to programmers. 
Furthermore, the RPC components that support 
DCOM are reduced to the subset of features that are 
strictly required by DCOM. 
5. Evaluation 

Haddock-FS was evaluated through several 
experiments. All measurements were obtained while 
running one or more Haddock-FS peers on the 
Arcom VIPER development board, which includes a 
400MHz Intel Xscale-based PXA255 processor with 
64MBytes of RAM and a 32MB of an Intel 
StrataFlash drive. It is worthy to note that such 
experimental platform provides testing conditions 
very similar to the memory and processor 
characteristics found in typical real world settings.  

To evaluate Haddock-FS's performance with 
practical workloads, we used an unmodified version 
of the MS WordPad word processing application to 
access replicated files. This application is typically 
bundled with Windows CE.Net devices. 

Chunk Repository Efficiency 
The first experiment measured the effectiveness 

of local replica content storage, based on the use of a 
chunk repository. We simulated the composition of 
an actual scientific paper [Bar04a] using 19 different 
backup versions of its source text, ordered 
chronologically. The set of backup versions 
represents the real evolution of the paper, sampled 
periodically for approximately six months, from an 
initial version with a few paragraphs to a final 
version with eleven pages occupying 33 Kbytes. The 
size of the versions, as well as the character of 
document is considered to be extremely 
representative of the documents that are normally 
accessed by mobile devices. Each version contents 
were individually applied to a local file replica by 
using the WordPad application to open, write and 
close such contents to the replica. The measured 
optimal expected chunk size for the used workload is 
256 bytes, which achieved a substantial reduction of 
47% in memory usage by use of the chunk 

repository, in comparison to a non-optimized 
approach (that is, without cross-file, cross-version 
content similarity exploitation).  

Finally, a more complete experiment was 
conducted, in which two Haddock-FS peers 
collaboratively issued updates to a shared replicated 
file. The considered set of updates was the same as 
the previous experiment, though distributed by both 
peers. The obtained results showed that, from a total 
amount of 460Kbytes that needed to be transmitted 
during reconciliation sessions between peers upon 
acquisition of the write token, only 237Kbytes (58%) 
were effectively sent. 

Local Access Times 
One experiment measured the impact of 

Haddock-FS replica storage architecture in the 
performance of local file system calls. The 
performance of Windows CE.Net native file system 
was used as the primary evaluation reference. 
Furthermore, the performance of a Transaction-Safe 
File Allocation Table file system mounted on an 
onboard flash drive was also measured. 

The experiment was conducted by running a test 
application that performed and measured the latency 
of write and read file system calls to different 
versions of the paper. In order to deal with 
occasional deviations induced by external factors 
such as the processor workload, the access time 
measurements were repeated several times in the 
same experimental conditions and the average value 
was then considered. 

Haddock-FS read accesses are, on average, 
16,5% slower than the native file system, as shown in 
Figure 2. However, if one considers only read 
accesses to versions with more than 10KBytes, 
Haddock-FS actually outperforms the latter by 1,7%.  

The measured write performance of Haddock-FS 
reflects the extended complexity that is imposed by 
its content similarity exploitation architecture, as 
shown in Figure 2. Write accesses are, on average, 
92% slower than the native file system counterpart. 
Still, the measured write performance of Haddock-FS 
is, on average, 75% better than that of the FlashDisk 
file system. Since most of today’s commercial 
devices are equipped with secondary storage devices 

Figure 2. Local access times. 
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with similar access performance, this evidence 
suggests that typical mobile users will tolerate 
Haddock-FS’s write access performance. 
6. Related Work 

The issue of optimistic data replication for 
loosely coupled environments has been addressed by 
a number of projects, most of which do not assume 
that replicas will be held by resource-constrained 
devices. Bayou [Ter95] is an optimistic database 
replication system that relies on application-specific 
conflict detection and resolution procedures to attain 
adaptable consistency guarantees. The non-
transparent character of Bayou's approach prohibits 
the use of already existing applications, in contrast to 
Haddock-FS's solution. 

The Roam [Rat99] optimistically replicated file 
system does not require replica managers to store an 
update log, which eliminates the significant memory 
overhead that is typically imposed by such a data 
structure. Nevertheless, Roam's consistency protocol 
does not regard any notion of a stable replica value. 
This limitation restricts Roam's applicability to 
applications with sufficiently relaxed correctness 
criteria that tolerate dealing only with tentative data. 

AdHocFS [Bou03] exploits the high 
connectivity of ad-hoc groups of replica managers by 
enforcing a pessimistic strategy amongst the group 
members. Nevertheless, AdHocFS's architecture is 
still based on the existence of fixed server 
infrastructures, where the stable values of files are 
held. Therefore, should that infrastructure be 
unavailable, users and applications are restricted to 
accessing merely tentative data.  

Finally, content similarity has already been 
exploited for storage purposes by the Pastiche 
backup system [Cox02], so as to minimize storage 
overhead on backed-up contents. However, 
Pastiche’s file system does not employ incremental 
writes to chunked contents; instead, each write 
operation causes the resulting contents to be re-
processed by the chunk division process. Though 
acceptable for back-up operations, such solution may 
not be adequate for partial content modifications. 
7. Conclusions 

Haddock-FS is a replicated file system designed 
to meet the requirements imposed by mobile ad-hoc 
scenarios, in order to provide a viable support for 

collaborative activities. Namely, high availability, 
adaptability to different correctness criteria and 
adaptation to resource-constrained devices. 

Haddock-FS has been successfully implemented 
in Windows CE.Net and tested in Arcom VIPER 
XScale-based development boards. Experimental 
results show that Haddock-FS accomplishes 
significant network and memory usage reductions 
when compared to traditional solutions, while 
attaining acceptable access times. 
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ABSTRACT 

Zonnon is a new programming language that combines the style and the virtues of the Pascal family with a 
number of novel programming concepts and constructs. It covers a wide range of programming models from 
algorithms and data structures to interoperating active objects in a distributed system. In contrast to popular 
object-oriented languages, Zonnon propagates  a symmetric compositional inheritance model. In this paper, we 
first give a brief overview of the language and then focus on the implementation of the compiler and builder on 
top of .NET, with a particular emphasis on the use of the MS Common Compiler Infrastructure (CCI). The Zonnon 
compiler is an interesting showcase for the .NET interoperability platform because it  implements a non-trivial but 
still “natural” mapping from the language’s intrinsic object model to the underlying CLR. 
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1. INTRODUCTION: THE BRIEF 
HISTORY OF THE PROJECT 
This is a technical paper presenting and describing 
the current state of the Zonnon project. Zonnon is an 
evolution of the Pascal, Modula, Oberon language 
line [Wir88]. Major language concepts and some 
considerations concerning the system architecture 
were presented in a number of papers during the last 
two years [Gut02, Gut03]. 

The project emerged from our participation in Projects 
7 and 7+, a collaboration initiative launched by 
Microsoft Research in 1999 with the goal of 
implementing an exemplary set of non-standard 
programming languages for the .NET interoperability 
platform. Our part was Oberon for .NET, an 
interoperable descendant of Pascal and Modula-2. 

The motivation for continuing the research was 
twofold: a) to explore the potential of .NET and in 
particular of the new compiler integration technology 

CCI and b) to experiment with evolutionary language 
concepts. The notion of active object was taken from 
the Active Oberon language [Gut01]. In addition, two 
new concurrency mechanisms have been added: an 
accompanying communication mechanism based on 
syntax-oriented protocols , borrowed from the Active 
C# project [Gun04], and an experimental 
“asynchronous” statement execution construct. 

The new language was called Zonnon. It uses a 
compositional inheritance model. Typically, an object 
implements a specified set of definitions, each one 
accompanied by a default implementation that is 
aggregated into the object’s state space. The syntax 
of Zonnon is presented in the [Zon05] document. 

2. CURRENT STATE OF THE 
PROJECT 
The core language is defined and stable but there are 
still ongoing experiments in the area of concurrency. 
The current compiler is a well-tested beta version. A 
specifically developed comprehensive Zonnon test 
suite containing more than 1500 Zonnon test cases 
and covering all language features is used for 
systematic testing of the compiler. 

There are three user environments for the Zonnon 
compiler: command-line, Zonnon Builder and Visual 
Studio .NET. We note that, to the best of our 
knowledge, the Zonnon compiler is the first compiler 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
.NET Technologies’2005 conference proceedings,  
ISBN 80-86943-01-1 
Copyright UNION Agency – Science Press, Plzen, Czech 
Republic 
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developed outside of Microsoft that is fully 
integrated into Visual Studio. It is currently used in an 
experimental programming course for junior students 
in Nizhny Novgorod University, Russia [Ger05]. 

3. BRIEF INTRODUCTION TO 
ZONNON 
Being a member of Pascal family of languages and 
thanks to a high degree of compatibility, Zonnon is 
immediately familiar to Modula/Oberon programmers. 
Most Oberon programs from the domain of algorithms 
and data structures are successfully compiled by the 
Zonnon compiler after just a few minor modifications. 

However, from the perspective of “programming-in-
the-large”, Zonnon is much more elaborate compared 
to its predecessors. There are four different kinds of 
program units in Zonnon: objects, modules, 
definitions and implementations. The first two are 
program units to be instantiated at runtime, the third 
is a compile time unit of abstraction and the fourth is 
a unit of composition. Here is a brief characterization: 

Object is a self-contained run-time program entity. It 
can be instantiated dynamically under program 
control in arbitrary multiplicity. Compared to Oberon, 
the notion of object is conceptually upgraded in 
Zonnon by the option of adding one or more 
encapsulated activities that control the intrinsic 
behavior of the object. 

Module can be considered as a singleton object 
whose creation is controlled by the system. In 
addition, a module may act as a container of logically 
connected abstract data types and structural units of 
the runtime environment. In combination with the 
import relation, the module construct is a powerful 
system structuring tool that is missing in most 
modern object-oriented languages. 

Definition is an abstract view on an object from a 
certain perspective or, in other words, an abstract 
presentation of one or more of its facets.  

Implementation typically provides a possibly partial 
default implementation of the corresponding 
definition. It is a unit of reuse and composition that is 
aggregated into the state space of an object or 
module either at compile time or at runtime. 

Zonnon also provides a novel object-oriented 
concurrency model that follows the metaphor of 
autonomous active objects interoperating with each 
other. The model incorporates encapsulated threads 
of activity serving two purposes: expressing intrinsic 
behavior and carrying out formal dialogs. Active C# 
provides a proof of concept for this concurrency 
model. 

4. ZONNON MAPPINGS TO CLR 
As mentioned before, the Zonnon object model 
differs from the virtual object model proposed by the 
.NET CLR. However, most Zonnon concepts  can be 
mapped rather easily to corresponding CLR notions, 
with the help of a few minor tricks. The general 
approach taken was trying to make direct use of CLR 
high-level constructs rather than to optimize the 
Zonnon code image. In the following, we will consider 
some important mapping examples. 

Zonnon definitions are represented as public 
interfaces, and their state variables are mapped to 
virtual properties. For example, the following sample 
definition 

(* Common interface for the random 
     numbers generator *) 
definition Random;  
    var { get } Next : integer; (* read-only *) 
    procedure Flush; (* reset *) 
end Random. 

is mapped to the class: 

public interface Random { 
    System.Int32 Next { get; } 
    void Flush(); } 

Implementations are mapped to sealed classes with 
the same visibility as corresponding definitions. For 
example, a possible implementation of the random 
generator will look like as follows: 

implementation Random; 
    var { private } z : integer; 
    procedure { public, get } Next : integer; 
        const a = 16807; m = 2147483647; 
                  q = m div a; r = m mod a; 
        var g : integer; 
    begin g := a*(z mod q) – r*(z div q); 
        if g>0 then z := g else z := g+m end; 
        return z*(1.0/m) 
    end Next; 
    procedure Flush; 
    begin z := 3.1459 end Flush; 
begin Flush; 
end Random. 

The compiler will generate code for this 
implementation that corresponds to the C# class: 

public sealed class Random_implem : Random 
{ 
    private System.Int32 z; 
    System.Int32 Random.Next { get { …; } } 
    void Random.Flush ( ) { z = 3.1459; } 
    public Random_Implem() { Flush(); } } 

If no implementation is specified for a definition then 
the compiler generates a default implementation with 
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trivial properties. The example below illustrates this  
for the Random definition: 

(*automatically generated definition companion*) 
public sealed class Random_default : Random { 
    System.Int32 Next_default; 
    System.Int32 Random.Next { 
                  get { return Next_default; } } } 

Zonnon object types  actually behave like CLR classes 
and therefore are mapped to sealed classes with the 
same scope of visibility as the object type. In case a 
body is specified in an object type, it is mapped into 
an instance constructor as shown here: 

object { public } R;   public sealed class R { 
    var x : real;         private System.Double x; 
begin          public R ( ) { 
    … x := 777.999;  … x = 777.999; … } 
end R.          } 

The relationship “object implements definition” is a 
fundamental constituent in the Zonnon object model. 
It represents an obligation for an object type to 
provide the functionality promised by the definition. 
However, notice that a corresponding implementation 
(if it exists) is automatically imported by the compiler, 
and the object type needs to merely implement the 
missing parts and, if desired, to customize the default 
implementation. For example: 

object R1 implements Random; 
   (*implicitly imports Random implementation*) 
   (* Procedure Next is reused from 
        default implementation *) 
   (* Procedure Flush is customized *) 
   procedure Flush implements 
                                          Random.Flush; 
   begin z := 2.7189; end Flush; 
end R. 

The “object implements definition” relationship is 
represented as a usual interface implemented by the 
class. To support the automatic reuse of the default 
implementation, its “class” image is aggregated into 
the class image of the object itself. Thus, the above 
object type shown will be represented as follows: 

class R1: Random { 
    private Random_implem implem; 
    public System.Int32 Random.Next() 
                               { return implem.Next(); } 
    public void Flush() { z = 2.7189; } } 

Finally, Zonnon modules are mapped to sealed 
classes (either public or internal, depending on the 
module’s modifier) with static members, public static 
constructor (for the method body) and private 
instance constructor (to prevent uncontrolled 
creation of module instances) with empty body. 

module Test; 
    import Random; 
       (* both definition and implementation 
           are imported *) 
    var x : object { Random }; 
        (* x’s actual type is any type implementing 
             Random *) 
    object R2 implements Random; 
   (*alternative random number implementation*) 
    end R2; 
begin 
    x := new R1; … 
    x := new R2; … 
end Test. 

5. THE ZONNON COMPILER 

Compiler overview 
The Zonnon compiler is written in C#. It accepts 
Zonnon program units and produces conventional 
.NET assemblies containing MSIL code and metadata. 
The Common Compiler Infrastructure (CCI) provided 
by Microsoft is used as a code generation utility and 
integration platform. 

Technically the compiler is a single dll file that is 
directly integrated into Visual Studio and the Zonnon 
Builder environment, respectively. A small executable 
wrapper is added to make the command-line version 
of the compiler. 

The Common Compiler Infrastructure 
Conceptually, CCI provides three kinds of support for 
developing compilers for .NET (see Fig 5.1): high-
level infrastructure (in particular, structures for 
building attributed program trees and methods for 
performing semantic checks on trees), low-level 
support (generating IL code and metadata), and 
programming service for integration. 

From the programming perspective, the CCI is a set of 
C# classes that provide comprehensive support for 
implementing compilers and other language tools for 
.NET. In reality, the support is not fully 
comprehensive as, for example, lexical and syntactical 
analyses are left to the user. However, the CCI 
supports well the integration into Visual Studio (VS). 
With the support of CCI a full integration of a 
compiler with all VS components such as editor, 
debugger, project manager, online help system etc. 
becomes feasible. 

The CCI framework should be considered as a part of 
the .NET framework, with the namespace Compiler 
containing the CCI resources included in the System 
namespace. It consists of three major parts: 
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intermediate representation, a set of transformers, and 
an integration service. 
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Figure 5.1 CCI Architecture 

Intermediate Representation (IR) is a rich hierarchy 
of C# classes that represent typical constructs of 
modern programming languages. The IR hierarchy is 
based on the C# language architecture.  Its classes 
reflect CLR constructs like class, method, statement, 
expression etc. plus a number of important notions 
not supported by CLR (e.g., nested and anonymous 
functions, or closures). This allows compiler 
developers to represent the corresponding concepts 
of their language directly in terms of a CLR class. In 
case a language feature is  not presented by a CLR 
class, it is possible to extend the original IR class 
hierarchy. For each extension the corresponding 
transformations must be provided – either as an 
extension of a standard “visitor” (see below) or as a 
completely new visitor. 

Transformers (“Visitors”) is a set of base classes 
performing consecutive transformations from an IR 
class to a .NET assembly. There are five standard 
visitors predefined in CCI: Looker, Declarer, 
Resolver, Checker, and Normalizer. All visitors walk 
an IR by performing various kinds of transformations. 
The Looker visitor (together with its companion 
Declarer) replaces Identifier nodes with the 
members/locals they resolve into. The Resolver 
visitor resolves overloads and deduces expression 
result types. The Checker visitor checks for semantic 
errors and tries to repair them. Finally, the Normalizer 
visitor prepares the serialization into MSIL and 
metadata. 

All visitors are implemented as classes inheriting from 
the CCI StandardVisitor class. It is possible to either 
extend the functionality of a visitor by adding 
methods for the processing of specific language 
constructs , or create a totally new visitor. 

Integration Service is a variety of classes and 
methods providing integration into Visual Studio. The 
classes encapsulate specific data structures and 

functionality that are required for editing, debugging, 
background compilation etc. 

The Zonnon Compiler Architecture 
Conceptually, the organization of the compiler is quite 
traditional: the Scanner transforms the source text 
into a sequence of lexical tokens that are accepted by 
the Parser. The Parser performs syntax analysis and 
builds an abstract syntax tree (AST) for the 
compilation unit using CCI IR classes. Every AST 
node is an instance of an IR class. The “semantic” 
part of the compiler consists of a series of 
consecutive transformations of the AST built by the 
Parser. The result of such transformations is a .NET 
assembly. 

It is worth noting that the Zonnon compiler does not 
make use of all CCI features. In particular, instead of 
extending the CCI Intermediate Representation by 
language-specific nodes, the compiler in fact creates 
its own Zonnon-oriented program tree in its first pass 
(see the data flow diagram in Fig. 5.2). The main 
reason for the extra tree is a clearer separation of the 
language-oriented and system-oriented compiler 
parts. 

Figure 5.2 Compilation data flow 

Also, the presence of two trees in the compiler 
reflects the conceptual gap between Zonnon and the 
CLR. It seems to be principally advantageous to 
represent information about Zonnon programs in a 
separate data structure that is independent of the 
target platform. Such a design leads to an optimal 
factoring of the compiler, with key tasks like name 
resolution and semantic control manipulating the 
Zonnon tree being totally independent of the CLR 
and .NET. Furthermore, the conversion from the 
Zonnon tree to the CCI tree explicitly implements and 
encapsulates  the mapping from the Zonnon language 
model to the CLR Notice that functions logically 
related with both trees, the Zonnon tree and the CCI 
tree, are activated during the same compilation pass. 

In the future the Zonnon tree will be extensively used 
for displaying structural information about Zonnon 
programs in VS’ Solution Explorer views and for 
generating UML project diagrams by the Zonnon 
Builder (see Section 6). 

From an architectural point of view, the Zonnon 
compiler differs from most “conventional” compilers. 
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In contrast to a “black box” approach whose goal is 
to hide algorithms and data structures, our Zonnon 
compiler presents itself as an open collection of 
resources. In particular, data structures such as 
“token sequence” and “AST tree” are exhibited to the 
outside world (via a special interface) for reuse by 
various programs . The same is true for algorithmic 
compiler components. For example, it is possible to 
invoke the Scanner to extract tokens from some 
specific part of the source code and then have the 
Parser build a sub-tree for just this part of the source. 

Note that an analogous architecture is  used by the 
CCI framework to support  the deepest integration of 
any participating compiler with the Visual Studio 
environment. For example, the CCI contains Scanner 
and Parser prototype classes  that served as base 
classes for the Zonnon parser and scanner 
components respectively. 

6. THE ZONNON BUILDER 
The Zonnon Builder is  a conventional development 
environment comparable with many other IDEs. Our 
first goal in equipping the compiler with its own IDE 
was to provide an environment that looks familiar to 
Pascal programmers who are used to products like 
Delphi. On the other hand the Zonnon Builder can be 
considered as a simpler and light-weight alternative to 
full-featured environments like Visual Studio. The 
Zonnon Builder supports the full spectrum of a 
typical program development cycle, including source 
code editing, compiling, execution, testing and 
debugging. The Zonnon Builder supports structured 
projects consisting of several source files. Multi-file 
projects are compiled into a single assembly. It is 
possible to edit project files in different syntax-
oriented editor windows simultaneously. 

The second goal of the Zonnon Builder project was 
to offer a simple and comprehensible development 
environment for novices, specifically supporting the 
case of a simplified program development cycle in 
that a single program file is being developed, 
compiled, debugged and run. Such an option is very 
useful and convenient in an educational context . 

The Zonnon Builder uses a special window to display 
compiler diagnostics. These are actually hyperlinks 
that can be clicked directly to visualize the part of the 
source code containing the (highlighted) error. In 
case of a program crash, the contents of the program 
stack are displayed in a separate window. The 
sections in the stack window are again hyperlinks 
(see Fig.6.1) and clicking at a section again causes the 
Builder to display and highlight the corresponding 
fragment of the source code. 

 
Figure 6.1 Zonnon program debugging 

The Zonnon Builder also provides a simple version 
control mechanism. It is possible to save, restore and 
compare an arbitrary number of revisions for each 
project file (see Fig.6.2). 

Figure 6.2 File versioning 

Version control for the entire project is  also 
supported. Each project version holds the state of all 
project files at a given time, together with an optional 
textual comment. 

The Zonnon Builder Implementation 
The Zonnon Builder as a whole is implemented in the 
form of a conventional .NET application. Its graphical 
user interface implementation reuses the standard 
.NET libraries System.Drawing and System.Windows. 
Forms. Some key components of the Builder such as 
the Zonnon-oriented program editor need to directly 
call the system API (user32.dll) because some 
functionality is missing in the .NET class libraries. 

The design of the Zonnon Builder is intentionally 
kept largely independent of the specific programming 
language. Remaining dependences are encapsulated 
in two interfaces (see Fig.6.3). 
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Figure 6.3 Zonnon Builder implementation 

The ICompiler interface hides the implementation of 
the compiler. The Zonnon compiler wrapper 
implements the interface. The ILanguageLexems 
interface hides all language specific parts, for example 
the set of tokens. Therefore, it is  easy to integrate any 
other programming language into the environment. 

7. FUTURE WORK 
Zonnon and Visual Studio 
We aim at a closer integration with the Solution 
Explorer, including adequate interpretation of CLR 
notions (such as “type”, “class”, “method” etc.) in 
accordance with the semantics of the Zonnon 
language (“module”, “definition”, “procedure” etc.). 
We also strive for a closer integration of the object 
content presentation and the “intellisense” feature. 

Zonnon Builder 
The next  Zonnon Builder version will include a code 
model for compiled Zonnon programs. Programs will 
be presented as a hierarchical tree whose nodes 
represent Zonnon compilation units and their 
contents , respectively. Another improvement will be 
automatic generation of UML diagrams for the static 
structure of Zonnon programs. The UML diagrams 
will visually present the different relationships 
between compilation units. Both presentation forms 
(code model and UML diagrams) will be integrated 
with the program text presentation. The integration 
with the standard CLR debugger is also planned. 

8. LESSONS LEARNED 
The experience in using the Zonnon language shows 
that it is quite convenient and can be used both for 
educational purposes (as the first programming 
language) and as an implementation tool. Some 
practical programs with non-trivial algorithms and 
graphical user interface were implemented in this 
language. The Chess Notebook program from the 
Zonnon web site is among the examples. 

We are quite satisfied with the CCI framework. It is a 
well-designed, practical, powerful and flexible tool for 

building VS integrated compilers. It supports both the 
integration of existing compilers into the Visual 
Studio and the development of integrated compilers 
from scratch. CCI also can be considered as a more 
powerful and faster alternative to the 
System.Reflection library. The troubles with CCI were 
the lack of documentation and the unclear status of 
this framework. 

9. CONCLUSIONS 
Zonnon is the new programming language with a 
number of novel programming concepts and 
constructs. The language covers a wide range of 
programming models. This paper describes the 
current state of the Zonnon project: the language, the 
compiler and its development environment. The 
Zonnon compiler is also integrated into Microsoft’s 
Visual Studio .NET environment. 

The command-line Zonnon compiler, the Zonnon 
Builder, the Zonnon Language Report together with 
documentation and a large number of Zonnon 
program samples and tests are available on 
www.zonnon.ethz.ch. 
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ABSTRACT 

A generic approach to constructing a virtual machine for a DSL in C# is studied. It proposes a generic, object-
oriented framework, in which to build the virtual machine, using an abstract instruction class and an abstract 
environment class. They can be extended to provide a concrete layer whose interface constitutes the set of 
instructions of a DSL. The framework allows for the generation of a variety of virtual machines each supporting 
a particular DSL. Comparative performance results in relation to other DSL implementations are also provided. 
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1. INTRODUCTION 
Domain specific languages (DSLs) have been 
discussed and used in many contexts. (See, for 
example, [Arn95] and [Deu98].) In this paper the 
design and implementation of a VM Framework for 
DSLs is investigated, using .NET. Two other 
approaches for constructing a DSL are also briefly 
examined. For all three approaches, time of 
execution is examined and timed points are declared. 
The Shlaer-Mellor (SM) software construction 
method has been adopted. A fundamental difference 
between SM and other methods is the identification 
of separate subject matters, called domains. An SM 
domain is a separate real, hypothetical, or abstract 
world inhabited by a distinct set of classes that 
behave according to rules and policies characteristic 
of the domain [Shl92a]. The VM Framework is 
layered on top of an existing domain. As a 
programming language construct, a domain is simply 
represented as a namespace. The namespace forms a 
home for related classes and these classes facilitate 
the semantics of the DSL. 

The VM Framework outlined in this study is an 
extension to the typical VM, in that it defines a VM 
with an empty instruction set whose environments 
and instructions can later be extended.  

2. FRAMEWORK DESIGN 
The VM Framework provides the basic functionality 
of a typical VM, including an Intermediate 
Representation (IR) program loader, a program 
counter, internal temporary values, and conditions on 
which to build branching instructions. A proxy object 
is provided through which to start up and configure 
an instance of a VM. No modification to the VM 
Framework itself is required and its component 
classes can consequently be compiled and saved as a 
library. The VM Framework consists of five main 
classes each discussed in the following subsections, 
and is shown in figure 1. 

The EVM Class 
The EVM class (Extendable Virtual Machine) is the 
proxy class. Once instantiated, the object represents 
an instance of a configurable VM, with an empty 
instruction set and no environment. A specific 
configuration can then be applied to the VM 
instance. When an IR program is executed, the VM 
will invoke the correct Inst instance created at load 
time, defined in the configuration file. The EVM class 
also encapsulates the internal temporary values in the 
temps hash table. Each internal temporary value has  
a unique ID, and instructions with ID operands can 
gain read and write access to them. The temporary 
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values have an object type, so they can be assigned values most convenient to the DSL being 
constructed. Internally, the EVM class contains a
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Figure 1. Information model of the VM Framework 

 
loop in its Execute() method, that iterates 
through each instruction stored by the Loader. 
The very next instruction to be executed is first 
fetched, and then the Execute()method of its 
class is invoked. This may entail accessing an 
internal temporary value, or handling a branch 
instruction and saving the current program counter 
value, if need be. Some branch instructions do not 
require the program counter to be saved. 

The Config Class 
The Config class is responsible for the 
configuration setup of an instantiated VM. The 
Config class encapsulates three mappings: 
instructions, environments and 
ins_env, and are defined in Figure 2 below. 

instructions : string  Inst Type 
environments : string  Env 
ins_env      : string  string 

Figure 2. Configuration mappings 
The instructions mapping maps the string 
name of an instruction, to an Inst type. Derived 
instances of the Inst class are only created upon 
program loading. The environments mapping, 
maps the string name of an environment, to an 
instance of Env. As indicated below, the Env 
instance will typically encapsulate some Abstract 

Data Type (ADT) such as a runtime stack.   The 
last mapping, ins_env, maps the name of an 
instruction to the name of the environment that the 
instruction is to use. The name of the environment 
is looked up in the environments mapping, and 
the actual instantiated environment is retrieved, and 
later accessed by the instruction during the 
execution of the loaded IR program. 

The Loader Class 
The Loader class encapsulates a loaded IR 
program and the program counter. The loaded 
program is an array of Inst instances, for each 
instruction of the program. The Loader class also 
maps labels to program counter values. The 
mapping is updated with a program counter entry 
for each label in the program. When a branch 
occurs, the index of the next instruction can be 
retrieved using the mapping. The parser has the 
string name of the instruction and uses the mapping 
defined in the Config class to retrieve the Inst 
type that is used to create the Inst instance. Thus 
when a program is fully loaded, the array will 
contain instances of Inst, each Inst 
encapsulating its own operands ready for 
execution, and the program counter is reset to the 
beginning of the array. 
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The Inst Abstract Class 
The abstract Inst class encapsulates a reference 
to a Env. This will be the environment updated by 
the instruction during the execution of the loaded 
IR program. Note that it is only a reference and 
other instructions will have a reference to the same 
Env instance. The Inst class does not define 
how the updates are performed, and instead 
provides an abstract Execute() method, that 
further extensions to the instruction are obligated to 
override. While there are still instructions to be 
executed by the loaded program, the Execute() 
method is called for each instruction. When the 
program counter has run through each instruction 
instance, the program has completed execution and 
the result of the execution can be retrieved. 

The Env Abstract Class 
The abstract Env class encapsulates some ADT, or 
even a number of ADT’s that form the central data 
storage mechanism for the language. The abstract 
Env class does not dictate the type of ADT that is 
encapsulated, and thus does not define any member 
ADT. It merely provides an abstract 
GetResult() method that extensions of Env are 
obligated to override. 

3. ENVIRONMENTS 
The purpose of the abstract Env class is to have an 
ADT that is updated during runtime, and that is 
appropriate, or convenient for processing the 
semantics of the language. For example, in a simple 
real-valued expression language, a runtime stack 
can be used as an environment, where operands are 
first loaded onto the stack and then an arithmetic 
operation is performed on the most recently pushed 
values. In a ray-tracer [Wat00a] scene description 
language, the main data structure may be a runtime 
stack, for any arithmetic calculations, and a bitmap 
image data type that is incrementally updated as the 
image information is processed. Thus it is possible 
to extend the environment built for an expression 
language, into one that is suitable for a ray-tracer 
language. Classes that extend the abstract Env 
class, are obligated to override the method 
GetResult(). The method GetResult() 
returns an instance of an object. When an 
instance of a VM has completed execution, the user 
can call GetResult() to retrieve  the result of 
the execution. In the example of an expression 
language, this would typically be a double value, 
while for a ray-tracer language this result would be 
an instance of a bitmap image type. Since 
framework users will be aware of the data type they 
are using for the result, a simple type cast to narrow 

the returned instance to the user’s own result type is 
sufficient. 
An example of EnvExp, a concrete extension to 
Env for an expression language, is provided in 
Figure 3. It encapsulated a real-valued stack, and 
returns the last entry on the stack. If all operations 
on the stack are consistent, there should be only 
one remaining value on the stack, which is the 
result of evaluating the expression. 

class EnvExp : Env 
{ 
   public EnvExp () { 
      stack = new Stack (100); 
   } 
   public override object GetResult () { 
      object result; 
      if (stack.isEmpty ()) { 
         result = -1.0; 
      } 
      else { 
         result = stack.peek (); 
      } 
      return result; 
   } 
   public Stack GetStack(){return stack;} 
   protected Stack stack; 
}  

Figure 3. Example EnvExp class 

4. INSTRUCTIONS 
There are five classes of instructions, each 
represented by an abstract class extending Inst. 
The user creates their own instruction by extending 
one of the classes of the abstract instructions 
provided. Each instruction will take at most one 
operand. The five classes of instructions are 
defined in terms of their operand types. Instructions 
written in the source IR program can be labeled, if 
they are targeted by any branching instructions. 
The token and grammar definition for parsing IR 
program code is shown in Figure 4. 

 LABEL    : [lL][aA][bB][eE][lL] 
INS      : [_a-zA-Z][_a-zA-Z0-9]* 
BRANCH   : @[1-9][0-9]* 
TEMP     : $[1-9][0-9]* 
DOUBLE   : [-+]?[0-9]+(\.[0-9]+)? 
STR      : \".*\" 
 
ir_list  : 
ir_list  : ir_list ir_instr 
 
ir_instr : ir_label INS 
ir_instr : ir_label INS STR 
ir_instr : ir_label INS TEMP 
ir_instr : ir_label INS DOUBLE 
ir_instr : ir_label INS LABEL BRANCH 
 
ir_label : 
ir_label : BRANCH 

Figure 4. IR Token definitions and grammar 

Instructions with No Operands 
A Boolean property of this class, 
LoadProgramCounter, in Figure 5, is an 
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option to recall the last saved program counter. 
This allows the creation of instructions that return 
from a branch into a subroutine. 

 abstract class Inst_OpCode : Inst 
{ 
   protected bool 
   LoadProgramCounter = false; 
} 

Figure 5. The Inst_OpCode abstract class 

As an example, the Add instruction is presented in 
Figure 6, as used in a simple expression language. 
The instruction Add simply pops the two topmost 
operands off a stack and pushes the sum back on. 

Instructions with a Branch Label 
Instructions with a branch label are used for 
conditional or unconditional branching. Two 
properties are used to implement branching 
semantics, depending on the requirement of the 
branch condition. The first property, 
BranchCond, is the actual condition to 
branching. This property should be assigned to 
true in the overridden Execute() method for 
unconditional branching.  

For conditional branching it is assigned according 
to the evaluation of a boolean expression inside the 
body of the Execute() method. The second 
property, SaveProgramCounter, dictates 
whether the program counter should be saved for a 
corresponding return call into a subroutine. The 
complete class is shown in Figure 7. 

Instructions with a Temporary 
Internally, temporaries are implemented with a 
Hashtable that map temporary names (ID’s) to 
object references. They are akin to conventional 
registers, but a temporary can be treated as any 
object type as illustrated in Figure 8. Instructions 
have full access to a temporary. The instruction can 
modify the temporary by typecasting the object to 
the required usable type. 

Instructions with a String Parameter 
Instructions with string parameters are useful in 
string processing applications such as those that 
deal with regular expressions. This class, shown in 
Figure 9, exists to provide the means to parse a 
string defined in the source IR program and to store 
it in the variable str. 

Instructions with a Number Parameter 
Similarly to the above string parameter instruction, 
instructions with number parameters exist to 
provide the means to parse numbers defined in the 
source IR program, or to facilitate instructions that 

provide any intermediate arithmetic calculation. 
Real or integer numbers can be parsed. However, 
internally they are treated as double values. 

 class Add : Inst_OpCode 
{ 
   public Add (EnvExp env) 
   { 
      this.env = env; 
   } 
 
   public override void Execute () 
   { 
      double d1; 
      double d2; 
      double r; 
 
      d2 = (double) 
          ((EnvExp)env).GetStack().pop(); 
 
      d1 = (double) 
          ((EnvExp)env).GetStack().pop(); 
 
      r = d1 + d2; 
 
      ((EnvExp)env).GetStack().push(r); 
   } 
} 

 
Figure 6. The Add instruction 

 abstract class Inst_OpCode_Br : Inst 
{ 
   protected string label; 
 
   protected bool 
   BranchCond = false; 
 
   protected bool 
   SaveProgramCounter = false; 
} 

  
Figure 7. Inst_OpCode_Br  

 abstract class Inst_OpCode_ID : Inst 
{ 
   protected string ID; 
   protected object temp; 
} 

 
Figure 8. Inst_OpCode_ID  

 abstract class Inst_OpCode_Str : Inst 
{ 
   protected string str; 
} 

 
Figure 9. Inst_OpCode_Str  

 abstract class Inst_OpCode_Num : Inst 
{ 
   protected double num; 
} 

Figure 10. Inst_OpCode_Num  

5. EXTENDING THE FRAMEWORK 

The Configuration File 
Before an instantiated VM can execute instructions 
in a loaded IR program, the VM needs to be 
configured as a specific VM type. This is achieved 
through a configuration file that is initially loaded. 
Once the VM has been configured, an IR program 
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can be loaded and executed. The configuration file 
specifies the name of the class used as an 
environment, as well as the names of all instruction 
classes, both stored as .NET DLL’s. The 
configuration file will give the complete instruction 
set for a particular VM. Figure 11 gives an example 
configuration file for an expression language.  
The keyword environment is followed by an 
environment class name, and one environment 
instance will be instantiated for that class. When 
instructions are instantiated at program load time, 
the environment that will be used by the instruction 
is named after the using keyword. 

Extending the Environments 
Suppose a new language is required, be it similar to 
an existing language, or one that features an 
entirely new syntax. If an existing language uses an 
environment with an appropriate data structure then 
the new language can extend the existing 
environment to suite its own needs. A ray-tracer 
language needs to render a scene onto a bitmap, but 
may also require a means to perform numeric 
calculations. Thus the EnvExp environment of the 
expression language can be extended with two 
extra data structures; a scene and a bitmap, giving 
rise to an EnvRT environment suitable for a ray-
tracer. 

Extending the Instruction Sets 
Instructions are extended from one of the five 
instruction classes mentioned earlier, to a set of 
concrete instruction classes instantiated at load 
time. Extending instruction sets with environments 
that are subclasses of each other, makes for a 
scalable framework in which to design a tailored 
VM for a DSL. The ray-tracer language serves as 
an example. The EnvRT environment is a subclass 
of EnvExp, so any one of the instructions 
operating on an EnvExp, can also operate on a 
EnvRT, as illustrated in the configuration file for 
the ray-tracer language, depicted in Figure 12. 

6. BUILDING A DSL 
Once a defined environment and instruction set are 
in place, a front-end for the DSL needs to be 
developed. Essentially this is the task of writing a 
simple compiler for the DSL. This entails designing 
syntax for the language using compiler tools. The 
example DSL in this section was built using LG to 
define the tokens for the lexer, and PG to define the 
grammar for the parser. Both tools bear a familiar 
syntax to most commonly used industry tools. The 
translation of a small, functional expression 
language can be intuitively understood by the 
following illustrative example. The program in 
Figure 13 evaluates the expression 

 
 (* Create an instance of the *) 
(* expression environment. *) 
environment EnvExp 
 
(* Register the following expression 
(* instructions with the DVM. *) 
Push  using EnvExp 
Store using EnvExp 
Load  using EnvExp 
Sub   using EnvExp 
Add   using EnvExp 
Mul   using EnvExp 
Br    using EnvExp 
Brgz  using EnvExp 
Nop   using EnvExp 
Div   using EnvExp 
 
(* Some generic instructions *) 
Call  using EnvExp 
Ret   using EnvExp 
Print using EnvExp  

Figure 11. Example configuration file to setup 
the VM for a small expression language 

 (* Create an instance of the *) 
(* ray-tracer environment.   *) 
environment EnvRT 
 
(* These instructions were part of    *) 
(* the EnvExp environment.            *) 
Push      using EnvRT 
Add       using EnvRT 
Sub       using EnvRT 
Mul       using EnvRT 
Div       using EnvRT 
 
(* Ray-tracer specific instructions. *) 
LookAt    using EnvRT 
Specular  using EnvRT 
Diffuse   using EnvRT 
Reflect   using EnvRT 
Translate using EnvRT 
Quad      using EnvRT  

Figure 12. Configuration file to setup a ray-
tracer language borrowing some instructions 
from an expression language 
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in a functional manner. The token and grammar 
definitions for each of the five instruction types are 
given in section 5, and the translated IR code for 
this program is shown in Figure 14 as a concrete 
example, that demonstrates the use of temporaries 
(as storage for variables n and i) and also 
branching instructions for the actual 
implementation of the summation construct. 

 let 
   n = 5 
in 
   9 + sum (i) 1..n (2 * i) 
end 

 
Figure 13. Programmatic representation of the 

summation expression (1) 
The generated IR code performs operations on a 
runtime stack. This stack is indeed defined as part 
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of the environment EnvExp discussed earlier, and 
once the IR code has completed execution, the only 
remaining value on the stack will be the result of 
the expression. 

      Push 5 
     Store $1 
     Push 9 
     Push 1 
     Store $2 
     Push 0 
@100 Load $2 
     Load $1 
     Sub 
     Brgz label @200 
     Push 2 
     Load $2 
     Mul 
     Add 
     Load $2 
     Push 1 
     Add 
     Store $2 
     Br label @100 
@200 Nop 
     Add  
Figure 14. Translated IR program of the 

summation expression (1) 

7. COMPARATIVE RESULTS 
Comparative performance results were done 
between three different DSL implementations: an 
interpreter, a hardcoded VM and the VM 
Framework. Two time intervals were compared for 
each implementation; compiling DSL source code 
to IR (SRC IR), and executing the IR to observe 
the semantics (IR SEM). The total time 
(SRC SEM) is also calculated. The measured time 
is in units of 100ns. Only the total time 
(SRC SEM) is relevant for the interpreter. The 
hardcoded VM has a predefined set of instructions 
and the VM Framework is similarly configured 
with the same set of instructions. For the purpose of 
the experiment, a ray-tracer language, used to 
define geometric objects to be rendered onto a 
scene. 
From the performance results in Figure 15, it can 
be seen that using some of the reflection properties 
of .NET does not necessarily impede the IR 
program’s execution speed, and in this case it is 
actually shown to perform better than its hardcoded 
counterpart. Naturally, the interpreter is quickest to 
deliver observable results, however, it will suffer 
from a lack of scalability. The hardcoded VM will 
suffer less from scalability problems, as it is easier 
to add new instructions as part of the VM core. The 
VM Framework treats environments, and 
instructions that access these environments, as 
separate external libraries, or DLL’s, and they do 
not form part of the VM Framework’s core 
execution unit. Rather, these DLL’s are configured 
together as a set of building blocks to yield a 
customized VM for a particular DSL. Furthermore, 

the VM framework easily accommodates a scaling 
up of the DSL with new constructs as the need 
arises. 
 

0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

1 2 3
T i c k s  
( 1 0 0 n s )  

 Legend 
 
1 – Interpreter 
2 – Hard-coded VM 
3 - VM Framework 

– SRC -> SEM 
– SRC -> IR 
- IR -> SEM 

 
Figure 15. Comparative performance results of 

three types of DSL implementations 

8. CONCLUSION 
This paper described a framework that allows rapid 
development of DSL’s, with emphasis on language 
scalability. The VM Framework also relies on 
certain reflective constructs of .NET to configure 
an instantiated VM at runtime, and .NET DLL’s are 
used extensively to aid in scalability and 
modularity. For the VM Framework to serve any 
use it must be extended by a set of concrete classes 
that form the instruction set and environments 
suitable for a particular DSL. Typically, a domain 
expert will work alongside a software practitioner 
to collaboratively tailor a DSL to the expert’s 
needs. Thus the syntax of constructs needs to be 
refined to be as intuitive as possible, while the 
practitioner needs to decide what type of 
instructions are necessary to facilitate the semantics 
of the constructs.  This may involve a few iterations 
but a flexible framework will aid in the 
development lifecycle of the DSL. 
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ABSTRACT 

Today’s applications are required to distribute data beyond a company’s intranet and access services located all 
over the world. XML and Web Service technologies provide portable solutions in a heterogeneous Internet envi-
ronment. Still, the data has to be interpreted according to schema definitions and transformed into an appropriate 
intra-application representation. The .Net DataSet  can represent relational data and exchange it using the XML 
syntax. The XML schema used by the DataSet (DiffGram) to map data to XML is proprietary. Using the XML 
data as is on another platform requires additional parsing and interpretation. The goal of this project was to re-
implement the .Net DataSet in Java to provide seamless interoperability between .Net Web Services using Data-
Sets and Java Web Service clients/consumers. This paper discusses the need for a Java DataSet and the problems 
that arose during the reimplementation. Further, it summarises the Java implementation and the seamless-
ness/transparency of the Java DataSet integration. 

Keywords 
Toolkit-Interoperability, .Net Web Services, DataSet, XML, Interoperability with JavaJAX-RPC/Axis, Data-
Centric Applications, Porting Components from .Net to Java 
 

1. INTRODUCTION 
Almost every application needs to store data. Rela-
tional databases are still the most common solution 
for storing information at least for data-centric busi-
ness applications. These applications often directly 
manipulate this data and a relational representation is 
appropriate or even desired (e.g. to present the data 
in a table/grid). There is no need for a complex ob-
ject oriented domain model for such applications 
because it will not offer any benefits – a relational 
model is sufficient. 

Another characteristic of data-centric applications is 
the requirement to work with disconnected data. But 
working with disconnected data poses the problem of 
concurrent data modification. This in turn requires 
the application being aware of modifications done on 
another’s behalf. 

In terms of interoperability, Web Services are cur-

rently the state-of-the-art for building distributed 
systems. Web Services typically use SOAP [Soa] as 
message protocol, which itself relies on XML. These 
technologies allow to access services built on one 
platform (e.g. .Net) to be accessed by clients built on 
a different platform (e.g. Java). But interoperable 
services have to exchange the data passed in mes-
sages in a portable format as well (i.e. XML). 

The Microsoft .Net platform easily allows developers 
to build interoperable distributed systems, because 
technologies such as Web Services and XML are an 
integral part of the framework. The framework fur-
ther offers an applicable concept called DataSet. The 
DataSet is capable of holding an in-memory repre-
sentation of relational data. It can even be used in 
combination with Web Services as data exchange 
container because it allows serialisation and deseri-
alisation to and from XML. 

But there is a problem when accessing a .Net Web 
Service using DataSets from another platform (e.g. 
Java), because the platform-dependent DataSet con-
struct is not available. Even though DataSets use 
XML as serialisation format, interpreting and recon-
structing the relational model is a complex, error-
prone and time-consuming task. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to 
lists, requires prior specific permission and/or a fee.  
 
.NET Technologies’2005 conference  proceedings,  
ISBN 80-86943-01-1 
Copyright UNION Agency – Science Press, Plzen, Czech Republic 

This would require building interoperable .Net Web 
Services without DataSets. However, DataSets pro-

201



vide a practical and applicable solution and can help 
to solve some reoccurring problems like the concur-
rency issue when working with disconnected data. 
Because many .Net Web Services are (and will be) 
built using DataSets, there is a need for an easy ac-
cess to these services from another platform. 

For the reimplementation of the .Net DataSet, Java 5 
has been chosen because the Java Platform has 
proven to be a robust environment for distributed 
business applications as well as .Net.  

Microsoft .Net DataSet 
The DataSet is able to hold an in-memory representa-
tion of relational data. It can be compared to a rela-
tional database: it allows the definition of a relational 
schema (tables, columns) and the storage of data ac-
cording to this schema. The DataSet even supports 
constraints (i.e. unique/foreign key constraints and 
allow/deny DBNull values). This makes it an ideal 
replacement for a domain model in data-centric ap-
plications. 
The DataSet is meant to be passed through different 
software layers, from the data access up to the user 
interface layer. The .Net framework supports this 
approach by offering classes that enable two-way 
communication between the DataSet and database. 
Further, a DataSet can directly be bound to user in-
terface components supporting data binding (e.g. to a 
table/grid). 
What makes the DataSet such a usable data container 
for disconnected data is its capability to store differ-
ent versions of the data (i.e. original, current and 
proposed). It thus implements some kind of unit of 
work pattern [Fow02], because it allows a client to 
modify data and retransmit the modified DataSet 
back to the server once all update operations are 
completed by the client. By including the original 
data as well, it can easily be determined which data 
were already modified by another client in the mean-
time. 
When DataSets are used in WebServices, they are 
passed as XML payload including both the schema 
and the data. The schema is described by an (ex-
tended) XML Schema. The data is represented by an 
XML grammar called DiffGram, which supports the 
representation of current and original data as well as 
error information concerning the data. 

2. JAVA DATASET 
As described earlier, a platform-independent imple-
mentation of the .Net DataSet is highly desirable. 
Actually, there are two different possible ways to 
reach this goal. The first alternative would be to port 
the DataSet (or the .Net framework in its entirety) to 
different native platforms resulting in a number of 

several platform-dependent versions. In fact, this 
approach is already realised to some extent by the 
Mono project [Mon]. The second alternative would 
be to port the DataSet once to a platform-
independent framework, such as Sun’s Java. The 
latter approach is the ultimate goal of the Java Data-
Set project. 

Goal 
On a lower level, there are several goals and re-
quirements for a DataSet reimplementation in Java. 
Since the project was limited to 16 weeks, the de-
sired functionality had to be adapted to that time re-
striction. 
We included everything that is essential to use the 
DataSet in a client. This includes the components of 
the relational data model (such as tables, rows, col-
umns, constraints and relations), row state handling, 
(XML-) serialisation and deserialisation and the 
GetChanges method. Other DataSet components, 
however, are not vital in client use (such as Data-
Views or DataAdapters). 
Since most developers who implement a Java client 
using DataSets are familiar with the .Net DataSet, the 
syntax should be as near as possible to Microsoft’s 
DataSet. Luckily, C# and Java (especially version 
5.0) are quite similar except for a few language con-
cepts. 
Another requirement was that the installation of the 
Java DataSet library should be kept as simple as pos-
sible. Therefore, third-party libraries should be 
avoided. The Java DataSet itself uses no additional 
libraries. For Web Service access, however, Apache 
Axis is used. 

Implementation 
Before porting a highly complex construct – such as 
the .Net DataSet – to another platform, thorough 
analysis of the original is indispensable. Unfortu-
nately the (otherwise very good) documentation by 
Microsoft is only helpful to some extent because it is 
designed to help application developers using the 
DataSet. It is not suited, though, to support a devel-
oper intending to dissect the DataSet’s internals and 
re-implement it on another platform. As a conse-
quence, the DataSet’s internal mechanics must be 
discovered by other means, such as own tests or even 
analysis of the IL code (Intermediate Language, 
comparable to the ByteCode of Java). 
Once these difficulties have been overcome, the im-
plementation of the Java DataSet is quite straight-
forward. The major differences to the original are 
due to the divergence of the Java and C# languages 
and their frameworks, respectively. One important 
difference in usage is the direct invocation of getter 
and setter methods in Java. Java properties are 
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SOAP-Envelope

Body

Operation Name

Parameters

Input Parameter 1:

<soap:Envelope xmlns:soap="..." ...> 
  <soap:Body> 
    <UpdateAccounts xmlns="..."> 
    <AccountsParameter> 

      <xs:schema id="AccountsDataSet" ...> 
        <xs:element name="AccountsDataSet" 
                    msdata:IsDataSet="true"> 
          <!-- Accounts DataSet 
               schema definition --> 
        </xs:element> 
      </xs:schema> 

      <diffgr:diffgram ...> 
        <!-- account data --> 
      </diffgr:diffgram> 

    </AccountsParameter> 
    </UpdateAccounts> 
  </soap:Body 
</soap:Envelope> 

Figure 2. SOAP message transmitting a DataSet 
as operation parameter. 

merely a naming convention as opposed to being 
built into the language itself as in C#. 
When it comes to porting software to a different plat-
form there is a regular issue: data types. It is a pecu-
liarity of the Java framework that there are no un-
signed data types. Therefore, one has to implement a 
custom mapping mechanism to map the upper half of 
the unsigned C# data type’s range to the negative 
part of the corresponding Java type, leading to a fair 
amount of additional complexity. The simpler ap-
proach used in the Java DataSet is to use the next 
bigger type class, allowing the whole unsigned value 
range to fit smoothly into the positive half of the Java 
type. 
Third issues are access modifiers (public, protected, 
internal, private). In C#, access scope is based on 
assembly structure whereas logical grouping is pro-
vided by namespaces. As a consequence, access 
scope and logical grouping are orthogonal. In Java, 
both access scope and logical grouping are realised 
by packages. In the DataSet, the different classes 
collaborate tightly by calling members of other 
DataSet library classes, which implies that all classes 
must be located in the same package (resulting in a 
rather large package). 

Outlook 
The Java implementation is far from complete. As 
mentioned above, there are several components in 
the original Microsoft DataSet that are not yet im-
plemented in the Java port. However, for now it is 
possible to use the DataSet as a general data (trans-
port) container as well as in Web Service to client 
communications. 
Additionally, there is a usage scenario of the Java 
DataSet in Java GUI applications. Since the DataSet 
provides a tabular data structure, it is an ideal table 
model providing data values to a JTable. Only an 
additional small intermediate layer between DataSet 
and JTable would be necessary, resulting in a setup 
similar to the combination DataSet/DataGrid in .Net. 

3. CONSUMING .NET WEB 
SERVICES FROM JAVA 
.Net Web Services rely on SOAP1 as XML message 
protocol. SOAP is currently wide-accepted and there 
are many implementations available. In Java, most 
“RPC-oriented” implementations follow the APIs 
and conventions defined by JAX-RPC [Jax]. A feasi-
ble SOAP implementation conforming to JAX-RPC 
is Axis [Axi]. Using Axis, a Java client can consume 
a (.Net) Web Service without problems as long as 
standard data types (like xs:string) are used as in-
put/output parameters for Web Service operations. 
Using custom data types (like DataSets) poses some 
problems: a custom serialisation and deserialisation 
has to be implemented and the SOAP implementa-
tion needs to be extended to offer transparent usage. 

Passing DataSets in SOAP Messages 
A common approach to building a .Net Web Service 
that uses DataSets as data exchange containers is to 
follow the RPC-oriented invocation style2. For ex-
ample, an operation could involve updating the data-
base to reflect the modified data contained in a Data-
Set. This means that DataSets have to be passed to 
the Web Service as operation parameter (or returned 
as the operation's return value). Figures 1 and 2 show 
an example of an RPC-oriented SOAP Message – 
emitted by a .Net Web Service client – containing a 

                                                           
1 Since SOAP Version 1.2, the term SOAP has two expan-

sions – Service Oriented Architecture Protocol and Sim-
ple Object Access Protocol – to reflect the different ways 
in which the technology can be interpreted. 

2 .Net by default uses “Document” as message and “Lit-
eral” as serialisation format [Rpc]. This paper uses the 
term RPC-oriented independently of the underlying mes-
sage format because “Document” is a superset of “RPC” 
and it can also be used to mimic an RPC-oriented invoca-
tion style – which in fact is what .Net does by default. 

Serialized DataSet Schema
Serialized DataSet Data

Figure 1. SOAP-Envelope of an RPC-oriented 
operation call with a DataSet as operation 

parameter. 
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DataSet as operation (input) parameter. The response 
sent by a .Net Web Service looks very similar. The 
default behavior of a .Net Web Service passing Data-
Sets is to include both the DataSet schema and data, 
whereas the data is represented as DiffGram. 

The interoperability issue does not primarily lie in 
the “generic” message parts being transmitted 
because they (should) conform to the W3C SOAP 
recommendation but rather in the custom data 
included as parameter or return value. Basically, a 
SOAP implementation is aware of simple types and 
some array encoding styles. Custom types can 
sometimes be mapped to classes (e.g. Java Bean 
classes) automatically using tools (e.g. JAXB in Java 
or the WSDL2Java utility from Axis). But this 
approach is often not applicable to complex data 
types. The .Net DataSet falls into this category as 
both the schema and the data have to be interpreted 
and a “simple object representation” would not 
suffice. The following section presents the solution 
realised by the Java DataSet implementation on top 
of Axis. 

JAX-RPC/Axis and Transparent Usage 
Axis implements the JAX-RPC API and offers the 
ability to extend the default Java-to-XML type map-
ping using JAX-RPC interfaces. For custom data 
types like the DataSet, specialised serialisers and 
deserialisers have to be implemented to enable Axis 
to transform the XML representation to a Java object 
and vice versa. Thus, the DataSet requires a Data-
SetSerializer and DataSetDeserializer that are aware 
of this transformation process. Serialisers and deseri-
alisers will not be instantiated directly by Axis be-
cause it delegates this work to factory classes: Data-
SetSerializerFactory and DataSetDeserializerFactory. 

The DataSetDeserializer is event driven – it receives 
SAX-Events caught and forwarded from the Axis 
infrastructure. Axis calls the appropriate factory to 
obtain a deserialiser instance whenever it can find a 
registered XML type. Similarly, it calls the appropri-
ate factory to serialise a registered Java type using 
the returned serialiser. 

A custom type mapping can be registered using the 
TypeMappingRegistry. Normally, registering a cus-
tom type mapping involves the following steps: 

1. Get a reference to the default type mapping reg-
istry 

2. Instantiate serialiser and deserialiser factories 
3. Register a new type mapping between the Java 

class and XML-Type and specify both factory 
instances 

The Java code needed to set up such type mapping is 
shown in Figure 3. When creating an ASP.Net Web-

Service, the WSDL document defines custom types 
for each operation's parameters and/or return value. 
This involves registering a custom type mapping for 
each DataSet-type parameter and return value. 

ServiceFactory sf = ServiceFactory 
                    .newInstance(); 
Service webSvc = sf.createService(url, 
                 qWebServiceName); 

TypeMapping tm = webSvc 
                 .getTypeMappingRegistry() 
                 .getDefaultTypeMapping(); 
tm.register( DataSet.class, 
         qualifiedXMLTypeName, 
         new DataSetSerializerFactory(), 
         new DataSetDeserializerFactory() ); 

Figure 3. Registering a custom type mapping 
between Java and XML. 

Usage Example 
By implementing custom serialisers/deserialisers and 
registering the appropriate type mappings, the invo-
cation of Web Service operations receiving and re-
turning custom data types is transparent to the caller. 
The listing in Figure 4 provides an example of a Web 
Service call invocation returning a DataSet instance 
to the caller, assuming that the correct type mapping 
was registered. 

ServiceFactory sf = ServiceFactory 
                    .newInstance(); 
Service webSvc = sf.createService(url, 
                 qWebServiceName); 

 
Call call = webSvc.createCall(qPortName, 
            qOperationName); 
DataSet dataSet = (DataSet) call 
                  .invoke(null); 

Figure 4. WebService call returning a DataSet. 

4. CONCLUSION 
Despite its incompleteness, the current Java DataSet 
implementation allows the simple and transparent 
exchange of data between .Net Web Services and 
Web Service consumers in Java. The development of 
a Web Service consumer is highly simplified by a 
ready-to-use Java DataSet. 
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