

The 3rd International Conference on .NET Technologies

.NET Technologies 2005

Conference proceedings

held at
University of West Bohemia

Plzen, Czech Republic

May 30 – June 1, 2005

Edited by

Vaclav Skala, University of West Bohemia, Plzen, Czech Republic
Piotr Nienaltowski, ETH Zurich, Switzerland

Preface

This volume contains the proceedings of the 3rd International Conference on .NET
Technologies held in Pilsen, Czech Republic, from May 30 to June 1, 2005.

The purpose of the .NET Technologies conference series (http://dotnet.zcu.cz) is to bring
together practitioners and researchers from academia and the industry to discuss the latest
developments in .NET and to advance the state of the art in the research on related
technologies. Interest in these topics has been continuously growing as a consequence of the
importance and the ubiquity of object-oriented technologies.

For .NET Technologies 2005, papers describing theoretical and practical results were
solicited in the following areas: software engineering, programming languages and
techniques, parallel and distributed computing, virtual machines and bytecode, educational
aspects of .NET, support for .NET on non-Windows platforms.

Out of 42 papers submitted this year, the Programme Committee has selected 16 full papers
and 6 short papers for presentation at the conference. Each paper has been reviewed by three
referees, including at least two Programme Committee members. All selected papers are
included in this volume.

May 2005

 Piotr Nienaltowski
 Vaclav Skala

Conference Committees

Co-chairs
Vaclav Skala University of West Bohemia, Pilsen, Czech Republic
Piotr Nienaltowski ETH Zurich, Switzerland

Programme Committee
Mike Barnett Microsoft Research, Redmond, USA
Judith Bishop University of Pretoria, South Africa
Antonio Cisternino University of Pisa, Italy
Kurt Geihs University of Kassel, Germany
Wolfgang Grieskamp Microsoft Research, Redmond, USA
Nigel Horspool University of Victoria, Canada
Atsushi Igarashi Kyoto University, Japan
Richard E. Jones University of Kent, U.K.
Brian T. Lewis Intel, USA
Peter Mueller ETH Zurich, Switzerland
Piotr Nienaltowski ETH Zurich, Switzerland
Nigel Perry University of Canterbury, New Zealand
Wolfram Schulte Microsoft Research, Redmond, USA
Vaclav Skala University of West Bohemia, Czech Republic
Don Syme Microsoft Research, Cambridge, U.K.
Clemens Szyperski Microsoft Research, Redmond, USA
Peter Wentworth Rhodes University, South Africa

Reviewers
Dario Alvarez Gutierrez Peter Andersen Giuseppe Attardi
Mark Van der Brand Alex Buckley Paul Kelly
Francisco Ortin Frank Piessens Peter Sturm
Kapil Vaswani Luis Veiga

Contents

Keynotes

Meijer,E.: Language Design: Helping Programmers Program Better
Benton,N.: Concurrency in Cω
De Icaza,M.: Mono: Building an Open Source CLI Implementation

Full papers Pages

Smans,J., Jacobs,B., Piessens,F.: Static Verification of Code Access Security Policy Compliance of

.NET Applications
1

Ravindar,A., Srikant,Y.N.: Static Analysis for Identifying and Allocating Clusters of Immortal
Objects

13

Bishop,J., Worrall,B.: Towards platform independence: retargeting GUI libraries on .NET 23
Vanhooff,B., Preuveneers,D., Berbers,Y.: Using Web Services on Mobile Devices to Transparently

Access .NET Remoting Objects
35

Bilicki,V.: LanStore: a highly distributed reliable file storage system 47
Strein,D., Kratz,H.: Design and Implementation of a high-level multi-language .NET Debugger 57
Fruja,N.G., Börger,E.: Analysis of the .NET CLR Exception Handling Mechanism 65
De Rosa,F., Mecella,M.: Designing and Implementing a MANET Network Service Interface with

Compact .NET on Pocket PC
77

Gefflaut,A., van Megen,F., Siegemund,F., Sugar,R.: Porting the .NET Compact Framework to
Symbian Phones - A Feasibility Assessment

87

Perez,J., Ali,N., Costa,C., Carsi,J.A., Ramos,I.: Executing Aspect-Oriented Component-Based
Software Architectures on .NET Technology

97

Montelatici,R., Chailloux,E., Pagano,B.: Objective Caml on .NET: The OCamIL Compiler 109
Lengyel,L., Levendovszky,T., Charaf,H.: Implementing an OCL Compiler for .NET 121
Boronat,A., Carsi,J.A., Ramos,I., Pedrós,J.: An Approach to Cross-Model Semantic Transformation

on the .NET Framework
131

Pocza,K., Biczo,M., Porkolab,Z.: Cross-language Program Slicing in the .NET Framework 141
Ortin,F., Redondo,J., Vinuesa,L., Cueva,J.M.: Adding Structural Reflection to the SSCLI 151
Anthony,D., Leung,M., Srisa-an,W.: To JIT or not to JIT: The Effect of Code Pitching on the

Performance of .NET Framework
163

Short papers

Albert,I.: Type-safe data binding on modern object-oriented platforms 171
Crous,T., Danzfuss,T.W., Liebenberg,A., Moolman,A.: Adaptive object modeling using the .NET

Framework
177

Barreto,J., Ferreira,P.: A Highly Available Replicated File System for Resource-Constrained
Windows CE .Net Devices

183

Gutknecht,J., Romanov,V., Zueff,E.: The Zonnon Project: A .NET Language and Compiler
Experiment

189

Fick,D., Kourie,D.G., Watson,B.W.: A Virtual Machine Framework for Domain Specific Languages 195
Lorez,M., Schneble,A.: Java DataSet 201

Static Verification of Code Access Security Policy
Compliance of .NET Applications

Jan Smans

Dept. of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A
3001 Leuven, Belgium

jans@cs.kuleuven.ac.be

Bart Jacobs
Dept. of Computer Science

Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

bartj@cs.kuleuven.ac.be

Frank Piessens
Dept. of Computer Science

Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

frank@cs.kuleuven.ac.be

ABSTRACT
The base class library of the .NET Framework makes extensive use of the Code Access Security system to ensure
that partially trusted code can be executed securely. Imperative or declarative permission demands indicate where
permission checks have to be performed at run time to make sure partially trusted code does not exceed the
permissions granted to it in the security policy.
In this paper we propose expressive method contracts for specifying required security permissions, and a modular
static verification technique for Code Access Security based on these method contracts. If a program verifies, it
will never fail a run time check for permissions, and hence these run time checks can be omitted.
Advantages of our approach include improved run time performance, and improved and checkable
documentation for security requirements. Our system builds on the Spec# programming language and its
accompanying static verification tool.

Keywords
static verification, code access security, stack inspection, Spec#

1. INTRODUCTION
Nowadays, most software is created by combining
components from various sources. Some programs
can even be extended at run time with new
components. For example, by extending a media
player with a new codec, additional content can be
displayed. However, not all parts of a composed
program are necessarily equally trusted. For instance,
a codec, embedded in a media player, may not be
trusted to create network connections while the player
itself does have that permission. Nonetheless, all
parts, whether they are trusted or not, share the same
process space, i.e. memory, processor etc.

To allow execution of heterogeneous programs (i.e.
programs composed from parts with different
permissions), the Common Language Runtime (CLR)

and the Java Virtual Machine (JVM) offer a fine-
grained access control mechanism called stack
inspection [Gon02a, Fou02a]. The CLR uses the term
Code Access Security (CAS) to refer to the stack
inspection machinery. A trusted library can rely on
this mechanism to protect the resources it
encapsulates. The basic idea is to prevent
unauthorized access to resources by guarding every
sensitive operation by an access control check. This
check determines whether the requested operation is
allowed by inspecting (every frame on) the call stack.
The Base Class Library makes extensive use of CAS
to protect access to files, network resources, and so
forth.

While stack inspection has proven its usefulness in
the past, it also has a number of shortcomings
[Wal00a, Aba03a, Pot01a]. First of all, run time
checking is used to enforce the security policy. These
run time checks can incur a substantial performance
overhead. Secondly, since access control checks are
part of the implementation of library code, and since
such checks are scattered throughout the
implementation, it is hard to understand what is
actually enforced. This is an issue for the developers
of the library code: it is hard to validate that no
access checks have been omitted, and that a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

1

consistent security policy is enforced [Bes04a]. It is
also an issue for developers of client code that calls
the library: they will have to rely on informal
documentation to infer what permissions their code
will actually need to run properly [Kov02a].
Moreover, the risk that documentation becomes stale
as library code evolves is real.

In this paper, we propose formal method contracts
specifying the CAS related behavior of methods, and
we propose a modular static verification technique.
For a library developer, successful static verification
of a library method ensures that the implementation
respects the method contract. Hence, the method
contract can be seen as an improved and checkable
documentation for possible security exceptions. For
the developer of client code, successful static
verification of a program (under an assumed minimal
permission set for the client code) ensures that no run
time check for permissions will ever fail. Successful
static verification by the CLR at load time (under the
actual permission set for the client code) proves that
it is safe to turn off run time checks.

Our system builds on the Spec# programming
language (itself an extension of C#) [Bar04a] and its
accompanying static verification tool.

The rest of this paper is structured as follows: in
section 2 we briefly review the mechanism of Code
Access Security, and the Spec# programming system.
In section 3 we discuss the abovementioned problems
of CAS in more detail, and we define the goal of this
paper. Next, we present our proposed solution in
detail (section 4), and discuss its advantages and
disadvantages (section 5). Finally, we compare with
related work and conclude.

2. BACKGROUND
Code Access Security
Code Access Security (CAS) defines code access
rights by means of permissions. A permission is a
first-class object that represents a right to access
certain resources. A FileIOPermission object
for instance represents the right to perform certain
operations (read, write, ...) on certain files.
Permission objects actually represent sets of more
primitive permissions, and it is always possible to
take the union or intersection of two permission
objects of the same type. A PermissionSet object
groups permissions of different types.

Permissions are assigned to assemblies based on
evidence. Examples of evidence include: location
where the assembly was downloaded from, or the
code publisher that digitally signed the assembly. The
security policy is a configurable function that maps
evidence to permission sets. The resulting permission

set for a given assembly is called the static
permission set. In this paper, we assume static
permission sets can be approximated sufficiently, so
we don't elaborate on evidence and the security
policy evaluation process. In particular, when
verifying client code for which the static permission
set is not yet known, we will rely on a CAS assembly
level attribute that the developer of client code can
set to indicate the minimal static permission set his
code needs to run properly.

The CLR maintains for every thread an associated
dynamic permission set that represents the actual
access rights that the thread has at this point in its
execution. The dynamic permission set is not
represented explicitly in the CLR, but is computed by
stack inspection: it defaults to the intersection of the
static permission sets of all code that is currently on
the call stack, but trusted library code can influence
the stack inspection process as discussed below.

Library code can control access to protected
resources by means of the following operations on
permission objects:

• Calling Demand on a permission object p
checks if p is in the dynamic permission set.
This operation initiates a stack walk: all
frames on the stack (from top to bottom) are
checked for permission p. If a frame is
encountered that doesn't have permission p
in its static permission set, a Security-
Exception is thrown. Otherwise,
Demand just terminates normally without
any side-effects. This method is used by
library code to guard sensitive operations
from being accessed by semi-trusted code.

• When calling Assert on a permission
object p, the current stack frame is marked
privileged for permission p. If such a frame
is encountered during stack inspection for
permission p, Demand returns normally.
Hence, asserting a permission makes the
dynamic permission set grow. Asserting a
permission is used by highly trusted code to
allow less trusted code to access some
resource in a well-defined, secure way.

Our analysis of the Rotor BCL, a partial, shared-
source implementation of the BCL [Stu03a], has
shown that other operations on permission objects,
such as Deny and PermitOnly, occur only rarely.
Therefore, we do not consider them in this paper.

Operations on permissions can be done imperatively:
they are just method calls on objects. However, the
Code Access Security system also supports a limited
form of declarative operations on permission objects:

2

an attribute can be placed on a method to indicate
that a specific operation on a specific permission
must be performed before execution of the method.
Declarative CAS can be seen as a first step towards
making the CAS behavior of a method more explicit.
In their current form, declarative demands have
limited expressive power: permissions that depend on
the state of the program cannot be demanded in a
declarative fashion. For example, to demand
FileIOPermission for a path that was given as a
parameter to the method, one must resort to
imperative demands.

The CAS system has numerous other features such as
link demands and inheritance demands that we do not
discuss here. We refer the reader to [Fre03a] for full
details.

Spec#/Boogie
The Spec# Programming System [Bar04a] consists of
three parts: an object-oriented language called Spec#,
a compiler, and a program verifier, called Boogie.
The language Spec# is an extension of C#. It extends
C# with non-null types, checked exceptions, and
constructs for writing specifications, such as object
invariants and pre- and post-conditions for methods.
Our proposed system builds on Spec#'s support for
writing specifications.

The Spec# compiler emits run-time checks for these
specifications, and adds specification information as
metadata to the generated assembly. The static
verifier, Boogie, takes such an assembly with
specification metadata, and statically verifies the
consistency between the implementation and the
specification. The verification is sound, but not
complete.

3. PROBLEM STATEMENT
Problems with CAS
While Code Access Security is a usable and essential
part of the .NET security infrastructure, it has a
number of well-known shortcomings. These can be
summarized as follows:

1. Code Access Security is implemented using
dynamic checks, which can have a
substantial impact on performance.
Moreover, being based on stack inspection,
Code Access Security can hinder
optimizations that affect the execution stack.

2. Security checks are typically part of the
implementation of a method and as such,
their effect is not visible in the signature of
the method: the (informal) documentation
has to specify under what circumstances
security exceptions will be thrown. Writing

and maintaining precise documentation is
error-prone.
While declarative security demands partly
deal with this problem, they do not have the
same expressive power as imperative
demands, and our analysis of the Rotor BCL
shows that approximately 60% of all
demands are imperative demands.

3. Not only are security checks part of the
implementation, they are scattered
throughout the BCL. Our analysis of the
Rotor BCL found 183 demands scattered
across 40 classes. This makes it very hard to
understand what the Code Access Security
system actually enforces.

4. Finally, stack inspection tries to protect
against luring attacks, where partially trusted
code uses trusted but naive code to
accomplish an attack. But stack inspection
only addresses luring attacks based on
method calls from semi-trusted to trusted
code, and does not deal with other potential
interactions, such as the reliance on results
from semi-trusted code, or exceptions
thrown from such code.

Many researchers have recognized these
shortcomings of sandboxing based on stack
inspection, and have proposed partial solutions
[Pot01a, Aba03a,Wal00a, Fou02a, Bes04a]. We refer
to the related work section for a detailed discussion.

This paper builds on these existing solutions and on
the Spec# specification and verification infrastructure
to propose a new solution that addresses (at least in
part) the first three disadvantages identified above. In
the discussion section, we also briefly indicate how
our approach could be extended to deal also with the
last disadvantage.

Goal
Our goal is to define method contracts for CAS that
support modular static verification of an assembly
with a known static permission set.

Figure 1 concretizes this goal in the form of a tool
called casverify. To verify an assembly (i.e. verify
whether it could ever throw a Security-
Exception) for a given set of static permissions,
we input that assembly, together with the
specifications of all referenced assemblies, to
casverify. The tool then determines whether
execution of the given assembly could ever cause a
demand to fail.

3

Note that we use the term Spec#perm to indicate that
the input consists of assemblies annotated with the
permission-preconditions proposed in this paper.

Our tool casverify is sound, but incomplete. In order
to be useful, it requires method contracts and hence
introduces annotation overhead.

casverify

Spec # perm specs of
referenced
assemblies

Spec # perm assembly

Error messages

Static Permissions

Figure 1: casverify

We envision three use cases:

Library developers must invest the effort to write
precise method contracts. These contracts can be seen
as a formal kind of documentation. A successful
static verification ensures that the documentation is
correct, in the sense that any method in the library
assembly will never throw any security exceptions if
it is called with a dynamic permission set that
respects the preconditions.

Developers of client code need not invest the effort of
writing precise method contracts. We assume they
just specify the requested minimum permission set for
each assembly, using assembly level declarative
security attributes. Each method in the assembly then
gets a (overly conservative) precondition that requires
this declared minimum permission set. If client
assemblies can be statically verified under these
method contracts, one can be sure that no security
exceptions will be thrown at run time.

At assembly load time, the CLR can input an
assembly (together with its corresponding static
permissions and referenced assemblies) to casverify
to determine whether it is safe to turn off run time
checking for that assembly.

4. APPROACH
To verify an assembly for a given set of static
permissions, we first input that assembly, together
with the specifications of all referenced assemblies,
to a program transformer. This program transformer

implements a transformation similar to Wallach’s
Security-passing Style (SPS) transformation
[Wal00a]. The output of this transformation is a
Spec# assembly (plus corresponding specifications
for referenced methods) that can be verified by
Boogie. If Boogie can show that the transformed
assembly is correct, the original assembly will never
raise a SecurityException when executed with
the given static permissions (or more). Figure 2
shows how all this translates to an implementation for
casverify.

casverify

Spec#perm specs of
referenced
assemblies

Spec#perm assembly

Error messages

Static Permissions

(SPS) Program Transformation

Boogie

Figure 2: Implementation of casverify

In this section we first illustrate the basic idea behind
our approach using a very simple example. Secondly,
we show how to extend this idea towards more
complex scenarios.

The Basic Idea
To keep our explanation as clear and simple as
possible, we make some assumptions about the
programs we consider in this subsection. First of all,
we assume that only one permission type is used,
namely XPermission. An assembly either has this
permission or has no permission at all. Secondly, we
do not consider permissions that take parameters, so
XPermission objects have no parameters.

To be able to prove that for a given policy no
permission demand will ever fail in a certain
assembly, we require each of its methods and all
referenced methods to be annotated using
preconditions specifying the minimal required
dynamic permission set of the method’s callers. For
libraries, we expect developers to write these
annotations; for client code, these preconditions
correspond to the requested minimum permission set.

4

A method execution may (directly or indirectly) raise
a SecurityException if its caller violates a
permission-precondition1, i.e. if the dynamic
permission set of its caller does not include the
minimal dynamic permission set specified in the
precondition. In order to prove that no method in a
certain assembly will ever throw such an exception,
we have to show that 1) no method implementation
violates a callee’s permission-precondition and that
2) each method’s permission-precondition is
sufficiently strong to make every demand in its body
succeed.

In a Spec# program, the dynamic permission set is
not represented explicitly in the CLR in a separate
data structure, but is computed by stack inspection.
However, to be able to mention it in our
specifications, we assume every method has access to
a variable s2 that represents the dynamic permission
set of its caller. Because we assumed that the
programs we are verifying use only one permission
type, namely XPermission, it suffices to give s
the type bool. s is true if and only if the dynamic
permission set includes XPermission.

Figure 3: Class LibraryClass
Consider the class LibraryClass of Figure 3.
This class contains two methods: DoSensitive
and SafeDoSensitive. The former method
performs a sensitive operation after demanding
XPermission. The sensitivity of the operation
depends on the parameter level: if level is large,
the operation becomes more “dangerous”. The latter
method, SafeDoSensitive, allows any code,
even code that doesn’t have XPermission in its

1 From now on, we will use the term permission-

precondition to refer to any precondition that constrains
the caller’s dynamic permission set.

2 This variable is only needed for verification purposes and
is not present at run-time.

static permission set, to perform the sensitive
operation, but only for level equal to two. We
assume that LibraryClass is part of a trusted
library and that the static permission set of that
library contains XPermission. The developer of
that class has annotated the method DoSensitive
with a precondition, specifying that it should only be
called when s is true. In other words, the developer
specified that the dynamic permission set of callers of
DoSensitive should contain XPermission.
Note that giving XPermission to a piece of code,
allows it to perform the sensitive operation for any
value of level. SafeDoSensitive has no real
precondition: it can be called by any code, in any
context.

Figure 4: (SPS) program transformation
Next, we discuss the SPS program transformation.
Operations that modify the call stack, such as method
calls and permission assertions, also (potentially)
modify the dynamic permission set. For example,
when XPermission is successfully asserted, s
becomes true. To make these modifications
explicit, the SPS program transformation inserts
additional operations to update s. Figure 4 shows
what transformations have to be applied to each part
of the program3. Note that the transformed program is
used only for static verification; the original program
is executed. Furthermore, note that this
transformation can be entirely automated and that no
user interaction is required. When reading the
transformation rules, keep in mind the difference
between Assert() (i.e. calling the Assert() method on
a permission object), and assert (the assertion of a
boolean invariant that the static verifier will have to
prove). For instance, rule (3) says that at a program
point where a Demand() is done, the verifier should
prove that s is true (i.e. XPermission is in the
dynamic permission set).

3 Note that the SPS-transformation shown in Figure 4

could be applied to IL-code to make it language
independent.

class LibraryClass{

 void DoSensitive(int level)

 requires s==true;

 {

 new XPermission().Demand();

 //do sensitive operation

 }

 void SafeDoSensitive()

 requires true;

 {

 new XPermission().Assert();

 DoSensitive(2);

 }

}

SPS(m(a1,…,an){Body}) � (1)

 m(a1,…,an,bool s){

 s = s && StaticPerm();

 SPS(Body)

 }

SPS(o.m(x1,…,xn);) � (2)

o.m(x1,…,xn,s);

SPS(p.Demand();) � (3)

assert s;

SPS(p.Assert();) � (4)

assert StaticPerm();

 s = true;

5

Figure 5: LibraryClass after transformation
Figure 5 shows the result of the program
transformation for LibraryClass. During
verification, we assume that the policy assigns
XPermission to this class. This is encoded via the
method StaticPerm: this method returns true if
the static permission set of its class contains
XPermission; otherwise, it returns false.

Figure 6: Class ClientClass
Using a static program verifier, such as Boogie, we
can verify LibraryClass. Boogie checks (among
others) that preconditions hold at every call-site and
that every assert-statement will succeed at run time. If
we can prove the correctness of the transformed class,
we know that using the original class under a
dynamic permission set that satisfies the precondition
will never result in a SecurityException. In
other words, clients can provably rely on the formal
method contract. If, for instance, the developer would

leave out the precondition on the DoSensitive()
method, verification would fail.

After having verified the correctness of
LibraryClass, we can write a client for it. The
class ClientClass of Figure 6 is a client of
LibraryClass: it calls methods of the library in
its implementation.

For client code, we cannot (always) expect
developers to write permission-preconditions. We
assume they just specify the requested minimum
permission set for each assembly, using assembly
level declarative security attributes. Each method in
the assembly then gets an (overly conservative)
precondition that requires this declared minimum
permission set. The PermissionSetAttribute
for ClientClass indicates that the developer
expects that its code can potentially be executed
without any static permission (except for the
permission to execute, which we ignore for this
example). So, for ClientClass methods,
permission-preconditions default to true (i.e. no
conditions on s). Therefore, anyone can call
ClientClass’s methods without needing to hold
XPermission.

Figure 7: ClientClass after transformation
After (automatically) adding preconditions, the
program transformation described in Figure 4 is
applied to ClientClass. The result of this
transformation is shown in Figure 7. Note that
StaticPerm returns false this time because the
static permission set of ClientClass does not
contain XPermission.

class LibraryClass{

 void DoSensitive(int level, bool s)

 requires s == true;

 {

 s = s && StaticPerm();

 assert s;

 //do sensitive operation

}

 void SafeDoSensitive(bool s)

 {

 s = s && StaticPerm();

 assert StaticPerm();

 s = true;

 DoSensitive(2, s);

}

 static bool StaticPerm()

 ensures result == true;

 {

 return true;

 }

}

class ClientClass{

 LibraryClass! t;

 void m1(bool s)

 requires true;

 {

 s = s && StaticPerm();

 t.DoSensitive(5, s);

 }

 void m2(bool s)

 requires true;

 {

 s = s && StaticPerm();

 t.SafeDoSensitive(s);

 }

 static bool StaticPerm()

 ensures result == false;

 {

 return false;

 }

}

[assembly:PermissionSetAttribute(

RequestMinimum, Name = "Execution")]

class ClientClass{

 LibraryClass! t;

 void m1()

 {

 t.DoSensitive(5);

 }

 void m2()

 {

 t.SafeDoSensitive();

 }

}

6

The transformed program and the specification of
LibraryClass (a referenced assembly) are then
“fed” to Boogie:

• The static verifier detects that m1 violates
the precondition of DoSensitive. This
indicates a SecurityException might
be thrown as part of the execution of m1
(where a method execution includes nested
method executions).

• The static verifier proves that m2 will never
raise a SecurityException because it
does not violate a precondition or assert.

Extending the Basic Idea
In the previous section we discussed the basic ideas
behind our approach. However, we considered only
programs using a single, atomic permission. In this
section we show how programs using multiple,
parameterized permissions can be verified.

Figure 8: (SPS) program transformation- revised
When considering programs using multiple
permissions, a dynamic permission set can no longer
be represented by a Boolean variable. Instead we will
represent dynamic permission sets by objects of the
class PermissionSet4. This modification makes
the rules for program transformation a bit more
complex: instead of manipulating simple boolean
variables, we now have to interact with dynamic
permission sets by means of PermissionSet
methods (see Figure 8).

4 The class PermissionSet used in this paper differs

slightly from the one in the BCL in order to make it more
amenable to static verification. The details of the
differences are irrelevant for this paper, and hence are not
discussed.

We illustrate the extended approach using the trusted
library method ReadUri of Figure 9. This method
creates a stream to read from a given universal
resource identifier (uri). Firstly, notice that the
parameter uri determines which permissions are
required: if the uri refers to a file, we need permission
to access the file system; if it refers to a website, we
need permission to access the web. Using
preconditions, we can clearly state this in the
interface of the method. Secondly, our approach
supports permissions with parameters, given their
precise specification.

Figure 9: Method ReadUri
In general, to verify a method, the verifier needs a
precise specification of PermissionSet and of all
involved permissions, in particular the constructor
and the methods Equals, Intersect, Union and
IsSubsetOf need to be carefully specified for each
permission type. In the appendices we give detailed
specifications for PermissionSet and for a
permission class. Furthermore, we show what
ReadUri looks like after program transformation in
appendix C.

5. DISCUSSION AND FUTURE WORK
Our system partially addresses the first three
disadvantages of CAS discussed in section 3.

If static verification of an assembly succeeds, run
time checks can be turned off, improving
performance.

SPS(m(a1,…,an){Body}) � (1’)

 m(a1,…,an, PermissionSet! s){

 s = s.Intersect(StaticPerm());

 SPS(Body)

 }

SPS(o.m(x1,…,xn);) � (2’)

o.m(x1,…,xn, s.Copy());

SPS(p.Demand();) � (3’)

assert SPS(allows(s,p));

SPS(p.Assert();) � (4’)

assert SPS(allows(StaticPerm(),p);

 s = s.AddPermission(p);

SPS(allows(s,p)) � (5)

 p.IsSubsetOf(

 s.GetPermission(p.GetType()));

public Stream ReadUri(Uri! uri)

 requires uri.Scheme == "file" ==>

 allows(s, newFileIOPermission(

 uri.AbsolutePath));

 requires uri.Scheme == "http" ==>

 allows(s,

 newWebPermission(uri.Host));

 {

 String p = uri.AbsolutePath;

 String h = uri.Host;

 Stream stream = null;

 if(uri.Scheme == "file"){

 stream = File.Open(p);

 }

 if(uri.Scheme == "http"){

 new WebPermission(h).Demand();

 new SocketPermission(h,80).Assert();

 Socket socket = new Socket(h, 80);

 stream = new NetworkStream(socket);

 }

 return stream;

}

7

By making security requirements explicit as
preconditions, formal documentation for the CAS
related behavior of methods is provided, and if the
method verifies, one can be sure that the
documentation is correct in the sense that if the client
security context satisfies the precondition, there will
definitely be no security exceptions.

The declarative nature of the preconditions makes it
easier to understand what a library actually enforces:
one does not need to look at the implementation to
understand the security requirements of a method.

Hence we believe the proposed system is valuable as
it stands. Still, we envisage a number of adaptations
and extensions that have not yet been explored
completely, and will be the subject of future work.

Supporting history based access control
To deal with the fourth disadvantage listed in section
3, our system could be adapted to verify history based
access control [Aba03a] instead of standard stack
inspection. To support history based access control,
the SPS transformation needs small changes, and
methods do not only need preconditions on the
security context, but also postconditions: every
method might potentially influence the dynamic
permission set even after it has returned. It is not
clear to us yet whether this additional annotation
overhead would be workable in practice.

Trading off annotation overhead for
precision
Our system supports a tradeoff in annotation
overhead versus precision of the analysis. A library
developer has to annotate methods with
preconditions, but the weakest precondition that
guarantees that no security exceptions will be thrown
can be complex to write and will in general not be
computable automatically.

By writing stronger but simpler preconditions
soundness is maintained, but some valid programs
might be rejected. Finding the right balance between
complexity of annotations and precision of the
analysis can only be done by building up practical
experience.

Reducing annotation overhead by
inferring preconditions
While computing the weakest precondition that
ensures no security exceptions will be thrown is
infeasible in general, in many cases it is actually quite
easy.

An analysis of the use of CAS in the Rotor BCL
shows that most occurrences of permission demands
are instances of the following pattern: a method
validates parameters, creates an appropriate

permission possibly based on method parameters,
demands that permission and subsequently asserts
sufficient permissions to make sure the rest of the
method will not throw further security exceptions.
For methods that follow this pattern, inferring an
appropriate precondition automatically is fairly easy.
In particular, if the demand is specified declaratively
(40% of the demands of the Rotor BCL are
declarative), inferring the corresponding precondition
is trivial. So there is hope that annotation overhead
can be kept small.

The hardest cases are probably methods that do not
themselves demand or assert permissions, but instead
call other methods that do so.

A full assessment of the feasibility of inferring
preconditions is future work.

6. RELATED WORK
Static analysis of stack inspection has been discussed
extensively in the literature.

Pottier, Skalka and Smith [Pot01a] developed a
security typing system and showed that in a type-safe
program, no demand ever fails at run-time. Our
preconditions are more expressive, and consequently
less conservative, than their typing system. As
opposed to Pottier, our analysis is path-sensitive. For
instance, for

if(i+j != j+i){

 new DnsPermission().Demand();

}

Pottier requires DnsPermission to be in the
dynamic permission set before execution of the
example, whereas we do not.

A second difference is that [Pot01a] considers
permissions to be atomic: a piece of code either has
the permission (PermissionState.Unrestricted), or
does not have the permission at all
(PermissionState.None). For some types of
permissions, such as FileIOPermission, this is too
restrictive. Our approach can handle parameterized
permissions. For instance, consider the following
example:

new FileIOPermission("/tmp");

Our approach allows client code that only has
permission to access to the temporary directory, to
call methods containing this statement. Atomic-
permission approaches would reject such programs.

However, the increased expressiveness of our
approach comes at a price: [Pot01a] can
algorithmically infer the type of each method, while
we require programmers to write preconditions.
Moreover, to benefit from the path sensitivity of our

8

approach, one potentially needs specification and
verification of the functional correctness of code on
the path to a permission demand. For now, we reduce
the annotation overhead by using sensible defaults. In
the future, we hope to find a way to automatically
infer or safely approximate these preconditions.

In [Bes04a], Besson, Blanc, Fournet and Gordon
propose a technique for analyzing the security of
libraries for systems that rely on stack inspection for
access control. Their tool generates a permission-
sensitive call graph, given a library and a description
of the permissions granted to unknown client code.
This graph can then be queried to detect anomalous
or defective control flow in the library.

Bartoletti, Degano and Ferrari [Bar01a] use safe
approximations of the permissions granted/denied to
code at run time to reduce some of the overhead due
to stack inspection. Their analysis requires the entire
program as input; it cannot handle virtual calls to
unknown code.

Koved, Pistoia and Kershenbaum [Kov02a] present a
technique for computing the set of required access
rights at each program point. Their technique uses a
context sensitive, flow sensitive, interprocedural data
flow analysis. We are currently investigating this
technique for automatically inferring the permission-
preconditions at each program point. However,
because of path insensitivity, this technique is overly
conservative.

The program transformation described in this paper is
based on the Security-passing Style transformation
first proposed by Wallach. In [Wal00a], Wallach
explains how the performance of stack inspection can
be improved using this transformation.

7. CONCLUSION
This paper proposes a system for static verification of
compliance to a Code Access Security policy. It
relies on expressive method contracts to specify the
dynamic permission set that a method requires the
caller to have in order to execute without security
exceptions.

The system supports modular verification of methods
annotated with such contracts. Verification of such a
single method is useful in the context of library
development, and ensures consistency of the contract
with the implementation of the method, essentially
showing that the (formal) documentation of security
related behavior of the method is correct.

If all assemblies that make up a program verify, one
can be sure there will be no security exceptions, and
hence run time stack inspection can be turned off.

8. ACKNOWLEDGMENTS
Bart Jacobs is a Research Assistant of the Fund for
Scientific Research - Flanders (Belgium) (F.W.O.-
Vlaanderen).

The authors would like to thank Wolfram Schulte for his
comments and feedback on a draft of this paper.

We would also like to thank the reviewers for their useful
comments and feedback.

9. REFERENCES
[Aba03a] Abadi, M., Fournet, C. Access Control

Based on Execution History. NDSS, pp. 6-7,
2003.

[Bar01a] Bartoletti, M., Pierpalo, D. and Ferrari, G.
Static Analysis for Stack Inspection. in Elsevier
Science B.V., 2001.

[Bar04a] Barnett, M., Leino, K.R.M. and Schulte,W.
The Spec# Programming System: An Overview.
Microsoft Research, 2004.

[Bes04a] Besson, F., Blanc, T., Fournet, C. and
Gordon, A.D. From Stack Inspection to Access
Control: A Security Analysis for Libraries. in
proc. 17th IEEE Computer Security Foundations
Workshop, pp. 61-75, 2004.

[Fou02a] Fournet, C. and Gordon A.D. Stack
Inspection: theory and variants. Symposium on
Principles of Programming Languages, 2002.

[Fre03a] Freeman, A. and Jones, A. Programming
.NET Security, O’Reilly 2003.

[Gon02a] Gong, L. JavaTM 2Platform Security
Architecture. 2002.

[Kov02a] Koved, L., Pistoia, M. and Kershenbaum,
A. Access Rights Analysis for Java. 2002.

[Pot01a] Pottier, F., Skalka, C., Smith, S. A
Systematic Approach to Static Access Control. in
proc. of 10th European Symposium on
Programming, pp. 30-45, 2001.

[Stu03a] Stutz, D., Neward, T and Shilling, G.
Shared Source CLI. O’Reilly, 2003.

[Wal00a] Wallach, D.S., Appel, A.W. and Felten,
E.W. SAFKASI: A Security Mechanism for
Language-based Systems. ACM Transactions on
S. E. and M. 9, No. 4, 2000.

9

Appendix A: PermissionSet

Below, we give the specification of the class PermissionSet. The definition given below differs slightly from
the one given in the BCL:

• AddPermission does not modify this, but instead creates a new permission set.
• Intersect does not return null when the intersection is empty. Instead it returns an empty permission set.
• GetPermission never returns null. If a permission is not present in the set, GetPermission

returns a permission with PermissionState.None.
In Spec#, non-null types (see [Bar04a]) are denoted by T! (where T is an ordinary reference type).

class PermissionSet{

 public IPermission! GetPermission(Type! t)
 ensures result.GetType() == t;

 public PermissionSet! Intersect(PermissionSet! other)
 ensures Forall {Type! t;
 result.GetPermission(t).Equals(

 this.GetPermission(t).Intersect(other.GetPermission(t)))
 };

 public PermissionSet! AddPermission(IPermission! p)
 ensures Forall {Type! t;
 (t != p.GetType())
 ==>
 result.GetPermission(t).Equals(this.GetPermission(t)
 };
 ensures result.GetPermission(p.GetType()).Equals(
 p.Union(old(GetPermission(p.GetType()))));
}

Appendix B: IPermission and SocketPermission

Below, we give the specifications of IPermission and of (a simplified version of) SocketPermission.
The definitions given below differ slightly from the ones given in the BCL:

• Intersect will never return null, not even when the intersection is empty. Instead it will return a permis-
sion with PermissionState.None.

public interface IPermission {

 bool IsSubsetOf(IPermission! other)

 requires other.GetType() == this.GetType();

 IPermission! Intersect(IPermission! other)

 requires other.GetType() == this.GetType();

 ensures result.GetType() == this.GetType();

 IPermission! Union(IPermission! other)

 requires other.GetType() == this.GetType();

 ensures result.GetType() == this.GetType();

}

10

public sealed class SocketPermission : IPermission {

 public bool Includes(EndPointPermission p);

 public SocketPermission(PermissionState state)

 ensures state == PermissionState.Unrestricted ==>

 Forall{EndPointPermission! p; Includes(p)};

 ensures state == PermissionState.None ==>

 Forall{EndPointPermission! p; !Includes(p)};

 public SocketPermission(string host, int port)

 ensures Forall{EndPointPermission! p;

 Includes(p) == (p.Host == host && p.Port == port)};

 public bool IsSubsetOf(SocketPermission! other)

 ensures result == Forall{EndPointPermission! p;

 Includes(p) ==> other.Includes(p)};

 public SocketPermission! Intersect(SocketPermission! other)

 ensures Forall{EndPointPermission! p; result.Includes(p) ==

 (this.Includes(p) && other.Includes(p))};

 public SocketPermission! Union(SocketPermission! other)

 ensures Forall{EndPointPermission! p; result.Includes(p) ==

 (this.Includes(p) || other.Includes(p))};

 public bool IsSubsetOf(IPermission! other)

 ensures result == IsSubsetOf((SocketPermission!) other);

 public IPermission! Intersect(IPermission! other)

 ensures result == Intersect((SocketPermission!) other);

 public IPermission! Union(IPermission! other)

 ensures result == Union((SocketPermission!) other);

}

11

Appendix C: ReadUri after (SPS) program transformation

class ClassName{

 public Stream ReadUri(Uri! uri, PermissionSet! s)
 requires uri.Scheme == "file" ==>
 new FileIOPermission(uri.AbsolutePath).IsSubsetOf(
 s.GetPermission(new FileIOPermission(uri.AbsolutePath).GetType()));
 requires uri.Scheme == "http" ==>
 new WebPermission(uri.Host).IsSubsetOf(
 s.GetPermission(new WebPermission(uri.Host).GetType()));
 {
 s = s.Intersect(StaticPerm());
 String p = uri.AbsolutePath;
 String h = uri.Host;
 Stream stream = null;
 if(uri.Scheme == "file"){
 stream = File.Open(p, s.Copy());
 }
 if(uri.Scheme == "http"){
 assert new WebPermission(h).IsSubsetOf(
 s.GetPermission(new WebPermission(h).GetType()));
 assert new SocketPermission(h, 80).IsSubsetOf(
 StaticPerm().GetPermission(new SocketPermission(h, 80).GetType()));
 s = s.AddPermission(new SocketPermission(h, 80));
 Socket socket = new Socket(h, 80, s.Copy());
 stream = new NetworkStream(socket, s.Copy());
 }
 return stream;
 }

 public static PermissionSet StaticPerm()
 //---> for every statically assigned permission p
 ensures p.IsSubsetOf(result.GetPermission(p.GetType()));

}

12

Static Analysis for Identifying and Allocating Clusters
of Immortal Objects

Archana Ravindar
Department of Computer Science

Indian Institute of Science
Bangalore-12

archana@csa.iisc.ernet.in

Y.N.Srikant
Department of Computer Science

Indian Institute of Science
Bangalore-12

srikant@csa.iisc.ernet.in

ABSTRACT

Long living objects lengthen the trace time which is a critical phase of the garbage collection process. However, it
is possible to recognize object clusters i.e. groups of long living objects having approximately the same lifetime
and treat them separately to reduce the load on the garbage collector and hence improve overall performance.
Segregating objects this way leaves the heap for objects with shorter lifetimes and now a typical collection can find
more garbage than before.

In this paper, we describe a compile time analysis strategy to identify object clusters in programs. The result of
the compile time analysis is the set of allocation sites that contribute towards allocating objects belonging to such
clusters. All such allocation sites are replaced by a new allocation method that allocates objects into the cluster
area rather than the heap. This study was carried out for a concurrent collector which we developed for Rotor,
Microsoft’s Shared Source Implementation of .NET. We analyze the performance of the program with combina-
tions of the cluster and stack allocation optimizations. Our results show that the clustering optimization reduces
the number of collections by 66.5% on average, even eliminating the need for collection in some programs. As a
result, the total pause time reduces by 62.8% on average. Using both stack allocation and the cluster optimizations
brings down the number of collections by 91.5% thereby improving the total pause time by 79.33%.

Keywords
Static analysis, compiler-assisted memory management, effective garbage collection, object clustering

1 INTRODUCTION
Garbage collection has come a long way since the time
it was introduced for collecting lists in LISP. Now it
has become a necessity in modern object oriented lan-
guages, since it successfully abstracts the problem of
memory management from the user. Advances like
collecting generations and concurrent collection were
successful in bringing down the collection overhead
and thereby making garbage collection practically us-
able in runtime systems.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

.NET Technologies’2005 workshop proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

All said and done, the program incurs performance
penalty if it is garbage collected. So it becomes essen-
tial to keep the overhead at a minimum. This is pos-
sible if we reclaim the maximum amount of garbage
with the least number of effective collections. Sev-
eral previous work have tried to achieve this goal in
their own way by looking at different object proper-
ties like connectivity [Hay91, Hir02, Hir03, Sam04],
object types [Shu02], age [McK99] other than object
traceability alone.

Our goal is to make each collection effective and
thereby reduce the total number of collections required
to reclaim garbage in the program. We achieve this by
identifying long living clusters of objects and allocat-
ing them in a separate mature object space that is not
subject to garbage collection. The idea is to avoid trac-
ing objects that are going to live till the end. Segregat-
ing objects this way leaves the heap for objects with
shorter lifetimes and now a typical collection can find
more garbage than before, making collections more ef-
fective. Although we have studied clustering in a gen-

13

erational setting this elementary concept is applicable
to incremental collectors too.

This paper describes a compile time clustering analy-
sis algorithm based on the compositional pointer and
escape analysis framework proposed in [Wha99]. The
clustering algorithm makes use of the lifetime in-
formation of objects computed by the points to es-
cape analysis algorithm, that is constructed for every
method. The objects that do not escape the longest
living methods are designated as the root of the clus-
ter. The objects that are reachable from the root are
treated as cluster objects. All such cluster objects are
statically allocated in a separate mature object space.
When the stack frame of the method binding the life-
time of the root object is popped, the entire cluster is
garbage and hence the mature object space can be re-
claimed in its entirety.

The clustering scheme is evaluated using a base-
line collector that can run in both stop-the-world and
concurrent modes that we developed for Rotor, Mi-
crosoft’s shared source implementation of .NET. The
baseline collector has two generations and uses the
copying scheme to collect both. We analyze the per-
formance of the collector and the program with the
cluster and the stack allocation optimizations. Our re-
sults show a marked decrease in the total number of
collections and considerable improvement in the indi-
vidual collection performance. It is observed that a
combination of the clustering and the stack allocation
optimization improves the performance even further.

The remainder of the paper is organized as follows.
We begin by reviewing related work in Section 2. Sec-
tion 3 describes the concept of clustering and how we
extend the compositional pointer and escape analysis
to identify clusters. In Section 4 we describe the base-
line collector and the experimental platform. In Sec-
tion 5 we present and evaluate the results. Finally we
conclude in section 6 with possible avenues of future
work.

2 RELATED WORK
Hayes introduced the term object clustering [Hay91].
The main observation was that large clusters of ob-
jects, pointed to by key objects were allocated at
roughly the same time and lived for approximately the
same amount of time. When the key objects became
unreachable it indicated a good opportunity to collect.
Hayes identified the cluster as the program executed
and incrementally placed it in the mature object space.
Our work tries to identify the cluster at compile time
and statically allocates the cluster into the mature ob-
ject space. The compile time clustering algorithm is
used to find key objects. Unlike Hayes’s scheme where

the mature object space is collected, we do not sub-
ject the mature object space to garbage collection. We
combine the concepts of escape analysis and cluster-
ing to reclaim the cluster.

Pretenuring tries to solve the problem of repeated col-
lections of long living objects by directly allocating
such objects into the old generation by using static and
dynamic profiles [Bla98, Che98, Har00]. But the old
generation is still subject to collection, so in spite of
applying the pretenuring optimization, major collec-
tions might still occur. Our scheme tries to completely
eliminate major collections by allocating these long
living or immortal objects in a separate mature object
space that is not subject to collection.

Dynamic object colocation [Sam04] allocates objects
directly into the same area of an object that will ref-
erence it, by using a mix of compile-time and runtime
optimizations. Static compiler analysis is used to com-
pute connectivity information and the runtime compo-
nent involves an allocation routine which takes a colo-
cator object as an additional parameter and is respon-
sible for dynamic colocation. The dynamic colocator
can start placing objects into the mature object space
only when some initial set of colocators are present.
Hence it requires a warm up young generation collec-
tion to produce these initial colocators, whereas the
intention of our scheme is to reduce the number of
collections, even eliminating the need for collection
if possible. [Sam04] reports a considerable increase in
the number of intergenerational pointers for some of
its programs. Our results indicate that clustering only
reduces the number of intergenerational pointers but
never increases it.

Connectivity based garbage collection makes use of
the observation that connected objects die together.
Based on this hypothesis it allocates objects that are
connected together into a statically determined parti-
tion so that collecting a partition would be much faster
than collecting the heap. [Hir03] works by building
a hierarchy of partition dags and collects these parti-
tions such that an ancestor is collected together with its
descendants thereby eliminating the need for a write-
barrier.

3 CLUSTERING
The concept of data is fundamental to every program.
Programs feed on data, they build several data struc-
tures that assist them in performing their functional-
ity. In the object oriented paradigm, objects store data.
These data objects are seldom isolated, rather they are
related to one another in some way and hence linked
together to form clusters.

Most often a program is associated with a set of crit-

14

ical objects that are bound to stay till almost the end
of the program. Such objects are said to be immor-
tal. If these objects are treated in the same way as the
default heap objects, they would unnecessarily be pro-
cessed by the garbage collector, resulting in increased
collection times. Figure 1 illustrates the impact of long
living objects on the total collection time, measured as
the fraction of time spent in scavenging live objects.
We observe that the scavenge time accounts for a sig-
nificant fraction of the total collection time (up to 83%
in 211 anagram). Further investigation reveals that
up to 88% of the objects were found to be live during
the collection. Hence tracing immortal or long living
clusters plays a major role in lengthening the total col-
lection time.

Figure 1: Proportion of Collection Time spent on
Scavenge.

If we can recognize the allocation sites in the program
responsible for creating long living clusters (high-
lighted in Figure 2) at compile time, we can statically
allocate them in a region that is not processed by the
garbage collector. The region can then be reclaimed
in its entirety at program termination. Such a strat-
egy allows the garbage collector to focus on objects
that are volatile and objects whose lifetimes cannot be
statically determined. We describe the clustering algo-
rithm which identifies long living clusters in the next
section.

Extending Compositional Pointer Analysis
To Identify Clusters
The algorithm to identify clusters in a program is
based on the compositional and pointer escape anal-
ysis proposed for Java programs by Whaley and Ri-
nard [Wha99]. The referencing behavior among ob-
jects and fields is abstracted in the form of a points-

Figure 2: Set of Allocation Sites that contribute to-
wards Cluster Objects in 211 anagram

to-escape or the PTE graph. Nodes in the PTE graph
represent objects allocated by the program and edges
represent references between them. Objects that are
created within the currently analyzed region are rep-
resented by inside nodes in the PTE graph, whereas
those created outside the currently analyzed region or
accessed via outside edges are represented by outside
nodes in the PTE graph. Similarly inside edges repre-
sent references created within the currently analyzed
region. References created outside the currently ana-
lyzed region are represented by outside edges in the
PTE graph. We restrict our analysis to programs that
are single-threaded.

The algorithm is compositional in nature i.e. meth-
ods can be analyzed independently of their callers and
callees. [Wha99] describes an intra-procedural algo-
rithm that computes individual PTE graphs for each
method and an inter-procedural algorithm that com-
putes precise points-to-escape information for each
method. The inter-procedural algorithm combines the
PTE graph for each method with the PTE graphs cre-
ated for all its callees.

The ultimate objective of the algorithm is to determine
for every allocation site A, the method M whose stack
frame will outlive the object created at A. In such a
situation, object created at A is said to be captured by

15

M. If enough information is not available to ascertain
whether an object escapes or not, it is allocated in the
heap.

An object is said to have escaped a method M if it is
a formal parameter or if a reference to the object is
written into a static class variable or a reference to the
object is passed to one of the callees of M say N and
there is no information available about what N did to
the object. The object will escape if M returns it. If the
object satisfies none of the above conditions it is said
to be captured within M.

In essence, when a complete points-to escape analysis
graph is constructed for a method M it consists of the
nodes that were either created within the method M or
nodes created outside M but are reachable from within
M. The clustering algorithm makes use of this fact to
recognize a cluster.

3.1.1 Design
In this section we describe the clustering algorithm
in the form of pseudocode as shown in Figures 3
and 4. To begin with, we need to preprocess the
statements to include only those that will affect the
PTE graph [Wha99]. The csharp compiler invokes
CompileMethod for every method, that creates basic
blocks, while it translates the source code into op-
codes. We intercept at points where code is generated
for statements that we are interested in and save the
details of the statement in a separate data structure.

Once the code for the method is generated, we iter-
ate through the statements that we created to compute
the PTE graph. The graph is implemented as an adja-
cency list. Each node is a structure that stores the set
of incoming and outgoing edges, node kind and infor-
mation whether it was visited or not. Each edge is a
structure that stores the head and the tail node, edge
kind and the variable it represents.

During the intra-procedural analysis, when we en-
counter a call statement it is possible that the PTE
graph for that call is not yet computed. The status of
all such statements that have incomplete information
is marked as pending. During the inter-procedural
analysis we process only pending statements to com-
pute the complete PTE graph. Finally, we process the
PTE graphs of only those methods M that lie close
to main in the call graph, to compute cluster informa-
tion. This list of methods can be got by profiling. The
PTE graph for all such M would consist of only those
nodes that have escaped up to M, since they are reach-
able from within M. All other nodes that have been
captured within methods lying below M would not be
visible in the PTE graph for M. Hence the cluster al-
gorithm correctly identifies only those objects that are
going to live till the stack frame of M has been popped

off and is bound to benefit the collection process.

The marked nodes in M which are not pointed to by
any other node in the PTE graph of M are said to be
the roots of the cluster. They serve the same function
as the key objects because they are the only way to
reach a cluster. When the key object is garbage, all
the objects connected to it are dead. Hence when the
stack frame for method M is popped, the root object
and hence the entire cluster associated with it is dead
and can therefore be reclaimed.

The clustering analysis algorithm is conservative in
the sense that some of the objects belonging to the
cluster might die before the stack frame containing the
root of the cluster is popped. This is especially true
in cases where a dynamically growing structure like
a stack or a list is part of the cluster. However, we
shall shortly see that even this naive approach of iden-
tifying a clusters performs reasonably well for most
programs.

Figure 3: Pseudocode for Inter and Intra procedu-
ral analysis

3.1.2 Example
Figure 5 shows the local PTE graphs for two of the
methods in 211 anagram. In the PTE graph for

16

Figure 4: Pseudocode for identifying Clusters

Figure 5: Identifying clusters using PTE graphs.

read file, sif is captured. Despite being a local ob-
ject, istr is linked to the dict variable by the library
call dict.Add and hence becomes a part of the clus-
ter. Since the reference is added outside the method,
it is indicated as an outside edge. The intra-procedural
analysis for read file deems all nodes except sif as
escaped. The dotted line in Figure 5 indicates how
the nodes in run will be mapped onto the nodes of the
callee read file during inter-procedural analysis.
Interprocedural analysis is followed by the application
of the clustering algorithm as described earlier, that
marks all the nodes in the graph that corresponds to the
cluster allocation sites. In this particular example, the
clustering algorithm accesses the complete PTE graph
of run and marks all nodes reachable from the node
representing agm as cluster nodes. agm is designated
as the root of the cluster. Since by definition each node
is associated with an object and hence with an alloca-
tion site producing that object, one can output the set
of allocation sites responsible for cluster allocation.

The fact that the analysis is compositional makes it

possible to analyze libraries independently of the ap-
plication. When analyzing an application, we use pre-
computed results for any library calls that it may make.
Since the clustering algorithm can access the precom-
puted results for the library calls, it is possible for
the algorithm to come up with cluster allocation sites
within the library code, as we saw dict.Add in Figure
5. To support clustering completely, we create a new
library that consists of additional functions to support
cluster allocation.

Other changes to Rotor for implementing the cluster-
ing scheme include the introduction of two new op-
codes newclus and newst that are wired to perform al-
location in the cluster and in the stack respectively. In
this implementation, we have simulated the allocation
on the stack using a separate area apart from the heap
and the cluster area. To measure the impact of sim-
ulating the stack allocation we ran the programs with
a maximum heap size (so that there was no garbage
collection) and compared the elapsed times with the
baseline which has no stack allocation implemented.
On average, the overhead of stack implementation was
found to be -2.1%.

3.1.3 Issue with Boxing
In any implementation of CLI, when an instance of a
value type is passed as a parameter to a method that
expects a reference parameter, boxing is performed
[Ecm03]. Boxed objects are implicit and are not ev-
ident in csharp source code. Since the clustering algo-
rithm works on the source code, it does not have a han-
dle to the boxed objects. Our implementation tackles
this problem by converting implicit boxing to explicit
boxing. We overload the existing methods that take
a reference as a parameter, to take value types also.
These additional methods now include code that per-
forms explicit boxing. So now the clustering algorithm
can access the boxed objects and include them in the
analysis.

4 METHODOLOGY
Baseline Collector
The baseline collector is designed to work on the prin-
ciples of concurrent replication collection [Too93].
It consists of two generations. The young genera-
tion is also known as newspace. This is where all
the new objects are allocated. The old generation
is comprised of two semispaces- fromspace and the
tospace. Copying collection is used to collect both
generations. When allocation in the newspace crosses
a particular threshold, a minor collection is invoked
that scavenges the live objects into fromspace. Even-
tually the fromspace gets filled up to its threshold
value which invokes a major collection that collects

17

Figure 6: Baseline Collector Organization with
Clustering Incorporated.

the entire heap.

Scavenging is a concurrent operation, hence the pro-
gram and the collector thread need to be synchronized
to ensure that things work correctly. Our approach for
synchronizing the program and the collector is an ex-
tension of the Dijkstra’s tricolor scheme. We associate
each object with a color that is used to indicate ob-
ject state information to both the collector and the pro-
gram. The details of the synchronization scheme can
be found in [Rav05].

All generational collectors are associated with a write
barrier [Hos92], that is a piece of code executed with
every pointer write. We add the synchronization code
to the write barrier to support concurrency in the col-
lector. The baseline collector supports finalization,
weak pointers and interior pointers. However, unlike
the rotor garbage collector, it does not support large
objects allocation and pinning. Incorporating cluster-
ing into the garbage collector adds a new mature object
space to the existing heap. The baseline collector can
also run in the stop-the-world mode. The final memory
model of the collector is as shown in Figure 6.

Experimental Platform
This study was conducted on Rotor version 1.0 [Rot01].
We ran the programs on an Intel pentium III 450 Mhz
processor with 128MB of main memory and a 512KB
cache, running Free BSD 4.5.

5 RESULTS
In this section, we evaluate the baseline collector by
comparing its performance with Rotor’s garbage col-
lector. We evaluate the clustering optimization w.r.t.
the collector and program performance. We also study
the impact of the stack allocation optimization along
with the clustering optimization. To carry out this
study, we used the C# versions of the Java programs
from Spec JVM98 [Spc98], Java olden [Jolden], Java
grande [Jgrande] and the gc test suite provided with
Rotor [Rot01]. The benchmarks and their runtime pa-
rameters are summarized in Table 1.

Performance of the Concurrent Collector
In this section we describe the performance of the
baseline collector w.r.t. pause times and elapsed times.
The results for both the stop the world and concurrent
modes are presented. The heap sizes are chosen such
that both the Rotor garbage collector and the baseline
collector have the same number of collections.

5.1.1 Pause Time
The main objective for choosing a concurrent gc algo-
rithm for the baseline collector was to reduce the pause
times. Almost all the programs report significant re-
ductions in pause times for the concurrent mode, ex-
cept for raytrace which shows an increase of 4.62%.
The average reduction in pause times for the concur-
rent mode is 36.24%. However pause times increase
by 2.14% on average when the collector is run in the
stop-the-world mode.

5.1.2 Elapsed Time
The baseline collector introduces a very small over-
head of 1.11% when run in the stop-the-world mode.
However, the overhead is slightly worse in the concur-
rent mode. That is because of the additional synchro-
nization code that needs to be executed. The average
overhead on the elapsed time is 1.75% for the concur-
rent mode. It can be observed that in spite of a substan-
tial improvement in the pause time, the elapsed times
do not change by much. That is because the collection
time constitutes a very small portion of the elapsed
time.

Performance of Clustering
In this section we describe the performance of the pro-
grams when the clustering optimization and the stack
allocation optimizations are performed. The programs
are run with the heap sizes as shown in Table 2. Clus-
tering reduces the total heap requirement by 12.6% on
average.

5.2.1 Reduction in the Number of Collections
Both clustering and the stack allocation optimizations
are geared towards reducing the load on the garbage
collector. For certain programs where the total popula-
tion of objects is dominated by clusters, clustering op-
timization yields a lot of benefit. For programs where
volatile objects dominate, stack allocation yields sim-
ilar benefit. The average reduction in the number of
collections for programs where only the stack allo-
cation optimization and the clustering optimization is
used is 75% and 66.5% respectively. A combination
of the stack and cluster allocation yields the highest
reduction of collections at 91.56%. The results are the
same for the collector when operated in the concurrent
mode.

18

Source Program Runtime parameters
Rotor gc test suite directedgraph No. of vertices=100

Spec JVM98 208 cst No of iterations=1, speed=1
209 db No. of iterations=1, Speed=10

211 anagram Speed=1
210 si Speed=10

Java Olden bisort No of nodes=4, size=2500
jhealth MaxLevel=5, MaxTime=100, seed=23
power No of feeders= 5, No of laterals= 10,

No of branches= 3, No of leaves= 5
tsp Size= 600

treeadd No of levels=16
Java Grande raytrace Width= 25, height= 25

Table 1: Set of Benchmarks used and their Configuration

Program Young gen Old gen Young gen Old gen Max Cluster Size
size (MB) size (MB) with clustering (MB) with clustering (MB) (MB)

211 anagram 2 8 0.7 1.4 3.8
209 db 1 10 1 2 2.5
210 si 1 2 1 2 0.9
bisort 1 2 1 2 0.05
jhealth 1 2 0.3 0.6 2.6
208 cst 1 40 0.7 1.4 12.7
power 1 2 0.3 0.6 0.07

tsp 1 2 0.7 1.4 0.05
raytrace 0.8 1.6 0.8 1.6 3.6

directedgraph 1 2 1 2 0.15
treeadd 4 8 0.19 0.38 1.4

Table 2: Heap and Mature Object Space sizes

5.2.2 Reduction in Collection and Pause Times
One of the direct consequences of the reduction in the
number of collections is the reduction in the total col-
lection time and the total pause time. Reduction in the
number of objects scavenged also contributes to reduc-
tion in the collection time. The average reduction in
the total collection time using only the stack allocation
optimization is 60.9%; with only the cluster optimiza-
tion it is about 60.6%; with both optimizations on, the
reduction is about 79.27%. The corresponding average
reductions in the pause times are 63.55% with only the
stack allocation optimization, 62.82% with only the
cluster optimization and 79.33% with both optimiza-
tions applied.

When the collector operates in the concurrent mode,
the average reductions in pause times are 60.09%,
60.9% and 79.27% with only the stack allocation, only
the clustering optimization and both optimizations ap-
plied respectively.

5.2.3 Reduction in Copycounts

Once the clustering optimization is done, there is
greater chance for a collection to find more garbage
than earlier. Since the long living clusters are ex-
empted from collection, only those objects that are rel-
atively volatile remain in the heap. This causes a re-
duction in the number of objects copied. Copy counts
can also reduce due to the reduction in the number of
collections as we saw in the previous section. Copy
counts reduce by almost 60.11% with only the stack al-
location optimization applied and by 91.37% with the
cluster optimization applied. A combination of both
reduces the copy counts further by 94.02%. The re-
sults are almost the same for the collector when oper-
ated in the concurrent mode.

5.2.4 Impact on Inter-region References
A profile of the inter-region references indicate very
minimal interaction between the cluster objects and
the heap objects (Table 3). The number of such clus-
ter to heap pointers is critical to the success of cluster-
ing. The cluster is reclaimed in its entirety and not col-

19

Program Total No. of cluster Total interregion Total interregion % Reduction % Garbage
to heap references pointers without clustering pointers with clustering in barriers in cluster

211 anagram 5 - - - 25
209 db 1 6916 14 99.79 11.2
210 si 2 44731 39324 12.08 19.38
bisort 0 7 7 0 0
jhealth 0 - - - 77.5
208 cst 6 403912 169319 58.08 33.3
power 0 1 1 0 0

tsp 0 8 8 0 0
raytrace 3 163798 293 99.82 99.5

directedgraph 0 - - - 0.02
treeadd 0 - - - 0

Table 3: Interregion References and Effectiveness of the Clustering Scheme

Figure 7: Impact on the Number of Collections

lected as in the case of the heap that is collected from
time to time. Just as we track inter-generational point-
ers to ensure complete collection, we need to track
cluster to heap pointers. Hence, if the number of such
cluster to heap pointers are large, the collection time
is bound to increase. The average number of cluster to
heap references that the clustering algorithm achieves
is 1.54. Clustering is also found to reduce the total
number of inter-region pointers as shown in Table 3.
The impact on the number of inter-region pointers is
studied only for those programs in which the number
of collections are reduced to a non-zero value with the
application of clustering. The average reduction in the
number of interregion pointers is found to be 33.72%.

5.2.5 Reduction in Allocation times
The cluster allocation routine is straightforward and
need not populate objects with extra header informa-
tion which would otherwise be required for heap ob-

Figure 8: Total Collection times with Clustering
and Stack Allocation Optimizations

jects. So the time required to allocate a cluster object
is less than the time required to allocate a heap ob-
ject. Clustering improves the total allocation time by
14.99% on average. Stack allocation improves the to-
tal time by 12.61% on average. A combination of both
optimizations results in an improvement of 20.63%.

5.2.6 Impact on Elapsed Time
Clustering has little effect on the total elapsed time,
on average it increases the elapsed time by 0.44%. Us-
ing only the stack allocation optimization improves the
elapsed times by 1.75% on average. A combination of
both the optimizations improves the elapsed time by
1.018%. The main reason for this is that the collection
time is only a small portion of the overall elapsed time.
Only if there is a drastic improvement in the collection
time, elapsed times improve visibly, for example the
number of collections in 208 cst with the clustering

20

Figure 9: Total Copy Counts with Clustering and
Stack Allocation Optimizations

optimization decreases from 23 to 11. Hence, in this
case the elapsed time reduces by 12.19%. The other
reason is that the addition of a separate cluster area in-
troduces overheads w.r.t. the elapsed time. Since an
object can now reside in the cluster area apart from the
heap, the garbage collector code needs to recognize
objects in the cluster area and also in the stack, if the
stack allocation optimization is applied.

Additional barrier code to keep track of cluster to heap
pointers also contributes to increased elapsed times.
The effect on elapsed time is more or less the same for
the concurrent mode. Using just the escape analysis
optimization, the average elapsed times decrease by
only 0.377%; clustering increases the elapsed times by
1.19%. Using both optimizations the average elapsed
time decreases by 0.59%

Figure 10: Impact of the Clustering and Stack Al-
location Optimizations on the Elapsed Time

5.2.7 Effectiveness of the Clustering Algorithm
To evaluate the effectiveness of the clustering algo-
rithm and to verify its claim of retaining genuinely
long living objects right up to the end, additional in-
strumentation is added to the code. At the time of
reclamation of the cluster area, instead of freeing it
up, the cluster area is collected to find the amount
of garbage generated within itself. The amount of
garbage generated in the cluster using our algorithm
is found to be 24.17% on average. Ideally it should be
0%.

The clustering algorithm presented here does not cap-
ture dynamic growth of clusters. More complex
pointer analysis is required to come up with an ideal
cluster. Since the clustering algorithm is by nature
static, Allocation site homogeneity is an issue. For
example raytrace includes an allocation site that is
called in two different contexts. In one it creates a cap-
tured object, in the other it creates a cluster object. If
we decide to allocate the object in the heap, the num-
ber of cluster to heap references shoot up, thereby de-
grading the performance of the collector. On the other
hand, if we decide to cluster allocate the object, huge
amount of garbage would be generated within the clus-
ter area due to the volatile nature of the object. In such
cases dynamic object colocation [Sam04] might per-
form better since it makes colocation decisions on the
fly at runtime.

6 CONCLUSIONS
For a garbage collector to work effectively, it has to be
aware of object properties and not just object traceabil-
ity. The compiler plays an important role in provid-
ing valuable information about object properties to the
garbage collector. This paper describes and evaluates
a compile time technique that recognizes clusters in a
program and statically allocates cluster objects sepa-
rately. Our results demonstrate that the clustering op-
timization reduces the number of collections consider-
ably and also improves the individual collection times
by a fairly large amount. When applied along with the
stack allocation optimization it produces even better
results. Clustering also improves the total number of
interregion pointers. However, elapsed times do not
improve in the same vein as the collection times. Only
those programs in which there is a drastic reduction
in the number of collections show a considerable im-
provement in the elapsed time.

Future Work
Our work can be extended in several directions. The
current clustering algorithm identifies clusters that are
created only in those methods that have the longest

21

lifetimes. One can extend the clustering concept to
all other methods to discover scoped memory regions.
The current compiler analysis itself can be made more
sophisticated so that it not only outputs the allocation
sites but also provides information to the programmer
whether the cluster optimization would prove benefi-
cial for that program or not. Several parameters are
indicative of whether a cluster would prove as an ad-
vantage or as a penalty. Some of them are the num-
ber of cluster to heap references, allocation site homo-
geneity, the fraction of the objects that are allocated
in the cluster, dynamic growth of clusters that might
contribute garbage within the cluster area. However,
the compiler would require complex pointer analysis
to infer some of this information. Allocating cluster
objects in a separate area brings in the need for addi-
tional barrier code to track cluster to heap references.
Static analysis can be used to eliminate the write barri-
ers wherever unnecessary and hence improve elapsed
times.

7 ACKNOWLEDGEMENTS
This work was funded by Microsoft Research. We
thank the anonymous reviewers for their comments
and suggestions.

References
[App89] A.Appel, Simple generational garbage collection

and fast allocation. Software: Practice and Experience,
19(2):171-183, Feb 1989.

[Bla98] S. M. Blackburn, S. Singhai, M. Hertz, K. S.
McKinley, and J. E. B. Moss. Pretenuring for Java.
In ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 342-352,
Tampa, FL, Oct. 2001. ACM.

[Che98] P.Cheng, R. Harper and P. Lee, Generational stack
collection and profile-driven pretenuring. In ACM Con-
ference on Programming Languages Design and Im-
plementation, pages 162-173, Montreal, Canada, May
1998.

[Det02] Morgan Deters and Ron K. Cytron, Automated
Discovery of Scoped Memory Regions for Real-Time
Java. In ACM International Symposium on Memory
Management, pages 25-35, Berlin, Germany, June 2002.

[Ecm03] ECMA C# and Common Language Infrastructure
Standards. http://msdn.microsoft.com/net/ecma/

[Gay01] D. Gay and A. Aiken. Language Support for Re-
gions. In Proceedings of the ACM SIGPLAN ’01 Con-
ference on Programming Language Design and Imple-
mentation, pages 70-80, 2001.

[Har00] T. L. Harris. Dynamic adaptive pre-tenuring. In
ACM International Symposium on Memory Manage-
ment, pages 127-136, Minneapolis, MN, Oct. 2000.

[Hay91] Barry Hayes. Using key object opportunism to col-
lect old objects. In Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), 1991.

[Hir02] M.Hirzel, J.Hinkel, A.Diwan and M.Hind, Under-
standing the connectivity of heap objects. In ACM In-
ternational Symposium on Memory Management, pages
36-49, Berlin, Germany, June 2002.

[Hir03] M.Hirzel, A.Diwan and M.Hertz. Connectivity
based garbage collection. In ACM Conference on Ob-
ject Oriented Programming Systems , Languages and
Applications, pages 359-373,Anaheim, CA, Oct 2003.

[Hos92] Antony L. Hosking, J. Eliot B. Moss and Darko
Stefanovic, A comparative performance evaluation of
write barrier implementations. In ACM Conference
on Object-Oriented Programming Systems, Languages,
and Applications, pages 92-109, 1992

[Jgrande] http://www.epcc.ed.ac.uk/javagrande
[Jolden] Brenden Cahoon, Java Olden benchmarks,

http://www.cs.utexas.edu/users/cahoon/
[Lie83] H. Lieberman and C. E. Hewitt. A real time garbage

collector based on the lifetimes of objects. Communica-
tions of the ACM, 26(6):419-429, 1983.

[McK99] D. Stefanovic, K. McKinley, and J. Moss. Age-
based garbage collection. In ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 370-381, Denver, CO, Nov.
1999.

[Rav05] Archana Ravindar and Y.N.Srikant. Design and
Implementation of a Concurrent Garbage Collector for
Rotor. Technical Report IISc-CSA-TR-2005-2, Dept of
Computer Science and Automation, IISc.

[Rot01] http://www.sscli.net
[Rug87] Cristina Ruggieri and Thomas P. Murtagh. Life-

time Analysis of Dynamically Allocated Objects, pages
285-293, ACM SIGPLAN’88

[Sam04] Samuel Z. Guyer and Kathryn S. Mckinley. Find-
ing Your Cronies: Static Analysis for Dynamic Coloca-
tion. In ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages
237-250, Vancouver, British Columbia, Canada, Octo-
ber 2004.

[Shu02] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh.
Exploiting prolific types for memory management and
optimizations. In ACM Symposium on the Principles of
Programming Languages, pages 295-306, Portland, OR,
Jan. 2002.

[Spc98] http://www.spec.org/osg/jvm98
[Stu03] David Stutz, Ted Neward and Geoff Shilling.

Shared Source CLI Essentials.
[Too93] James O’ Toole and Scott Nettles. Concurrent

Replicating Garbage Collection. In ACM Symposium
on LISP and Functional Programming

[Wha99] John Whaley and Martin Rinard. Compositional
Pointer and Escape Analysis for Java Programs, In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 187-206, Denver,
CO, Nov. 1999.

22

 Towards platform independence:
retargeting GUI libraries on .NET

Judith Bishop and Basil Worrall

Department of Computer Science
University of Pretoria
Pretoria, South Africa

Jbishop@cs.up.ac.za, basil.worrall@dariel.co.za

ABSTRACT
Platform independence is an illusive goal when a system includes libraries which have hardware or low-level
software dependencies. To move such code to a different platform, the developer is faced with rewriting several
sections to interface directly with a different library or toolkit. We propose an approach where the code remains
the same, and the library is replaced ab initio by a machine-independent engine which is retooled into a front
end and a back end, of which only part of the backend needs to change for each platform. Our starting point is
the .NET framework’s SSCLI platform, Rotor, and the Views GUI engine, which initally ran only on Windows.
Views is an XML-based windowing system which provides the functionality of the System.Windows.Forms
library, missing from Rotor. ViewsQt is a conversion of the original Views project to support a retargetable
back-end. Experiments have shown that the ViewsQt code is portable, with only a few changes to the C++
classes required to compile and execute the code on the Linux and Mac OS X operating systems. On the
Windows platform, ViewsQt works well with both the .NET Framework and Rotor. This paper describes the
methodology we developed for porting libraries in general, discusses the case study of ViewsQt, and indicates
where such work would be applicable for other technologies. Comparison is made with multi-platform toolkits
such as Gtk+, and .NET’s new XAML notation.

Keywords
Platform independence, GUI toolkit, .NET, Qt, Rotor, retargeting methodology, Linux port, Views, XAML

1. INTRODUCTION
The innovative move of Microsoft to undergo a
standards process for their .NET framework and C#
language raised hopes of platform interoperability
being added to the language interoperability already
supported by .NET [9]. Apart from portability,
Microsoft’s implementation of the CLI (Rotor) was
intended as a basis for experiment and Microsoft
itself used it in order to test out its ideas on generics,
which are available in the Gyro add-on, and are now
planned for the next release of Windows, codenamed
Longhorn [10].
The CLI (Common Language Infrastructure)
included the definition of the C# language and many

of its key libraries, such as System and
System.Collections. However, not all .NET libraries
are included in the standard, with a notable omission
being System.Windows.Forms, which provides GUI
capability. This means that developers cannot
express GUI functionality in their programs (since it
will not compile) and there is no way, in the
standard, to hook into the operating system to render
and handle GUIs even if they could. GUIs are a
primary need of many programs, but the issue of
portability extends to third-party libraries as well:
how would they piggy-back on Rotor?
Standing back, one can see that the problem is one of
having invested in developing a program based on a
particular library, and then finding that the program
cannot migrate to a new platform, because of the
library’s reliance on hardware or low-level software.
If the library is a large and critical one, such as a
GUI, then any alternative to a complete re-
implementation would be desirable.
Although this paper will concentrate on GUI
libraries, other emerging hardware-oriented
technologies have the same problem of portability.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

23

Among these are tangible user interfaces (TUIs) and
mobile applications. TUIs integrate digital
information with everyday physical objects such as
electronic tags and barcodes. Papier-Mâché [11] is an
open-source toolkit for building TUIs with a high-
level event model to facilitate portability. CrossFire
[12] is a third-party product built on top of .NET.
Crossfire uses a booster to the CLR to enable code in
VB to run on the compact frameworks used by a
variety of mobile devices, such as cell phones and
palmtops. In this way, Crossfire also enhances
portability.
Multi-platform GUI toolkits have long been popular
for enhancing the capabilities of languages and
packages lacking built-in GUI facilities. Recent
examples are RAPID for Ada [6], FranTk for Haskell
[9] and SMLTk for ML [10]. Because these
languages have no UI capability of their own, they
adopt the interface of the toolkit, and the programmer
inserts code to interact with the toolkit directly.
In the .NET world, there have been similar projects
to port GUI toolkits onto the CLI. Gtk# is a
translation by the Mono project of the Gtk+ toolkit
into C# [1]1. The programmer familiar with Gtk will
feel comfortable calling the well-known methods, but
a .NET programmer with a Windows program to port
could be at a loss. For example, creating a label,
textbox and button in Gtk# is done with:
Label label = new Label("Password");
Entry entry = new Entry();
Button button = new Button("Submit");

which is quite different to the Windows equivalent
of:
Label label = new Label();
label.Text = “Password”;
Textbox entry = new Textbox();
Button button = new Button();
button.Text = “Submit”;

In other words, Gtk# is not a means for porting
existing Windows programs via the CLI to the Linux
platform. Qt# is a similar project intended to provide
a binding of Qt to C#, and is still under development.
And of course there is PIGUI which is based on Tcl’s
TK and is distributed with Rotor.
This paper addresses the issue of retargeting a library
across languages and platforms, without rewriting it
or creating a new wrapper for its programming
interface. Our contribution is in providing a
methodology that can be followed for other libraries,
as well as in identifying potential stumbling blocks
on the .NET framework, and proposing solutions.

1 Throughout this paper, projects and products whose

primary source of information is a website are listed at
the end of the paper, but not referenced in the text.

The methodology is explained via a case study of the
life cycle of our platform-independent GUI engine
Views. We show how we were able to take a library
dependent on Windows and. via a combination of
Rotor, Views, our retargeting methodology and the
Qt toolkit, to achieve the same GUI functionality on
other platforms, including Mac OS X and Linux.
The rest of the paper is structured as follows. In
section 2 we introduce the retargeting methodology.
Section 3 briefly describes Views, which is the basis
for the case study. Sections 4 and 5 look at the
retargeting process in detail. In Section 6 we evaluate
the outcome, and in Section 7 discuss related work.
Views is an ongoing project, so the conlusions in
Section 8 include mention of late-breaking projects
and future work.

2. RETARGETING METHODOLOGY
2.1 Overall plan
The retargeting methodology we developed is
explained in the stages shown in Figure 1.

P R’

L OS

S

E

P R

L OS

P R

TK OS’

S

Ef

Eb

(a) Normal operation of a library

(b) Introduction of GUI specification and engine

(b) Library replaced by OS-independent toolkit

Figure 1 Stages of the retargeting methodology
We start off with a program P using a library L
running on a given runtime R (virtual rachine) and

24

operating system OS which supports L’s low-level
activity. An example would be a program in C# (P)
using System.Windows.Forms (L) on the CLR (R)
on Windows (OS).
In the first step towards gaining independence of the
operating system, we introduce a GUI specification S
(in XML notation) to specify the function of the
library, in other words the programmer’s interface.
Instead of the label, textbox and button code:
Label label = new Label();
label.Text = “Password”;
Textbox entry = new Textbox();
Button button = new Button();
button.Text = “Submit”;

we would write the XML specification:
<Label text=’Password’/>
<Textbox name=entry/>
<Button name=button text=“Submit”/>

We then replaced the GUI creation and handling
functions of System.Windows.Forms by this XML
interface plus the Views engine E. Although this
phase could run on an alternative runtime R’, such as
Rotor, it still needs the rendering ability of the
Windows dll. Thus stage (b) can still only run on the
Windows OS. This work is discussed in [4]. A
welcome side effect of the XML notation is that the
existence of the library becomes program- (and
therefore language-) independent.
In the third stage, which is the subject of this paper,
we take the engine and split it into a front and back
end, Ef and Eb. The interface between the two parts
is chosen so that it can operate with an existing
cross-platform toolkit TK. The system can now run
on any platform OS’ on which the toolkit runs. In our
case, we inserted Trolltech’s Qt (TK), which runs on
the same operating systems that Rotor does, but also
on Linux (OS’). Thus the retargeting is complete.

2.2 General retargeting steps
The methodlogy can be applied in other spheres. The
three steps to be followed in the process of achieving
stage (c) platform independence are:
1. Understand the design and implementation of

the original system. In our context, the original
system is the version of Views that relies on the
Windows dll. In this step our objective is to
model the contractual agreement between the
existing components of the Views system, and in
so doing provide a point of reference for
implementing this interaction in the retargeted
version. For example, when the system is given
the instruction to render a button, positioned
relative to a textbox, we not only have to ensure
that a button and a textbox are rendered, but also
that their relative positioning remains intact.

2. Extract the common components from the
original system, and put them into an interface.
The model of contractual interaction developed
in the first step needs some (similarly) abstract
representation in the code. An interface is ideal
for this purpose, as it allows any appropriate
implementation to take its place in the run-time
environment, yet provides enough structure and
usage information to limit the breaking of the
contract between the user of the interface and its
implementer. Typical common components in
GUI systems would be the XML parser and the
window and control manipulation mechanisms.

3. Write a toolkit-specific implementation of the C#
interface which pulls in the services of the
extracted common components. Here we take the
toolkit and translate (or aggregate) its
functionality to the expectations of the model
and its interface. It is here that we make sure that
when the user wants a button, they get a button,
so to speak.

We now make this methodology concrete by
considering our case study, the retargeting of
System.Windows. Forms to Linux.

3. THE CASE STUDY - VIEWS
3.1 The objective
The intent of the Views project is to provide a GUI
system for the Rotor platform that would share
Rotor’s platform independence, and enhance it by
offering programmers the much-needed support to
provide GUIs with their Rotor applications [3]. We
were not in the business of duplicating large effort,
so the intention was always that Views would rely on
an existing underlying GUI renderer to actually
display the GUI. When running on Windows, or on
Rotor on a Windows platform, Views makes use of
the System.Windows.Forms dll to perform this
function.
From the outset of the Views project, it was
envisaged that this reliance on one platform would be
removed by refactoring the Views code so that an
independent toolkit (e.g. Tcl/TK or Qt) could be
plugged into the system, allowing it to run on the
platforms these toolkits support (which, in most
cases, are also the platforms that Rotor supports). In
terms of the user's code, the interface would remain
the same (including the XML notation).

3.2 Overview of Views
Views allows the user to specify a GUI in a simple
and easy-to-learn XML notation, and then to
integrate the application with this GUI through an
elementary interface to the core engine. No code
generation takes place, and the GUI specification can

25

be stored in an external file so that it will not
obfuscate the application's logic. A side effect of
keeping the GUI specification and application logic
separate is that the programmer can make simple
changes to the controls in the specification (e.g. their
layout, or even substituting a drop-down list for a
collection of radio buttons) without having to
recompile the program. From the opposite
perspective, the GUI can be reused by a number of
applications that require a similar front-end while
presenting different results (e.g. a calculator program
that prints out expressions in either standard
algebraic or reverse Polish notation). More
information about the use and implementation of the
Views project can be found in [2,3,4].
The Views interface consists of two parts, namely

• the Views notation for specifying a GUI in
XML, and notation, and

• the Views engine which provides an
interface to the programmer.

We now take a brief look at each of these, to give an
idea of the scope of work involved in transforming
the interfaces to abstractions of an arbitrary
windowing toolkit.

3.3 The Views notation
A typical GUI specification in Views consists of two
types of tags – grouping and control. A third type,
position tags, can also be used for finer layout
control. Grouping tags may contain nested groupings
and controls, and dictate a specific layout of these
sub-groups or controls.

static string specEn =
 @"<form Text='Currency calculator'>
 <horizontal>
 <vertical>
 <Label text='Paid on hols'/>
 <Label text='Charged'/>
 <Label text='Exchange rate is'/>
 <Button name=equals text='='/>
 </vertical>
 <vertical>
 <Textbox name=eurobox/>
 <Textbox name=GBPbox/>
 <Textbox name=ratebox/>
 <Button name=clear text='Reset'/>
 </vertical>
 </horizontal>
</form>";

Figure 2 A Views specification

For example, the <horizontal> group specifies
that all groups and controls contained within it be
placed side by side from left to right. Each tag has
some valid attributes, among which are numeric
values, strings, colors, alignment values and size

measures. Figure 2 shows a typical Views
specification.
To create a GUI, the programmer passes the
specification to an instantiation of the Views Form
class, as in:
Views.Form f = new Views.Form(specEn);

Figure 3 shows the corresponding GUI as drawn by
the Windows renderer.

Figure 3 A GUI produced by Views

3.4 The Views programmer interface
Views presents a small, yet complete number of
functions the user can use to query and alter the
controls defined in the specification, and to react to
simple “clicked” or “moved” events.
There are three variations of Get methods, namely
GetControl, GetText and GetValue. The GetControl
method is the means through which the application is
informed of events occurring in the GUI. GetControl
blocks until an event occurs, upon which it returns
the name of the control where the event occurred.
The GetText method accepts the name of a control
that can display text (e.g. labels, buttons, textboxes),
and returns the text that control is currently
displaying as a string. GetValue is similar, and is
used for trackbars, checkboxes etc. Two of the three
types of Put methods, PutText and PutValue, are the
logical counterparts of the Get methods. Views also
provides a PutImage method. Part of the program
associated with the specification above is shown in
Figure 4.
A feature of Views is that is not “black box”: any of
the controls can be accessed by name, and their
attributes changed. For example, to change the text
of the equals button in the form f from “=” to
“equals”, and colour it yellow, we use:
Button b = f["equals"];
b.Text = "Compute";
b.BackColor = Color.Yellow;

Using the C# implicit operator facility for
overloading parenthesees, implicit conversions are
defined for all controls that may be used inside a

26

Views form, so that casting to the data type of the
extracted control is unnecessary.

 for (string c = f .GetControl();
 c!=null; c = f .GetControl()) {
 switch (c) {
 case "reset":
 euro=1; GBP=1;
 f.PutText("eurobox",
 euro.ToString("f"));
 f.PutText("GBPbox",
 GBP.ToString("f"));
 break;
 case "equals":
 euro=double.Parse(
 f.GetText("eurobox"));
 GBP=double.Parse(
 f.GetText("GBPbox"));
 f.PutText("ratebox",
 (euro/GBP).ToString("f"));
 break;
 default: break;
 }
}

Figure 4 Event handling in Views

3.5 Why Views?
If the goal is to retarget existing programs based on
Windows, why is a new library such as Views a good
idea? Firstly, the XML front-end achieves language
portability, and its notation is quicker and easier to
write and modify than the equivalent method calls
and property accesses of a traditional GUI library.
An alternative to coding GUIs by hand is to use a
GUI builder to lay out the window, and have it
generate the embedded program code, as Visual
Studio does. However, large amounts of generated
and embedded code are considered to be both
confusing and error-prone.
An alternative is to have the GUI builder generate the
XML, and we have such a system for Views in
prototype. XAML takes this approach too, as does
RAPID [5]. A comparison of Views with other XML
based systems is undertaken in section 7.
Although Views was primarily aimed at beginning
programmers [3], its methods and appeal extend
wider, as does its use as a case study for retargeting.

4. FRONT-END FACTORIZATION
In the original, Windows-specific, implementation of
Views, the process of converting a GUI specification
to a visible window proceeded along the lines shown
in Figure 5. The original design of Views
incorporated many modular elements, the majority of
which are toolkit independent. These modules
represent important aspects of the system's

behaviour, and should therefore be carried across to a
portable version.
However, there are elements of the programmer
interface to the engine that are very tightly coupled to
the Windows Forms library, and cannot be migrated
without change. For example, steps 1-3 in the
diagram that involve processing the XML and
building a tree, are platform-independent. However,
laying out and displaying the GUI will depend on the
renderer and, while GetControl is free of any
reference to the Windows Forms Library classes, it is
indirectly dependent on synchonizing with their
event-triggering.

 Application

Constructor

Normalize

Parse XML

Construct
groups

Form thread

Construct
controls

Layout
controls

1

2

3

4

5

Figure 5 Control flow in Views

When considering cross-platform realization of
Views, we can see that there are components that
straddle the imaginary line between the front-end and
the back-end. For example, the methods defined in
the programmer interface are accessible to the
application, yet are dependent on the toolkit. In order
to successfully implement a toolkit-independent
version of Views, we need to divide these grey-area
components in such a way that the overall separation
between the front- and back-end is solid. This will
allow the back-end to be interchangeable, effectively
enabling us to run Views on top of any toolkit.
The way we chose to implement this separation was
to create a C# interface, called IForm, which declares
all the Views API methods accessible to the
application, as in Figure 6.
In the Windows.Forms implementation of Views, the
XML-tree traversal builds the window by
instantiating the controls, placing them and hooking
up the event handlers.

27

namespace Views {
 public interface IForm {
 void HideForm();
 void StartApplication();
 String GetControl();
 String GetText(String name);
 String GetText(String name,
 int index);
 void PutText(String name,
 String text);
 void PutText(String name,
 int index, String text);
 void PutImage(String name,
 String filename);
 int GetValue(String name);
 void PutValue(String name,
 int value);
 }
}

Figure 6 The IForm interface

In the toolkit independent version, we do not rely on
the back-end to parse or traverse the XML, so there
is a requirement to construct a tree comprising
toolkit-agnostic nodes which the back-end can
traverse and interpret. The nodes are instances of a
new class, Ctrl, which encapsulates information
regarding the name, value, attributes and children of
a tag in the XML specification. The tree of Ctrl
nodes is built by another new class, Parser, which
reproduces all the XML-processing code from the
original Views.Form class.
Iform replaces Form as the class used to construct a
GUI window, as in:
Views.Iform f =

new QtForm.QtForm(specEn);

An implementation of the IForm interface can use the
Ctrl tree to construct control instances specific to the
toolkit, without having to be aware of the original
XML tree. Thus we have successfully separated the
front-end and back-end of Views. The XML has
been cleared of all references to toolkit classes, and
the programmer interface has been placed behind a
clean interface that deals only in names and integer
values. A reusable abstraction of the controls and
their attributes was created to purge the back-end
code of any references to the XML structure.

5. BACK-END IMPLEMENTATION
For our test implementation of the retargetable Views
framework, we chose Trolltech's Qt toolkit. Qt is a
complete application development library for C++,
including APIs for GUI rendering, XML parsing,
database connectivity and much more. Full details of
our implementation are given in [17]. Some of the

issues that relate specifically to .NET with Qt are
mentioned here.

5.1 Language interoperability
Since Qt is written for, and in, C++, an
interoperability layer (written in C#) that implements
the interface is required. Thus we have a C# class,
QtForm, that implements IForm, but delegates most
of its functionality to a wrapper class, QtWrapper.
The latter consists of a set of simple wrapper
methods that correspond with the methods defined in
IForm, and a set of private, static methods that link
with externally defined C++ methods.
Two additional issues were solved at this point. First,
because C# and C++ have different mechanisms for
dealing with strings, it was necessary to write
marshalling methods that convert between the two.
The second aspect is the entry-point specification in
the DllImport attribute attached to the GetText
method. The C++ linker provides a specially encoded
string for every method declared to be externally
visible in the source code, called its entry-point. This
string can be used by other languages to discover the
method within the dll that is produced from the C++
source code. Unfortunately the entry-point is
compiler-specific, and also differs from OS to OS.
Thus, until a truly platform independent entry-point
specification mechanism is found, the QtWrapper
class will require adjustment for every
platform/compiler combination to which ViewsQt is
ported.
Returning briefly to the implementation of the IForm
interface, QtForm, we can now easily invoke the
methods of the C# QtWrapper class, blissfully
unaware of the underlying C++ implementation:
public String GetText(
 String name, int index) {
 return this.wrapper.GetText
 (name, index);
}

5.2 Garbage collection
When writing an interoperable program it is vital to
ensure that references to elements in one language
made in the other are kept valid for the lifetime of
that reference. When one of the languages is
managed (i.e. has built-in garbage collection), this
task adopts an extra degree of complexity – the
rearrangement of the heap will invalidate any
references that weren't present on the stack during
the collector's walk, which includes those held by the
other program. In this case, the referenced object is
still on the heap, indicating that a reference still
exists within the managed program. More serious is
the situation where the unmanaged program holds the
only references to an object on the managed heap.

28

The garbage collector will happily free the heap
space, once again invalidating the unmanaged
reference.
There are two areas of ViewsQt where careful
memory management is necessary to prevent errors.
The first is the passing of strings between C# and
C++, which happens in the QtWrapper and QtCtrl
twins. The second is the pointer to the C++ QtCtrl
instance held by the C# QtCtrl instance. In the
context of the string-passing, a string passed from C#
to C++ must not be garbage collected before the C++
code has had enough time to copy the contents to its
own heap. The QtCtrl issue is slightly trickier. In this
case, we wish to prevent garbage collection on the
C# side so that we can tidy up the C++ heap at the
end of the program.
In both cases, we stop the C# garbage collector from
collecting the objects by obtaining instances of the
System.Runtime.InteropServices.GCHandle class for
each object. In doing so, the garbage collector treats
the objects as if they had been pinned down in the
heap – they cannot be moved or removed. We
maintain a list of these GCHandle instances so that
we can free them at an appropriate point in the
execution. We don't mind the GCHandle instances
themselves being moved around, as long as the
objects they point to stay put.

5.3 Handling Events
There are two kinds of event handling which need to
occur in an implementation of Views. The first is an
internal mechanism that responds to the push-based
events received from the GUI controls. A user of
Views is shielded from this implementation by the
second kind of handler, a pull-based (or polling)
mechanism implemented in the GetControl method.
These two event handler types are complementary –
when the GUI triggers an event, the internal handler
looks up the name of the source control and forwards
it to the GetControl. The application can then handle
the event suitably. Figure 7 illustrates the two kinds
of event handling interacting with each other.
In (1) the user’s program calls GetControl, which
blocks indefinitely. In (2) the operating system’s
windowing system interprets a user’s gesture with
the mouse or keyboard as an event, and passes it onto
the event queue. The toolkit, having registered with
the queue to hear about such events, picks up the
information, encapsulates it in an Event object and
passes it onto views in (3). Views extracts the name
of the user-interface control (in this case button X)
from the event information and passes it, in (4), to
the user’s program as the return value of the
GetControl method.

In ViewsQt, we instrument push-based event
handling by providing “slot” methods that are
invoked when a control's “signal” is emitted. This is
not unlike C#'s event implementation, where a multi-
cast delegate (slot) is associated with a specific event
(signal) published by an object. (In both C# and Qt,
any object may fire events.) While it is possible to
create a separate method for each kind of signal that
each kind of control emits, we felt it a better
abstraction to filter the events in such a way that a
single eventHappened signal is emitted that contains
a reference to the name of the control that originally
emitted the event.

User’s
program

Views

Toolkit

OS windowing
system

1) GetControl

2) publish click event on button X

3) push event

4) GetControl returns “X”

X

Figure 7 Event handling

This brings us to the implementation of the pull-
based event handler. When a button is clicked, for
example, the clicked method defined in QtWrapper is
invoked. This method simply invokes a function
pointer, listener, that is defined in the QtWrapper
class. This function pointer references a method
signature assigned to it in the SetListener method.
The constructor for QtForm invokes the SetListener
method defined in the C# QtWrapper class, passing it
a variable called callback. This variable is in fact a
C# delegate that refers to the ClickHappened defined
in the QtForm class. The delegate is of type
Delegate, which is declared in the C# QtWrapper
class. The declaration of Delegate and the
instantiation of callback are shown below:
public delegate void Callback(
 [In] IntPtr name);
QtWrapper.Callback callback = new
 QtWrapper.Callback(ClickHappened);

The C# QtWrapper class imports the setListener
method from its C++ equivalent as follows:
static extern void setListener(
 [In] IntPtr ptr,

29

 [In, MarshalAs(
 UnmanagedType.FunctionPtr)]
 Callback l);

The MarshalAs annotation specifies that the
reference to the Callback passed to setListener
should be converted to a native function pointer. This
amazingly simple mechanism allows native C++
code to easily invoke methods defined in C#. A
proviso is that the method signature in C++ must
specify its method-pointer argument using an
equivalent descriptor.

5.4 Matching the libraries
In retargeting a library via a third party toolkit, it is
inevitable that not all features offered in the original
will be matched in the other. We were fortunate that
there was only one such disparity between Forms and
Qt, the DomainUpDown, which displays a single
string from a list of strings, with up/down buttons to
select other strings in the list. The closest equivalent
in Qt is the QSpinBox, which by default displays a
single integer in a range, with up/down buttons to
select the next/previous value. We found it was
possible to achieve a mapping by extending the class
and overriding some methods. The code the user
writes remains unchanged despite this underlying
change, which meets the requirement that retargeting
Views should not change the front-end syntax or
semantics.

5.5 The Linux port
Since Linux has such a huge following, expecially in
academia, it was a primary objective to get Views
onto this platform. Once Views had been retargeted
to Qt, thus eliminating the dependence on
Windows.Forms, it could be run on Rotor (and all its
platforms) as well as Mono (and its platforms). A
group of students undertook the port to Linux, which
involved writing the make files and resolving issues
of paths and error messages. It was interesting that
the port to Debian Linux did not work immediately
on other Linux versions, such as Gentoo and
Mandrake, and work is progressing on those.

6. EVALUATION
6.1 Example
Figure 8 (a) and (b) show a GUI with a variety of
controls as rendered by ViewsQt and Views, both
running on Windows. The program is taken from
Chapter 5 of [3]. The back-end abstraction can be
seen to work, at least in the Qt case. That is,
constructing an IForm instance that mediates
between the Views front-end and objects specific to
the back-end GUI toolkit is not difficult, and most of

the retargeting effort lies in implementing the
objects.
Furthermore, these objects are not especially
complex, but it is important to instrument all the
functionality expected by the front-end, and to
accommodate issues of interoperability between
languages.
As mentioned above, we tried as far as possible to
keep the code that a user of Views would write the
same across both implementations. This was not
possible in the case of the main application thread,
but in such cases a balance must be struck between
that which we would rather not to do and that which
we cannot do. Adding a single line of thread-related
code to the application forms this balance.

6.2 Other platforms and languages
Using Rotor as the base CLI, ViewsQt was
successfully run on BSD UNIX and MacOS X. It is
also worth reiterating that because of the language
interoperability of .NET, ViewsQt, although written
C# and C++, is available to programmers writing
applications in other .NET languages. Specifically, it
has been tested with programs written in C++ and
Visual Basic. So far, the programs run correctly, and
no changes to Views have been required.

6.3 Choice of toolkit
A key component of our methodology is the straight
use of an existing multi-platform toolkit, rather than
any writing or re-tooling. Three commercially
available toolkits are Tcl/Tk, Gtk+ and Qt. In the
planning phase of the retargeting project, Tcl/TK was
considered as a viable option for the implementation.
However, we chose to use Qt as Tcl/TK involved not
only a significant performance trade-off (Tcl is
always interpreted), but also a steeper learning curve
in order to become conversant with Tcl's syntax and
semantics. Qt, being entirely based on C++ and
presenting a very natural programming interface, was
the better choice for our purposes. However, one
disadvantage to using Qt is that a development
license must be purchased for the Windows version
(Qt/Windows) in situations not covered by an
academic licence or where the 30-day trial period is
insufficient.
An important factor in choosing a toolkit is that it
must be as multi-platform as possible. In this respect,
Gtk+ would also have been a possibility. However,
the toolkit is completely hidden from the developer,
therefore there is nothing to be gained in repeating
the exercise with a second toolkit.

30

Figure 8 A program in ViewsQT and Views

7. RELATED WORK
In looking at related work, we concentrate on how
our methodology relates to other similar attempts to
provide cross-platform libraries. Predictably, the
major effort in this regard has centred on GUI
interfaces and toolkits, thus this section focuses on
efforts in this area..

7.1 Declarative UI models
A key component of the retargeting strategy is the
introduction of XML for the specification of the
GUI. Two examples of the genre of declarative user
interface models are IUP/LED [12] and CIRL/PIWI
[7]. In both cases, a declarative language (LED and
CIRL) was provided to describe the user interface in
terms of its controls and layout. On the API front,
they contain functions for hooking events signaled
by the interface to call-back methods defined in the
user’s application, and functions to query and alter
attributes of the controls displayed. The call-back
event model is used so that the usual native
windowing toolkit’s events are filtered down to those
relevant to the application.
Both CIRL/PIWI and IUP/LED were designed from
the start to abstract the GUI description from the
underlying platform’s toolkit, and to provide a
similar look-and-feel across the various platforms.
The creators of both projects, however, lament the
absence of an existing toolkit that provided a

common look-and-feel across various platforms
(both projects were born in the pre-Java and before
any widely-accepted platform-independent toolkits,
such as Qt and Tcl/TK, were available). Our work on
the ViewsQt project was not hindered by these
concerns because of the high-quality, platform
independent toolkits available to us today.

7.2 XAML and XUL
Views belongs to the concrete representation model
subdivision of the declarative user interface models,
which describes user interfaces in terms of the
controls displayed to the user, their composition and
their layout. Such declarative user-interface models
are not new [8,14], and XML is broadly being
adopted as the favourite notation for these languages.
Two modern, XML-based models are XUL and
XAML.
XUL is the model used by the Mozilla family of
browsers. A feature of XUL is the ability to create
additional custom widgets using a related language
called the Extensible Bindings Language (XBL).
XUL is certainly cross platform, but its primary
disadvantage is that it is tied to JavaScript for the
event handlers.
XAML is the model Microsoft is making available
with Version 2 of the .NET Framework, and is also
the foundation for the Avalon windowing system
component of the Longhorn version of Windows.

31

XAML is very similar to Views in that rides on the
language interoperability of .NET. Unlike Views,
there are no push-based event methods, and all
handlers are also indicated as method names in the
XML. Of course, Microsoft does not intend that
anyone would actually write XAML: it is more the
output notation from the GUI-builder of Visual
Studio. There is nothing intrinsically cross-platform
in XAML, since it still relies on
System.Windows.Forms for events and rendering.
Thus XUL and XAML are variations of the stages
represented by Figure 1(a) and (b). The big
difference between them and Views is that both XUL
and XAML allow (but do not compel) the
programmer to embed event-handling code
(JavaScript, and any .NET language, respectively)
within the user interface declaration. The Views
model, on the other hand, provides an engine that
intercedes on behalf of the GUI to signal events to
the host application. While the functionality offered
by XUL and XAML is attractive, we contend that the
separation of concerns evinced by Views’ engine-
based approach is cleaner and offers greater
maintainability and ease-of-use to the programmer
and designer.

7.3 Other multiplatform toolkits
We have already mention in Section 1 the efforts to
extend platform independence beyond GUIs [11, 6]
and the ports to Mono of Gtk# and Qt#. It will be
interesting to see if the idiom of these toolkits
becomes so entrenched with the .NET Linux
community, that XAML will not in the end gain wide
acceptance.

8. CONCLUSION AND FUTURE WORK
ViewsQt is a conversion of an XML-based GUI
library to support a retargetable back-end. The
project involved extracting the common front-end
elements of XML checking, parsing, and abstract
control creation from the original Views engine, and
replacing references to the Windows Forms library
classes with calls to a C# interface. This interface
hides the toolkit-specific back-end components
behind a small (and easy to learn) set of methods.
Finally, we created an implementation of this
interface for the Qt windowing toolkit, and provided
a set of classes to delegate calls from the C# objects
to their counterpart C++ objects.
Experiments have shown that the ViewsQt code is
portable, with only a few changes to the C++ classes
(related to interface inclusion and entry-point
specification) required to compile and execute the
code on the Linux and Mac OS X operating systems.

On the Windows platform, ViewsQt works well with
both the .NET Framework and Rotor.
Future work on ViewsQt will entail smoothing out a
few wrinkles with regards to the colour and font
properties of the controls, and perhaps adding
support for more controls that the Views
specification does not cater for (e.g. menus, status-
and tool-bars). Possibly, an implementation using a
second toolkit such as GTK+ will be undertaken to
prove the actual retargetability of the front-end.
It is also our intention to exercise the methodology
here on libraries other than simple GUIs. Examples
would be speech synthesis, or the tangible user
interfaces, which are attracting attention.
At the time of writing, an exciting development is the
complete rewriting of Views in .NET 2, based
entirely on reflection. The prototype system is
operational, and is about one-sixth the length of the
original because actual controls are picked up
directly by name from the XML specification, rather
than going through a program transformation. We
will be investigating whether the same leverage can
be obtained for Qt, and hence for any third part
toolkit.

ACKNOWLEDGEMENTS
This work was supported by Microsoft Research and
THRIP Grant no. 2788. We would like to thank
David-John Miller for his enthusiastic assistance
with the project, and acknowledge the inspiration of
Nigel Horspool of the University of Victoria, who
wrote Views. Johannes Eickhold, Mathhias Kempka
and Mihael Vrbanec of TU Karlsruhe were
responsible for the port of ViewsQt to Linux.

REFERENCES
[1] Niel M Bernstein, Using the Gtk toolkit with

Mono, O’Reilly ONDotNet, online article
2004/08/9/ August 2004.

[2] Judith Bishop and Nigel Horspool. C#
Concisely. Addison Wesley, 2004.

[3] Judith Bishop and Nigel Horspool. Developing
principles of GUI programming using Views.
Proc. ACM-SIGCSE, 373-377, March 2004.

[4] Judith Bishop, R. Nigel Horspool, and Basil
Worrall. Experience with integrating Java with
C# and .NET. Concurrency and Computation:
Practice and Experience. To appear, June 2005.

[5] Martin C. Carlisle and P. Maes. RAPID: A Free,
Portable GUI Designer for Ada, SIGAda '98,
158-164, ACM, 1998.

32

[6] Martin C Carlisle, A truly implementation
independent GUI development tool, Proc.
SIGAda ‘99, 47 - 52 , ACM, 1999

[7] D.D. Cowan et al. CIRL/PIWI: A GUI toolkit
supporting retargetability. Software—Practice
and Experience, 23(5):511–527, 1993.

[8] Paulo Pinheiro da Silva. User interface
declarative models and development
environments: a survey. Proc. DSV-IS2000,
LNCS 1946, 207–226, Springer-Verlag 2000.

[9] ECMA Standard 335: Common language
infrastructure (CLI), December 2002.

[10] Andrew Kennedy and Don Syme. Design and
implementation of generics for the .NET
common language runtime, Proc. ACM
SIGPLAN PLDI, 1-12, June 2001.

[11] Scott R. Klemmer et al, Papier-Mâché: toolkit
support for tangible input. CHI 2004: Proc.
ACM Conf. on Human Factors in Computing
Systems, CHI Letters, 6, 399–406, 2004.

[12] Wei-Meng Lee, Writing Cross-Platform Mobile
Applications Using Crossfire, O’Reilly
ONDotNet, online article 2004/07/12, 2004

[13] C.H. Levy et al. IUP/LED: A portable user
interface development Tool. Software—Practice
and Experience, 26 (7):737–762, 1996.

[14] C. Lüth, B. Wolff, TAS — A generic window
inference system, 13th Conf on Theorem
proving and higher order logics, in LNCS 1869,
405-422, Springer-Verlag 2000.

[15] Egbert Schlungbaum. Individual User Interfaces
and Model-Based User Interface Software Tools.

Proc. ACM Intelligent User Interfaces IUI’97,
229–232, Orlando, Florida, USA, January, 1997

[16] Meurig Sage, FranTk – a declarative GUI
language for Haskell, Proc. 5th ACM SIGPLAN
conf. on Functional Programming, 106–117,
2000.

[17] Basil Worrall, Building a retargetable XML GUI
toolkit, Polelo technical report #6–2004.

WEB REFERENCES (checked 14/2/2005)
Avalon msdn.microsoft.com/longhorn/

understanding/pillars/avalon/
CLI www.ecma-international.org
Debian www.debian.org
Gtk# gtk-sharp.sourceforge.net
Gtk+ www.gtk.org
Gyro research.microsoft.com/projects/clrgen/
Longhorn longhorn.msdn.microsoft.com
Mono www.go-mono.com
Qt www.trolltech.com
Qt# qtcsharp.sourgeforge.net
Tcl/Tk www.tcl.tk
Rotor msdn.microsoft.com/net/sscli/
Views views.cs.up.ac.za
ViewsQt sourceforge.net/projects/viewsqt/
XAML link from Avalon page
XUL www.mozilla.org/projects/xul

33

34

Using Web Services on Mobile Devices to

Transparently Access .NET Remoting Objects

Bert Vanhooff
K.U. Leuven

Celestijnenlaan 200A
B, 3001, Leuven

bert.vanhooff

@cs.kuleuven.ac.be

Davy Preuveneers
K.U. Leuven

Celestijnenlaan 200A
B, 3001, Leuven

davy.preuveneers

@cs.kuleuven.ac.be

Yolande Berbers
K.U. Leuven

Celestijnenlaan 200A
B, 3001, Leuven

yolande.berbers

@cs.kuleuven.ac.be

ABSTRACT

With the growing popularity of powerful connected mobile devices (PDAs, smart phones, etc.), an opportunity to

extend existing distributed applications with mobile clients emerges. The Microsoft .NET Compact Framework

offers a development platform for mobile applications but is lacking support for .NET Remoting, which is the

.NET middleware infrastructure for inter-application communication. The current version of the .NET Compact

Framework (1.0, SP2) does support communication using web services. Unfortunately this support cannot be

used to seamlessly integrate with an existing .NET Remoting application. In this paper, we propose an approach

that leverages the present support for web services to make such integration possible. Our solution dynamically

maps back and forth between .NET Remoting and web service messages. An implementation of this solution

resulted in a set of tools and components that can readily be used to start developing mobile clients that interop-

erate with existing .NET Remoting applications.

Keywords

.NET Remoting, Web Services, .NET Compact Framework, Interoperability, Mobility

1. INTRODUCTION
.NET is a Microsoft brand name that encompasses a

whole array of technologies. A few key terms associ-

ated with this brand name are connected systems,

smart devices and web centric computing. These

terms could be categorized under the more general

denominator of distributed systems. In short, .NET

offers a complete package of tools and technologies

for developing applications, especially targeted to-

wards distributed systems.

The most important part of .NET is the .NET Frame-

work [Mic]. It consists of an execution environment

for applications and a comprehensive class library.

To support the development of distributed applica-

tions, .NET Remoting [Mcl03] was included. This is

an extensible middleware infrastructure intended to

simplify the development of distributed systems. It is

comparable to Java RMI [Sun].

The .NET Compact Framework [Wig03] is a

slimmed down version of the .NET Framework made

to run on embedded devices like PDAs or smart

phones. To take into account the resource limitations

of these devices, a dedicated execution environment

was crafted and some classes and methods of the

standard .NET class library were removed. The en-

tire namespace of the Remoting classes was removed.

As a consequence, the only high-level communication

facility present in the .NET Compact Framework is

provided in the form of a number of classes to sup-

port the invocation of web services.

Web services can be interpreted in a broad sense as

all means by which a service can be offered by one

application and used by another by leveraging Inter-

net technologies. When we refer to web services

[W3c02], [Boo03], we specifically refer to SOAP

(Simple Object Access Protocol) [Box00] over HTTP

and WSDL (Web Service Description Language)

[W3c03]. SOAP is the XML based protocol of the

messages sent by a web service, while WSDL is the

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,

ISBN 7/,75832,/0,0
Copyright UNION Agency – Science Press, Plzen, Czech Republic

35

XML language used to describe the interface offered

by such a service.

The absence of .NET Remoting in the .NET Compact

Framework puts some serious constraints on the de-

velopment of connected smart clients when these

clients need to access remote objects on an existing

server. These constraints, which are further discussed

in the next sections, cannot be overcome by using the

standard web services support available in the .NET

Compact Framework.

In this paper, we focus on the problems that are asso-

ciated with the development of new smart clients that

need to be integrated with existing .NET Remoting

applications and we offer a solution to these prob-

lems. The rest of the paper is organized as follows.

Section 2 briefly introduces the .NET Remoting and

web services infrastructure for the purposes of formu-

lating the problem in more detail and it ends with a

list of requirements for a good solution. Section 3

gives an overview of the basic infrastructure that will

be used to solve the problem, while Section 4 ex-

plains additional mechanisms employed to support

distributed garbage collection and remote events.

Section 5 gives an overview of the implemented con-

cepts and presents the results of a small test case. In

Section 6, some related work is presented and finally,

Section 7 concludes the paper with suggestions for

future improvements.

2. DISTRIBUTED APPLICATIONS IN

.NET
As mentioned in the introduction, .NET offers .NET

Remoting and web services for developing distrib-

uted systems. This section introduces the parts of

these two technologies that will be used further in the

paper and it points out the constraints involved when

using web services instead of .NET Remoting. To

conclude this section, a set of requirements for a solu-

tion that overcomes some of these constraints is

given.

.NET Remoting

.NET Remoting simplifies the development of dis-

tributed systems by offering an extensible

infrastructure that permits objects not residing in the

same memory space (or even on the same host) to

communicate with one another in a transparent fash-

ion. This implies that every message sent to a remote

object will have to be delivered through an alternative

(non stack-based) mechanism. Therefore, each mes-

sage from a local (client) object to a remote (server)

object will be intercepted using a proxy pattern. A

message, which can for example represent a method

or constructor call, will be transformed into an IMes-

sage object by the proxy. This object contains all the

necessary information needed to reconstruct the

original call.

After passing through the proxies (at this point there

are two of them), the IMessage object is further

propagated through the .NET Remoting infrastruc-

ture. This part contains several so called sink chains,

which are series of concatenated objects, each given

the opportunity to modify the IMessage object as in a

pipe-and-filter architecture.

The sink chains provide the main extension mecha-

nism by enabling the insertion of custom sink objects.

Some sink objects are provided by default. They

include a formatter sink to serialize the IMessage data

and a transport sink to take care of the actual message

transport. Each sink chain, containing instances of

these two default sinks, is part of a channel. The

channels are the first components in the .NET Remot-

ing infrastructure that get to see incoming messages

and the last to see outgoing messages. Each channel

is named after its location and the transport mecha-

nism that it supports (e.g. TcpClientChan-

nel).

Figure 1. A limited overview of the .NET

Remoting architecture

Another set of sink chains exists besides the ones

belonging to the channel sinks. Depending on the

chosen sink chain, different categories of IMessages

36

will be intercepted. By choosing the server object

sink chain, only IMessages originating from a speci-

fied object will be seen. On the other hand one can

choose a channel sink chain (discussed in the para-

graph above) to intercept every message from every

object that uses that channel.

The extension mechanism, using custom sink objects,

can be used to add, for example, encryption or log-

ging facilities to the standard .NET Remoting

functionality. A more exotic extension could be one

that provides a new serialization mechanism.

A high-level overview of a limited part of the .NET

Remoting architecture can be found in Figure 1. It

shows the possible flow of an IMessage through the

sinks in a channel, when both client and server are

using .NET Remoting. An IMessage is created in the

proxy on the client and travels through the infrastruc-

ture (full lines) until it arrives at the first Custom

Channel Sink, which is a specialized version of a

message sink. Each custom sink shown in the figure

actually represents either one custom message sink or

a chain of custom message sinks (only one is shown

to save space). The message then moves further to

the Client Formatter Sink, where it is serialized. Af-

ter that, another series of Custom Channel Sinks and,

at last, the Client Transport Sink are passed. This last

sink physically sends the message to the server using

some kind of network technology. When the message

is received at the server, an equivalent chain of sinks

is passed on the server until the call to the actual ob-

ject can be executed. A response will, in turn, be

represented by an IMessage that travels in the oppo-

site direction (dotted lines).

.NET Remoting also offers solutions for considera-

tions such as object lifetime management and object

activation, but these will not be discussed here.

Web services
One of the advantages of using .NET Remoting, be-

sides its extensibility with message sinks, is its direct

support for offering web services through its infra-

structure. Remote objects can be accessed – in a

limited way – using web services, meaning that all

.NET Remoting extension mechanisms can be used

while handling a web service request. This means

that the whole client side in Figure 1 could be re-

placed by a web service client. However, some

functionality, as it is available when using a .NET

Remoting client, will be lost due to the inherent limi-

tations of standard web services [Alm01].

The main limitation in this case is that they have a

procedure oriented architecture instead of an object-

oriented architecture. The full fidelity of an object

graph at a server cannot be seen by a web service

client because object references cannot be passed.

When accessing a remote object through a web ser-

vice in .NET Remoting, the caller can only call

methods that return primitive or structured data-types.

As a consequence, he cannot get out of the scope of

the initial object because any call to a method, which

would normally return a reference to an associated

object, will only return the data contained in the asso-

ciated object and not the object reference itself.

In summary, when web services are used to access

remote objects, the objects need to be published on

well-known URLs in advance and they may not be

removed during the application’s lifetime. Other

objects that are created during the operation of the

system will not be accessible. Consequently, an ap-

plication offered as a set of web services has to have

a static object graph, at least for the objects published

as web services. More specifically an object that is

published as a web service should not be deleted as

this would result in, unanticipated, access faults. In

addition newly created objects cannot be directly

accessed by web service clients. Mind that data pre-

sent in newly created objects can be accessed

indirectly through methods from another object that is

published as a web service.

A web service is generally accessed using a proxy in

order to provide for some transparency and to keep

the programmer from having to do al lot of cumber-

some coding. There are standard tools available to

generate these proxies for a remote object. Whenever

the tools encounter a method that returns or accepts

an object, this object will be mapped to a complex

SOAP data structure. Consequently, for these prox-

ies the very notion of an object disappears.

An additional restriction is the inability to let the

server initiate communications, for example in the

case of notifying the client of an event occurrence.

Client and server are not peers as is the case with

.NET Remoting.

These limitations, along with the dynamic nature of

most object graphs, make the web service support for

.NET Remoting inadequate for developing smart cli-

ents with the same capabilities as full .NET Remoting

clients. This becomes even more important when

extending an existing .NET Remoting application that

was not originally designed for extension to web ser-

vices. The focus of this paper is on extending such

applications.

In the next subsection, we state the requirements that

need to be fulfilled by a useful solution.

Requirements
Suppose a server running .NET Remoting is exposing

some of its objects for remote access. All .NET Re-

moting clients can access these objects as if they were

local to them. If one wants to port such a client to

37

run on a smart device, major problems will occur

because, apart from web services (with their already

discussed shortcomings), the .NET Compact Frame-

work lacks support for accessing these remote

objects. Therefore we have to figure out an alterna-

tive approach for interacting with remote objects that

offers most of the .NET Remoting capabilities. A

concrete list of the requirements we expect a good

solution to meet is given here:

1. make the object graph on the server navigable

from the client;

2. enable the client to refer to a specific object on

the server;

3. enable method calls on remote objects (with ob-

ject references both as parameters and as return

type);

4. make interactions as transparent as possible and

hide communication details;

5. enable callbacks from the server;

6. enable fast development of new clients;

7. minimize the impact on existing applications.

These requirements need to be fulfilled by reusing

large parts of the already available infrastructure on

both the client and the server platform. The client

implementation must take into account the typical

limitations of embedded devices (small memory size,

limited processing power, etc.). This last requirement

makes the porting of the whole .NET Remoting infra-

structure to the .NET Compact Framework an

unrealistic option.

3. USING WEB SERVICES TO

ACCESS REMOTE OBJECTS
In this section we explain the approach we take to

making remote objects available to clients who run

the .NET Compact Framework. Requirements 1, 2, 3

and 4 will be addressed here. Requirement 5 will be

discussed in Section 4 while requirements 6 and 7

will be addressed throughout all the next sections and

especially in Section 5.

In the current section we will explain how URLs can

be used as object references and web services to en-

able basic communication.

Basic approach
As mentioned before, .NET Remoting can publish a

degenerated version of the public interface of a re-

mote object through a web service on a well-known

URL. We will use this capability and modify the way

of using web services to overcome their inherent limi-

tations. The envisioned idea in this paper is to make

the publication of a remote object as a web service

happen dynamically whenever a client requests an

operation which returns a remote object. Further-

more, to enable navigation to another object, the

URL that uniquely identifies that remote object will

be passed in SOAP messages. This will in fact indi-

cate the web service of that object though it can be

mapped one-to-one onto the actual object, effectively

replacing the real object reference. The idea is visu-

ally represented in Figure 2.

The figure presents a graph of three interconnected

objects, objA, objB and objC. The starting object

objA will be accessible using a web service on a well-

known URL (1). By invoking methods on this object,

one can navigate to the other objects in the graph as

follows. Whenever the client calls a method that

should return a reference to another object (which

cannot be transported using standard web services),

this object will be exposed through a web service.

The URL to reach this service will instead be re-

turned to the client as a substitute for the real object

reference. Using this URL, the client can access the

Figure 2. Dynamically exposing objects as web services.

38

new object (2). In this way every object in the graph

can be reached (3), effectively enabling navigability.

To keep object access as transparent as possible to

the client, each remote object will be represented by a

proxy object to hide communication details. In this

way the client thinks it is working with local objects,

which basically is what .NET Remoting is also ac-

complishing.

This approach will require adjustments on both the

client (proxies) and the server (.NET Remoting ex-

tensions). In the next section, we present an

elaboration of the general idea by using a method call

scenario.

Remote method calls
To make invocations (made by the caller on the cli-

ent) transparent, two proxies will collaborate to

represent a remote object on the client. The first

proxy, from here on called the transparent proxy will

mimic the interface of the remote object. The second

proxy referred to as the real proxy, will hide commu-

nication details. The names chosen for these proxies

were inspired by the names of the proxies in .NET

Remoting. In this subsection we refer only to the real

proxy. These two proxies reside on the client. The

server side will also need an extension to be able to

handle the client’s requests. This extension will be a

custom message sink object, inserted on top in the

server channel sink.

The real proxy can be partially generated by extract-

ing the interface of its corresponding class. However,

some modifications to this interface are necessary

when generating the proxy. These have to do with

the limitations of web services concerning the trans-

portation of object references. As mentioned in

Section 1, web services cannot transport objects (or

better: references to objects). Only simple and struc-

tured value types can be transported directly. Each

time a non-transportable type is encountered in a

method signature (the return type or a parameter

type), it will be mapped to the transportable string

type. At runtime, this string will contain an object

reference represented by a web service URL (see

Figure 4). An example of the different possibilities is

given in Table 1.

real method signature mapped method signature

int Sqrt(int a) int Sqrt(int a)

Car GetCar(int id) String GetCar(int id)

Car Clone(Car c) String Clone(String c)

Table 1. Mapping an object's interface

We use three different methods to marshal different

types. Objects that are normally marshaled by refer-

ence by the Remoting infrastructure are marshaled by

reference using the URL representation as presented

in Figure 4. Primitive types are marshaled by value

and can be transported directly using SOAP mes-

sages. Complex value types (structs without methods

in C# [Alb01]) can also be transported directly. The

last case occurs when a complex value type contains

extra methods (also structs). We chose to make a

local copy of the instance on the server and then mar-

shal it by reference. Another (maybe better) way to

achieve a correct transport of these complex types is

to transport only the data in the instance using mar-

shal by value. The data can than be loaded into a

corresponding type instance on the client that would

act as a virtual proxy. It does not communicate with

the server but does represent a server type. The latter

solution would be more complicated to implement,

while the first method can use the existing marshal by

reference facility.

If a method does not contain non-transportable types,

it can be offered in the interface unmapped and in-

voked without special intervention. On the other

hand, if a method contains mapped parameters or

return types, then the default mechanisms cannot be

used and the invocation needs special care both on

Figure 3. Invoking a method.

http://145.34.67.10:1200/[type:MyClassLib.MyClass][853b9985]

 server location object type unique object

reference

Figure 4 Our web service URL format

39

the client (handled in its proxies) and on the server

(using a sink object).

A case where the return type is mapped will be dis-

cussed here. Suppose one wants to invoke the

method MyClass GetMyClass() on a remote

object that we can reach via a known URL. Through

the mapping mechanism this method will be exposed

as String GetMyClass(), and will be available

as such in the proxy on the client. The sequence of

steps that will take place when calling that method is

shown in Figure 3.

When calling the method, all the details of that call

are serialized into a SOAP message and this message

is sent to the known URL (1). The method is actually

called on a web service proxy that uses the standard

class library of the .NET Compact Framework to hide

the communication details from the caller. The

SOAP message then arrives at the server and is ac-

cepted by the .NET Remoting infrastructure, where it

is automatically deserialized into an IMessage object

containing the same information. After that, it is in-

serted into the right sink chains. This also means that

our custom sink object will get a chance to process

the IMessage. In this case, the sink can just pass the

IMessage further up the chain so that the call can

eventually be invoked (2). On the other hand, if the

method contains mapped parameters, its arguments

will contain URLs that indicate other objects. These

URLs should first be replaced by the actual object

references (which are known on the server) before the

IMessage is further propagated. The result of the

method call will also be intercepted by our message

sink (3). In response it will expose the returned ob-

ject as a web service and replace the object reference

with the URL of the created web service. Also, an

extra reference to this object must be stored on the

server to prevent it from being garbage collected (see

Section 4). Whenever the returned object is a (non-

primitive) value type (struct in C#), a local copy is

stored to preserve the right semantics (see earlier in

this section).

The modified IMessage is now handed over to the

next sink object to eventually be serialized to a SOAP

message and sent back to the client (4). When the

SOAP message is received, it is deserialized. The

returned URL is then given to the proxy, which will

give it back to the caller — which will in practice be

the transparent proxy (see next subsection). The

caller can in turn start invoking methods on the re-

turned ‘object’ represented by the new web service.

This will happen by instantiating a new proxy for the

corresponding type, and initializing it with the given

URL.

The mechanism described above implies that proxies

are available a priori for each type used. This does

not introduce any limitation in our case. Proxy gen-

eration at design time will actually boost performance

by taking away the processing cost of generating

proxies at run time. While it does enable basic com-

munications, the use of the real proxy directly does

not provide for much transparency. The caller does

not see the real method signatures and has to manipu-

late URLs instead of real object references. In the

next subsection, the transparent proxy is added to

solve this problem.

Providing a transparent client interface
To make the approach described above more trans-

parent to the caller on the client, an extra level of

indirection is introduced by adding a transparent

proxy that interacts with the real proxy. The interface

of the transparent proxy will mimic the object on the

Figure 5. Using two proxies on the client to provide maximum transparency.

40

server that it represents, effectively providing trans-

parency. Whenever a method invoked on a

transparent proxy contains instances of other trans-

parent proxies in its arguments, the transparent proxy

will translate these arguments into their correspond-

ing URLs and forward the call to the real proxy. The

reverse translation is done with returned values. The

real proxy in turn hides the rest of the communication

details as discussed in the beginning of this section.

Figure 5 shows a general model of the structure.

The scenario presented in Figure 5 starts when the

transparent proxy objA* (indicating that it mimics the

interface of the remote object A) receives a response

from the real proxy after calling its GetObjectB()

method. This is where the scenario presented in

Figure 3 ended by returning an URL to the caller,

which is represented by objA* in the current scenario.

The returned value is the URL to the web service of

object B. The rest of the scenario goes as follows:

1. Upon receiving a URL, the transparent proxy

needs to create the necessary proxy objects that will

enable the client to transparently work with the new

object’s web service. It therefore sends a cre-

ate() message to the objectActivator.

2. This objectActivator will check its cache to

see if it already contains a transparent proxy that re-

fers to the given URL. If none is found, it will create

a new one and add it to the cache.

3. A real proxy to directly interact with the web ser-

vice will also be created.

4. Eventually the newly created transparent proxy

objB* is given back to objA*, whichever object

invoked its method caller.

4. EXTENSIONS FOR LIFETIME

MANAGEMENT AND EVENTS
The previous section explained how references to

remote objects can be obtained and how method calls

can be carried out in a transparent fashion. However,

there should also be a mechanism to manage the life-

time of remote objects that are accessed in this way.

The server needs to know which objects are still ref-

erenced in order to carry out meaningful garbage

collection. Requirement 5 also states that events on

the server should be capable of being propagated to

the clients. The mechanisms for addressing these two

issues are presented in this section.

Distributed lifetime management
Distributed garbage collection is all about keeping

track of remote references to an object and letting

them play a role in the life cycle of the object. The

goal is to prevent remote objects either from living

forever or from being deleted when they are still in

use. Without further precautions being taken, the

first case would apply to the approach explained so

far. Whenever a client gets a reference to an object

on the server, the object’s local life cycle (the life

cycle of its proxy on the client) will not be known to

the server, which will result in an object that lives

eternally. Note that we will not address the inverse

problem of managing the life cycle of objects on the

client that are referenced by the server because until

now this has not been capable of happening. This

client/server approach rules out the problem of deal-

ing with circular references, which can only occur if

an object acts as both client and server.

A method for solving this problem of having remote

objects that live eternally is to just let the garbage

collector on the client do its work on the proxies and,

whenever a transparent proxy is destructed, to notify

the server of this event. This technique will work

well in our specific case. A survey of more elaborate

techniques for distributed garbage collection is given

in [Pla95]. [Vei03] presents a distributed garbage

collector that improves the current mechanisms used

in .NET. The garbage collector is implemented in

Rotor [Mic2] using the sink based extension mecha-

nism. Our basic approach is illustrated in Figure 6.

1. A transparent proxy on the client is not referenced

anymore and is destroyed by the local garbage collec-

tor.

2. This results in the invocation of the destructor of

that proxy. The transparent proxy will react to this by

invoking the EndLife() method on a special gar-

bage collector proxy (GCProxy), giving its URL as

argument.

Figure 6. Simple distributed garbage collection.

41

3. The message is received at the server (using the

mechanisms described earlier), where a special gar-

bage collecting object (WSGC) will remove a ref-

erence to the corresponding remote object. Hereafter

the garbage collector of the server can proceed with

its tasks. Because the reference count of the object

on the server is now lowered, it could possibly be

removed in the next run of the garbage collector.

Of course this method does not take into account the

unexpected connectivity loss of a client. The unex-

pected loss of a client will now result in the eternal

life of its referenced objects because it cannot notify

the server of object destruction. Since wireless ac-

cess is common with portable devices and can suffer

connectivity losses regularly, a complementary solu-

tion has to be added.

The easiest way to prevent the creation of indestructi-

ble objects is to implement a simple leasing system

where the client announces its presence to the server

at regular intervals. When the server does not get any

life signs for a specified amount of time it can delete

all the references associated with that client.

So far, the requirement 5 is still missing. It is not yet

possible for the server to initiate contact with a client,

for example to send a notification, as would have

been done in an event based application. A solution

for handling such events will be proposed in the

following section.

Remote events
Using the given descriptions, invocation from client

to server becomes possible. What is lacking here is a

mechanism for notifying clients of events generated

by a remote object. This will require the client to act

as a (web)server. An easier solution would be for the

client to use some sort of polling mechanism, but this

will not be considered here since it is not a real event-

ing system. Up to this point the solutions have been

given in a more or less platform independent manner

in the sense that they could be implemented either on

a .NET or on a Java platform (using other mecha-

nisms at the server). The way events are supported

will be specifically targeted to .NET, using events

and delegates.

In C# (probably the most popular .NET language) the

keywords event and delegate are provided. A

(multicast) delegate is a special object that can con-

tain pointers to methods in other objects, given that

these methods have the same signature as the delegate

declaration. These methods can consequently be

called all together by triggering the delegate. The

event keyword is actually an access modifier on a

delegate to prevent external triggering of the dele-

gate. Other objects can subscribe to an event by

instantiating the delegate with one of their methods

and adding it using the += operator. How these

events and delegates are integrated into the previous

parts is discussed below (see Figure 7).

In the same way that the transparent proxy mimics the

interface of a remote object, it also mimics the events

published by that object. To subscribe to an event

published by the transparent proxy objA* , one calls

the subscribe() method with an instance of the

appropriate delegate as its argument (1). The stan-

dard += mechanism to subscribe cannot be used be-

cause it cannot be overridden. As a consequence, this

part cannot be made completely transparent. Next,

the transparent proxy objA* passes the request to

Figure 7. Distributed events.

42

the client’s eventHandler object (2). The even-

tHandler is a transparent proxy that does the

necessary translations of object references to URLs.

The request is then passed to the real proxy (3) be-

longing to the eventHandler object, which sends

the message to the server. A delegate is identified by

an ID number in this stage, so the server can find the

right delegate. When the message arrives at the

server, the custom sink object (not shown in Figure 7)

routes the request to the eventListener object,

which subscribes itself to the event in place of the

transparent proxy (4). When the event occurs (5), the

eventListener is notified. The eventLis-

tener then calls its proxy to translate the event

arguments and send them to the eventHandler on

the client. This is accomplished by running a simple

web server [Pra03] on the client and publishing the

eventHandler’s interface on a well-known URL.

The eventHandler can, if necessary, call the cor-

responding delegate on the client to raise the event

locally (6). Thus it will seem that the event has oc-

curred locally.

5. IMPLEMENTATION OF THE

MODULES TO SUPPORT THE PRO-

POSED CONCEPTS
An implementation of the basic ideas was carried out

to prove the feasibility of the proposed concepts. The

results of the implementation can roughly be divided

into two parts: a C# code generator for the client side

proxies and an extension for the .NET Remoting in-

frastructure in the form of a sink object and

supporting objects.

The code generator was implemented in two steps.

First a WSDL generator was developed. It takes one

or more existing classes (residing in compiled assem-

blies) as input and generates corresponding WSDL

files as output. It also takes care of the mapping of

non-transportable types. Next, this WSDL is auto-

matically transformed into real proxies using standard

provided classes in the .NET Framework class li-

brary. In a second phase a code generator for the

transparent proxies was implemented. This was ac-

complished using the excellent support for dynamic

code generation and compilation of the .NET class

library.

All the functionality mentioned was then integrated

into one tool which enables one-click generation of

all the needed proxies. The functionality needed by

all proxies was split off into a separate common li-

brary module that has to be included with each client.

The generator tool can be set to output a compiled

assembly of proxies, ready to be used. By importing

this assembly into a project (in Visual Studio.NET),

the programmer gets a view of all the classes as he

would expect them on the server, thus fulfilling re-

quirements 6 and 7.

Splitting the code generation into a few steps facili-

tates the adaption of the application to generate code

for other (non-.NET) programming languages. Espe-

cially the generation of the intermediate WSDL files

opens up the possibility of using existing tools to

generate real proxies in other languages without hav-

ing to re-code the entire logic.

Extending the .NET Remoting behavior did not prove

to be as easy as expected. There turned out to be

many more subtleties in choosing the right extension

mechanism than one would expect. The .NET Re-

moting introduction in this paper only touches on the

many extension possibilities. A suitable extension

mechanism was finally found: a custom channel sink

inserted above the predefined server formatter sink.

This component is responsible for mapping the run-

time arguments and return values back and forth to

URLs. It therefore shares some functionality with the

WSDL generator.

Our channel sink undertakes four steps in intercepting

messages:

1. Check the input message. Only accept IMethod-

Messages. We do not treat constructor messages for

example.

2. Adapt the incoming message:

•••• Search for references in the parameter list.

•••• Skip simple messages (containing only primi-

tive types).

•••• Convert the references into real object refer-

ences by searching the server’s hash table.

Create a new writable IMessage, copy the data

from the original message and replace the refer-

ences.

3. Forward the newly created message to the next

sink in the chain.

4. Adapt the return message:

•••• If the return type is primitive, the instance is

marshaled by value and directly send back.

•••• If the return type has to be marshaled by refer-

ence, a unique ID is generated to be able to

construct a valid URL. Next, the instance is

published as a web service on this URL and the

mapping between URL and real object refer-

ence is saved in a hash map, which also places

an extra reference to the object on the server for

use in the distributed garbage collection. Fi-

nally the return message is changed with the

marshaled return value.

•••• In case of a complex value type with methods, a

local copy of the instance is first created and

43

then, the mechanism of the former bullet is fol-

lowed.

Inserting a channel sink in the server formatter sink

chain can be accomplished by adding a few lines of

code to the server application or even simply by add-

ing some configuration information to the

applications standard configuration file. This shows

the low impact on the server, again supporting re-

quirements 6 and 7.

The implementation was tested against an existing

application of a company active in the warehouse

automation sector. This automation is accomplished

using automated guided vehicles (AGVs). To enable

rapid application deployment they developed an inte-

grated designer suite offering the basic building

blocks of a warehouse application. The suite is fully

written using the .NET Framework. It includes ge-

neric building blocks for logging, scheduling

transports and user interfacing. The user interfacing

building blocks communicate with the other parts

using .NET Remoting.

Our test case was a smart client application that acted

as a simplified user interface to the warehouse appli-

cation. Two objects were relevant in this application,

namely Project and Agv. The operations that

were used to do some testing are summarized in

Table 2. The generated proxies for the two objects

were compiled into an assembly of 20 KiB1. The

client’s common library requires 16 KiB. The meas-

ured durations for operation executions are presented

in Table 3 below. The table contains measurements

using our solution and using the Remoting-Remoting

case (using the HttpChannel).

Operation(s) functionality

string GetName() Gets the name of the project

agv[] GetAgvs()
Gets an array of 4 AGVs from

the project

SetSpeed(int s)
int GetSpeed()

Sets the speed of one AGV and

retrieves it thereafter

Table 2. Test operations

Operation(s) Time(ws-rem) Time(rem-rem)

string GetName() 25 ms 455 ms

agv[] GetAgvs() 25 ms 8 ms

SetSpeed(int s)
int GetSpeed()

250 ms 24 ms

Table 3. Performance measurements

From these results we can conclude that the perform-

ance penalties are acceptable. The large delay of the

GetName() operation, in the Remoting-Remoting

case is caused by the dynamic generation of proxies.

This type of delay always occurs when invoking the

first method on a remote object and has nothing to do

with the type of its return value/parameters. This

1 KiB is short for kibibyte, where kibi=210 (an IEC prefix).

KB is short for kilobyte, where kilo=103 (an SI prefix).

supports our early decision not to port the complete

.NET Remoting infrastructure (see Subsection 2,

Requirements) to the .NET Compact Framework.

6. Related work
The consuming of web services on mobile devices

has only just recently been emerging due to the grow-

ing availability offering of Wifi-, or Bluetooth-

enabled PDAs and smart phones. These web services

have been mainly limited to simple services, such as

obtaining weather or news information.

To enable remote events, as discussed in Section 4, a

mobile web server will be needed. A proposal to

implement such a server, keeping in mind the re-

source constraints, is given in [Pra03]. To lower the

device’s requirements, some constraints were intro-

duced. One of them is to allow only simple SOAP

types. This would not be a problem in integrating it

with our solution, because we do not use complex

SOAP types.

In [Cam00], techniques for optimizing the perform-

ance of Java RMI are proposed. The optimizations

are made with wireless communication and resource-

constrained devices in mind, making Java RMI more

suitable for mobile devices.

An approach to optimizing the use of web services on

resource-constrained devices by applying specialized

code generation techniques is presented in [Eng].

Also, some runtime optimizations are implemented

using the gSOAP environment, which is portable to

most platforms including Pocket PC (which can run

the .NET Compact Framework).

Middsol [Mid] provides standard CORBA inter-

process communication for the .NET Compact

Framework. This support is provided in the form of

an assembly (520 KiB) that needs to be included on

the mobile client. While being very useful, this solu-

tion does not allow one to directly connect to .NET

Remoting objects.

An approach that enables communication between the

.NET (Compact) Framework and long-lived embed-

ded devices is proposed in [She04]. It handles about

isolating applications from the underlying wire proto-

col by using application-level bridges. This is similar

to what we are accomplishing by using independent

proxies on the client.

The approach in [Vei04] enables the .NET Compact

Framework to communicate with a .NET Remoting

infrastructure using bridges based on web services.

The main focus of the paper is on object replication

on mobile devices to enable connectionless operation

and boost performance. As in our approach, auto-

matic proxy generators are provided.

44

7. CONCLUSION
To enable the introduction of smart clients (PDAs,

smart phones) into existing distributed applications,

we proposed an approach that dynamically maps web

services to .NET Remoting. This approach enables

the quick development of applications that interact

with remote objects, solely using the .NET Compact

Framework. By presenting a transparent interface

using proxies, the programmer does not have to

worry about any communication details. The solution

is fully generic so it can be used for any existing ap-

plication without specific modifications.

Using our code generation tool, proxies are generated

fully automatically simply by selecting the needed

classes in an assembly. Thus a complete representa-

tion of the needed server-objects becomes available

at the client in the form of proxies that mimic these

objects. The impact on the server is minimized by

the implementation of all necessary logic using just

one sink object. This sink can be inserted into the

.NET Remoting infrastructure by adding as little as

three lines of code or even simply by modifying the

application configuration file, without influencing the

rest of the application. In addition the portability to

other client platforms should be easy. It would only

require an extension of the C# code generator for the

transparent proxies. The server side requires no

modifications.

To refine the solution, two paths could be further

pursued. First, the implemented modules could be

elaborated by including an implementation of the

proposed garbage collection and eventing concepts.

Secondly, we could search for good solutions to han-

dle the more efficient communication of frequently

used classes such as collections and, more in general,

all classes common to the class libraries of both client

and server.

8. REFERENCES
[Alb01] B. Albahari, P. Drayton, and B. Merrill, C#

Essentials. O’Reilly, 2001.

[Alm01] J. P. Almeida, L. Ferreira, and M. J. van Sinderen,

“Web services and seamless interoperability”, 2001,

[Online], Available: http://wwwhome.cs.utwente.nl/~pires/

publications/eoows2003.pdf

[Boo03] D. Booth, H. Haas, F. McCabe, E. Newcomer, M.

Champion, C. Ferris, and D. Orchard, “Web services

architecture,” 2003. [Online]. Available:

http://www.w3c.org/TR/2003/WD-ws-arch-20030808/

[Box00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,

N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer,

“Simple object access protocol (soap) 1.1,” 2000. [Online].

Available: http://www.w3.org/TR/2000/NOTESOAP

20000508/

[Cam00] S. Campadello, O. Koskimies, K. Raatikainen,

and H. Helin, “Wireless java rmi.”

[Eng] R. van Engelen, “Code generation techniques for

developing light-weight xml web services for embedded

devices.”, [Online], Available:

http://websrv.cs.fsu.edu/~engelen/SACpaper.pdf

[Mcl03] S. McLean, J. Naftel, and K. Williams, Microsoft

.NET REMOTING. Microsoft Press, 2003.

[Mic] “Microsoft .net framework development center.”

[Online]. Available:

http://msdn.microsoft.com/netframework/

[Mic2] “Microsoft Rotor - Shared Source Common

Language Infrastructure”, [Online], Available:

http://msdn.microsoft.com/net/sscli

[Mid] MiddSol, “Middleware solution for integrating .net,

j2ee and corba.”, [Online], Available:

http://www.middsol.com/MinCor/index.html

[Pla95] D. Plainfossé and M. Shapiro, “A survey of

distributed garbage collection techniques.”, 1995, [Online],

Available: http://mega.ist.utl.pt/~ic-arge/arge-96-

97/artigos/

[Pra03] D. Pratistha, N. Nicoloudis and Simon Cuce, “A

micro-services framework on mobile devices,” 2003.

[Online]. Available: http://plato.csse.monash.edu.au/

MobileWebServer/pervasive3.pdf

[She04] R. Shenoy and K. Moore, “Sustaining the

integration of long-lived systems with .NET”, 2004,

[Online]. Available:

http://www.hpl.hp.com/techreports/2004/ HPL-2004-

133.pdf

[Sun] “Java rmi.” [Online]. Available:

http://java.sun.com/products/jdk/rmi/

[Vei03] L. Veiga and P.Ferreira, “Complete distributed

garbage collection: an experience with Rotor”, [Online],

Available:

http://csce.unl.edu/~witty/sp2004/csce496/repository/uploa

d/10.pdf

[Vei04] L. Veiga, N. Santos, R. Lebre and P.Ferreira,

“Loosly-Coupled, Mobile Replication of Objects with

Transactions”, 2004, [Online], Available:

http://www.gsd.inesc-id.pt/~pjpf/icapds-2004.pdf

[W3c02] “W3c web services activity.” [Online]. Available:

http://www.w3c.org/2002/ws

[W3c03] R. Chinnici, M. Gudgin, J.-J. Moreau, and S.

Weerawarana, “Web services description language (wsdl)

version 1.2,” 2003. [Online]. Available:

http://www.w3.org/TR/2003/WD-wsdl12-20030303/

[Wig03] A. Wigley and S. Wheelwright, Microsoft .NET

Compact Framework (Core Reference). Microsoft Press,

2003

45

46

LanStore: a highly distributed reliable file storage
system

Vilmos Bilicki

University of Szeged
Department of Software Engineering

6720 Szeged, Hungary

bilickiv@inf.u-szeged.hu

ABSTRACT

We need clever solutions that manage distributed network systems. LanStore is a highly reliable, fully
decentralized storage system which can be constructed from already existing desktop machines. Our software
utilizes the otherwise wasted storage capacity of these machines. Reliability is achieved with the help of a
traditional erasure coding algorithm called the Reed-Solomon algorithm which generates n error correcting code
items for each m data item. The distributed behavior is controlled by a voting- based quorum algorithm. These
provide us with the capability of tolerating up to n simultaneously failing machines. As LanStore is intended to
be used in LAN environments, instead of employing an overlay multicast solution we used an IP level multicast
service. To use the bandwidth effectively, we designed a special UDP- based multicast flow control protocol. Our
solution supports both IPv4 and IPv6. For the implementation platform we chose the Windows family and the
.NET framework as they are the most popular platforms in offices and university departments. So far we have
implemented a prototype version of this solution. We measured its performance and the results indicate that this
solution can provide a throughput comparable to the currently used network file systems, its performance
depending on the selected error correcting capability, the number of failing machines and the performance of the
client machine. In special cases like video-on-demand with a high client number our solution can outperform the
traditional single server solutions.

Keywords
distributed system, distributed storage, erasure codes, multicast

1. INTRODUCTION
In today’s hectic world time is money and so is
information. This is especially true nowadays with
customer data from e-business and the huge amount
of logistic and scientific data which may be worth
their weight in gold. The amount of data is increasing
sharply. The average storage capacity you get for
your money is skyrocketing. Storage of several
hundred GBytes is achievable for everyone. One
might argue that today’s storage capacity is just
following the trends and there is enough cheap
storage to meet the increasing demand.

Permission to make digital or hard copies of all part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or fee.

.NET technologies ‘2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

 Unfortunately, the total cost of ownership is also
increasing sharply with the amount of the maintained
data. In a typical company there are several file
servers which provide the necessary storage capacity
and there are many tape libraries for archiving the
contents. If the storage need grows the company can
purchase a new hard disk or a new server. To have a
reliable system there is usually replication between
the dedicated servers. The disk drives are organized
in raid arrays, typically RAID 1+0 or RAID 5
[Che94]. This solution is not scalable enough for
today’s internet scale applications where there can be
huge fluctuations in demand. Failsafe behavior versus
effective storage capacity ratio is not optimal because
of mirroring. Management is the other weak point of
this system. That was why the Storage Area Network
was designed. In a typical SAN there are several
storage arrays that are connected via a dedicated
network. The storage arrays typically contain some
ten to sixty hard disks. To protect the data from hard
disk failure these disks are organized into RAID 0, 1,
5 arrays. Protection from more two or more hard disk

47

failures is very costly because of mirroring. In larger
systems it is vital to protect the data against storage
array failure; hence the storage arrays are duplicated
and connected by SAN switches. The servers are
connected to this network via their fiber channel
interfaces and provide a 2 GBit/s transfer capability.
The scaling of this system is achieved by adding new
hard disks to arrays, or moving the partition
boundaries. The price of SAN components is high
compared to typical network components and servers,
and the storage usage failure toleration ratio is not so
optimal.

We would like to present a much better and cheaper
solution to this problem. A typical PC now has huge
computing and storage capacity. It is not unusual to
find more than 100 GBytes of storage capacity, over
500 MBytes of RAM and two GHz or more CPU
clock frequency in a desktop PC. It seems that these
parameters are constantly increasing. A typical
installation of an operating system and the software
required does not consume more than ten to fifteen
GBytes. The rest of the storage space is unused. A
typical medium-sized company has more than 20
PCs. A university or research lab usually has more
than two hundred PCs. In this case the storage
capacity that is wasted may be several TBytes in size.
So it would great if we could utilize this untapped
storage capacity.

In order to solve the above-mentioned problem we
decided to design and implement LanStore with the
following design assumptions:

• It is highly distributed without central server
functionality.

• It has low server load. We would like to
utilize the storage capacity of desktop
machines; these machines are used when our
software runs in background.

• It is optimized for LAN. The use of
multicast and a special UDP based protocol
is acceptable.

• It has effective network usage. We designed
and implemented a simplified UDP-based
flow control protocol.

• It is self organizing and self tuning. We used
a multicast-based vote solution to implement
the so-called ‘Group Intelligence’.

• There is a highly changeable environment.
The desktop machines are restarted
frequently compared to dedicated servers.

• It is a file-based solution. For effective
caching we chose file-based storage instead
of a block-based one. [Kis92]

• It has campus, research laboratory-type file
system usage. Also, file write collisions are
rare. [Kis92]

• It has an optimal storage consumption
failure survival ratio. As a first approach we
selected Reed-Solomon encoding for data
redundancy.

2. OVERVIEW
In this article we would like to present our LAN-
based distributed storage solution, which can work
even when the node failure rate is high. In the next
part we list and compare several existing solutions for
distributed data storage approaches. In Section 4 we
describe the main building blocks of our application.
The dependence between these blocks and the design
assumptions are also included here. Then Section 4.1
describes the data loss problem and the currently
available solutions for it. We compare these solutions
with our solution. Section 4.2 describes the network
layer of our application and we show the features of
our new simple multicast flow control algorithm. In
Section 4.3 we present the core of our application,
namely that of group intelligence. We show the goal
of this layer and the solutions used. Next, Section 4.4
discusses our security layer with the features
provided. Section 4.5 describes our data persistence
layer. The design goals and the chosen solutions are
also stated here. The implementation details are then
described in Section 5. Finally, in Section 6, we
present our results.

3. RELATED WORK
Distributing the contents among storage blocks is by
no means a new idea. The oldest and the most
popular technique is the RAID (Redundant Array of
Independent Discs) technique [Che94]. It uses two
basic data distributing solutions called stripes and
mirroring. The first algorithm uses XOR parity data
slices for correcting only one error while the second
one can be used several times to achieve the
necessary error correcting level, but the storage
efficiency then sharply decreases. RAID is used
typically for computers with several hard disks inside.
The Zebra [Hart93] file system took the idea of
striping from RAID, but instead of distributing the
data among hard disks it distributes the data among
storage servers. To effectively use the network
bandwidth it uses per client striping instead of per file
striping. The weak point of this solution is its single
error correcting capability. Petal [Lee96] uses
striping without redundancy and mirroring as a type
of data distribution. One can define block level
virtual disks with the aid of a low level interface.
There are special server functions which translate the
addresses used on a virtual disk to a physical machine

48

and disk addresses. It uses a heartbeat backbone to
provide the so-called “liveness” property. A
distributed consensus is achieved by using Leslie
Lamport’s Paxos [Lam98] algorithm. The goal of the
Pasis [Wyl00] project was to create a solution for
building a survivable data storage that was as simple
as possible. Here is a thick client and thin servers.
The only functionality implemented in servers is the
data store which can be implemented as a simple file
share, except that all this functionality is implemented
on the client side. For the object name to physical
location mapping, a directory server is used. In a later
article [Wyl04] the authors of the Pasis framework
define a new approach for handling
Byzantine[Cas00]-type failures. In this solution the
correction of failed storage nodes is a client task;
there is no background process for consistency
maintenance. This solution does not utilize the
computing power of server nodes. Self*-store [Str00]
is based on Pasis, its goal being to create a safe
storage where, for a specified duration, there is no
chance of data erasure. If the logfiles were stored in
the Self*-store then the intruders would not be able to
erase their footprints. OceanStore [Rhe03] defines a
global scale storage system on a multicast overlay
network. They use Tapestry[Zha01] for object
naming and locating. To achieve data redundancy
they use both erasure codes and mirroring. There are
several defined classes of storage nodes with different
responsibilities. For example the inner ring members
have the task of data redundancy handling, but this
solution is unsuitable in a laboratory where the
storage nodes are desktop machines and they cannot
tolerate a heavy processor load from a background
process. FAB [Fro03] defines a storage system with a
block level interface. The clients use SCSI commands
for data manipulation whose implementation uses the
thin client and thick server paradigm. This solution is
unsuitable in an office or laboratory, however

4. ARCHITECTURE
Before going into detail let us see the high level
workings of LanStore. As we mentioned before the
main design goal was to gather the empty storage
capacity into a virtual storage unit. To utilize in an
equal way the storage capacity of the member nodes,
we divided the files into equal fragments. In this way
every storage node has the same number of stored
data fragments. We would like to collect the free
space from PC’s in computer laboratories,
classrooms, and so on.

�
�
�
�
�
�
�
�

�
�
�
�

	
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�

Figure 1

There is a high probability that one or more machines
will be rebooted or turned off. We need data
redundancy to correct the data which is stored on
these machines. We will use forward error correcting
codes (FEC) for error correcting. With the help of
these algorithms we create n data fragments for m
original data fragments. This means that we can
reconstruct n failing data fragments. This process is
shown in Figure 1. The consistency among modules
is provided by a voting algorithm. If there are a
critical number of working data nodes the remaining
nodes may be reconstructed. Our solution is
transaction based. At the end of a transaction a vote is
taken and any changes are written to a permanent
storage unit when the majority of nodes agree on the
next common state. If there is no majority acceptance
of the new state the transaction will roll back. After
the changes are written into a permanent storage, a
second vote is taken of the result. If there is a
successful majority vote the whole task will be
marked as fulfilled; if there is no successful majority
result the first and the second transactions will roll
back.

In our system the file is the basic data unit. We
designed the file store for campus and research
laboratory usage where file-based caching could be
much more effective than block-based caching
[Kis92]. The files are identified with the aid of the
hash of their contents. With this solution we never
store the same file twice. If someone tries to upload a
file that already exists in our storage system, it creates
a new link to the existing file. In the case of a
modification, the storage uses versioning to handle
the modifications. Our application is divided into
independent modules. This design pattern provides an
easy-to-maintain and robust code, where each module
can be replaceable by another one using interfaces.
The necessary functionality groups of our software
provide us with natural borders among modules.

49

Figure 2

The modules are the following:

• Data redundancy module
• Network module
• Data persistence module
• Security module
• Group intelligence module
• Application logic module
• GUI module

Figure 2 shows the communication path between the
modules. The control module is the core of our
application; it uses the services provided by other
modules. It is singleton, while every other module is
thread safe. We may find that there are the same
modules in the client and server sides, which
contradicts our goal of developing an application
with a fat client and thin server. During normal
functioning the server does not use its Data
Redundancy module. It only stores, sends the
necessary data fragments and maintains its state with
the help of the Group Intelligence module. We need
the Data Redundancy module only for heavy data
migration when every server helps a new or old
server in an inconsistent state to achieve the
consistent state.

	�
��
��

	�
��
�������

������

����������������������������
�� �!
	�
��
��

���������������������
����"�� �#�!

�����
�$%�����������
����"�� �#������"����
���!

�
 �&� '���
��
�

�����
�$%�����������
����"�� �#������"����
���!

�����
�$%�����������
����"�� �#������"����
���!

��&������������&

����������
(����"��
)�)�� ���

���)

�� *� ��
 ��������&� �)����!

&� �)����������������
�� �!

Figure 3

In Figure 3 the whole file download process is shown.
First the client asks the group of servers via a
multicast message for the altered data between its
version and the global version of the directory/file
database. We need this database on the client side to
browse its contents. The designated server that was
selected by the Group Intelligence module reacts and
sends the recent changes. Next, the client starts a
download process with the GetFile() multicast
message. This message contains a transaction ID
which is globally unique and it is generated from the
hash of the file and the public key of the user. Every
active server receives this message and starts
uploading file fragments. During this upload process
the client uses the flow control mechanism outlined in
Section 4.2.

Figure 4

Figure 4 shows the file upload sequence. First the
client sends a multicast message to the group of
servers with the transaction ID. This step is needed to
acquire a lock for the actual file. If there is no upload
transaction with this ID the designated server sends it
the right to modify. When the client receives this
message it starts uploading file fragments to the
servers. In the background a vote is taken among the
servers after each slice upload. This mechanism is
described in Section 4.3. There may also be a flow
control between the servers and the client, which is
mentioned in Section 4.2.

4.1 DATA REDUNDANCY MODULE
The task of this module is to provide the necessary
data redundancy for error correction. Several
approaches are available in the literature. The most
popular one is that of data mirroring. This is an easy-
to-use and implementable technique with low
processing overheads but we pay the price on the
storage consumption side. The creation of data parity
blocks is another popular way, but apart from its
optimal storage consumption this technique can

50

correct only one error at a time. This is a big
drawback.

Figure 5

For our goal a special class of the forward error
correcting codes FEC, the so-called erasure codes
provide the best solution. Since we can detect failing
data, we only have erasure errors. In the case of FEC
codes one can select the required redundancy level
and the algorithm generates the necessary error
correcting data blocks for the existing data blocks
(see Figures 5&6). If a data block fails, it can be
calculated from the remaining data and error
correcting blocs.

Figure 6

There are two types of FEC codes: codes with
guaranteed error correcting capabilities and codes
which have an error correcting capability with a given
probability. We opted for the first code family
because of its guaranteed error correcting capability.
The price, however, is the processing overheads
which depend on the selected error correction
capability. This is one or two magnitudes higher than
that for the second case. We chose a special case of
the Bose-Chaudhuri codes called the Reed-Solomon
[Riz94] code. The basic theory for this is quite
straightforward: we have n data blocks and we need
m data blocks to correct fewer than m erasure errors.
To produce m data blocks we require a special
equation system where every partial matrix is
invertible. To produce such an equation system the
Reed-Solomon approach makes use of the
Vandermonde matrix. The Galois field is used as the
space where the operations are performed. With this
solution we replace the complex calculation-intensive
operations by lookup tables. Here we use the Luigi

Rizzo [Riz94] implementation of the Reed-Solomon
code. The module divides the processed files into 64
KByte long stripes and calculates redundancy data
for these slices. These stripes form the basic unit of
the versioning system.

4.2 MULTICAST FLOW CONTROL
Our software is designed to run in a LAN
environment. Most modern LANs are switched and
there is practically a full mesh among network nodes.
The key feature of such a network is that the
bottleneck is on the source side or on the destination
side; the network itself does not contain bottleneck
nodes. TCP was designed and optimized for
situations where the network is a black box and we
can detect the available bandwidth only with the help
of packet loss. There is an optimal windowing
algorithm [Imr04], but this is not optimal when there
is more knowledge and we can use a multicast
protocol. We have complete knowledge of both sides
of the communication channel, so it is plausible to
use a flow control mechanism based on this. We
designed a simple flow control mechanism that is
capable of handling both multicast and unicast traffic.
UDP here was used as a base and we added a simple
signaling mechanism. Prior to each data manipulation
process a transaction identifier is created by the client
from the hash of the manipulated file and the public
key of the client, this ID being unique to the whole
system. At the same time only one client manipulates
a file.

Our multicast flow control mechanism has two
working modes, both modes utilizing the error
correcting capability of our solution. In this way we
can strike a balance between processor occupation
and network transfer capability. The download mode
operates during data transfer from a group of servers
to a client. The upload mode operates during the data
transfer from a client to a group of servers. In the
following we will describe these modes.

Download mode:

1. Receive(fragment, stripeId, from)

2. IF(stripe is not yet processed)

3. StoreFragmentInQueue()

4. CheckQueue()

5. ELSE

6. Drop(fragment)

7. END IF

8. IF(the Queue occupation is over 20%)

9. SendFlowControlInformation()

10. END IF

Figure 7

51

CheckQueue function:

1. IF(there are more than N data fragments for the
same stripe)

2. IF(we have every data fragments)

3. SendAlertToControler()

4. SetTheProcessedFlag(stripeId)

5. ELSE

6. StartErrorCorretion(stripeId)

7. END IF

8. END IF

Figure 8
In the download mode the client receives the file
segments from servers and then stores these
fragments in the input queue. If there are sufficient
fragments for error correction (Figure 8, line 6) the
client immediately starts the error correcting process.
When it finishes the error correction, an alert is sent
to the controller and it sets the processed bit for the
processed stripe (Figure 8, lines 3&4). Further
fragments for the processed stripes are dropped. With
this solution we can avoid the situation where
bottleneck nodes slow down the data transfer rate,
and we can tolerate transparently the failure of nodes
below a critical number.

In the upload mode our task is similar, namely that of
tolerating the node failures and avoiding the situation
where several slow nodes decrease the speed of the
whole upload process. In this case after the first
control packets the client starts sending the data
fragments to different nodes as unicast UDP packets.
When a storage node notices that the free space of its
input queues is below 80%, it sends a control packet
to uploading clients with a preferable transfer rate.
The client has the responsibility of deciding whether
it will accept the request or continue the upload with
a higher speed. The decision of the client is based on
responses from other storage nodes. It selects a speed
which is acceptable for more than a critical number of
storage nodes. The rest of the nodes will be corrected
with the help of the Consistency process which is a
part of the group intelligence.

4.3 GROUP INTELLIGENCE MODULE
In a distributed system this module plays a very
important role. Its main task is to provide
consistency, meaning a consistent state and consistent
databases. In an ideal system where there are no
failures this is not a hard task, but such difficulties
arise when we have a real system. In the real world
there is no algorithm that provides guaranteed
consistency. To be able to handle this situation we
define the following model of reality:

• The participants in the group management
protocol can reboot or switch off at any
time.

• The recorded data can never be overwritten.

• The messages must be delivered without
delay or they will be lost.

With these constraints this module has:

• A voting-based algorithm for sequence
upload verification

• A voting-based algorithm for file modifying
finalization

• A voting-based algorithm for designated
node selection

• Management of the correcting process of
failed nodes

The voting algorithm is based on one by Leslie
Lamports called Paxos [Lam98]. Every server node
maintains a history database [Figure 9] that contains
the successfully finished instructions. A data
modification or upload is a sequence of stripe
uploads which are a sequence of data fragment
uploads. After every stripe upload a vote is taken of
its success. If it was successful this fact is placed in
the history database. After every data modification
transaction (sequence of stripe uploads) a vote is
taken of the success of the transaction. The success of
a transaction really means that every sequence upload
vote was successful. If a transaction was successful
then every node erases the temporality signaling flag
of the modified file. After this is carried out the new
version of the file is the latest version.

Figure 9

A designated node is important when the group of
storage nodes sends messages to the client. This
happens when a client asks for the new file list and
about the success of file modification. The load of the
processor, the occupation of the memory and the
stability of the node are the properties which are
important during the designated storage node election
process. The designated nodes are changed after a
few dozen transactions.

The correction of failed nodes is handled collectively;
each consistent storage node is responsible for a
stripe. The sequence of tasks needed to correct it is
calculated using the data difference between the local

52

history table and the globally accepted one. To
calculate the required data fragment these nodes act
as clients. With this method we can achieve a
relatively fast self-correcting capability of the group
without imposing a high load on any given node.
There are so-called synchronization points where a
part of every history table in the system is the same.
After reaching several such points the old records are
deleted from the history table.

4.4 SECURITY
The security module has the task of providing data
integrity, user and node authentication and access
control. We store the digital certificates of nodes and
users in the central database; the MD5 hash and the
windows SID is stored here too. We use the existing
Kerberos infrastructure for authentication when it is
available. When there is no such infrastructure then
we provide a simple asymmetric encryption-based
authentication infrastructure. The data integrity of
messages is guarded by digitally signing them with
the sender’s private key.

4.5 DATA STORAGE
The data storage module is responsible for data
persistence and it has to maintain the history of
conducted processes. The stored data can be divided
into two main groups, the information which must be
globally consistent and the information which has
local importance (Figure 10). The Group Intelligence
module maintains the consistency of globally
important information.

Figure 10

We store the following information:

• Metadata about data such as file name, path
and access control lists.

• The data which is needed for the correct
working of our system like users, nodes and
certificates.

• The file fragments which have to be stored.

• A history of the processed instructions.

Every data type has its own behavior and therefore
we selected different solutions for persistence. Meta
data, infrastructure data, and histories are stored in a
lightweight relation database. The size of this
database never exceeds some 10 Mbytes. The
fragments can be several hundred MBytes. We tested
the handling of large objects in the current databases.
We may conclude that the conventional file system
has a speed about ten times faster for file fragments
than current database solutions.

We implemented a version handling file storage. We
store every version of a file. Between versions only
the difference is stored. The basic unit of the
difference handling is the file slice which was
mentioned in the Redundancy module.

The goal of the history table was described in the
Group Intelligence module.

5. IMPLEMENTATION
We selected the Windows platform because of its
widespread usage in offices and university
laboratories. Because it is well integrated in the
Windows platform, .NET framework and the C#
language was selected. For example it was very easy
to check the infrastructure and the computing power
of the hosting PC for leader election with the help of
the Windows Management Instrumentation service.
Another reason for using the .NET platform and
managed code against the unmanaged C or C++ code
was the short development cycle. Five graduate
students have been working for a year on the software
which is now in the alpha state. It has currently more
than 20,000 lines of code. Figure 11 shows the
detailed architecture. On the client side there are two
threads: the Network module and the Client
integration module. The network module has the task
of capturing incoming packets and storing it in a
synchronized queue. We designed this module to be
as simple as possible to be able to capture every
packet. The Client integration node consumes the
packets from the common synchronized queue with
the assistance of helper classes. If the queue is empty
then the thread will go in the wait state. In this state
the network module can wake it up with a pulse
signal. In the case of file upload the GUI uses
asynchronous method calls for each storage server. In
this way outgoing traffic is handled in parallel. As the
network module does not inspect the contents

53

������

�
�&��"���

��
�

#���
'�"�

� %%��)�

�����

#���
'�"�

���*
+

	�"�
��(

���"
(&���$��

��
����,��$!

�)�

��
*�
)��

��

�"�� �!

�������

#���
'�"�

� �)�

-�����"�

�������

#������$��"�

� %%���"��� �

�
����"�� ��.���$�

	�
��

� %%���"��� �

����-����

��$���

�	/����!

�����

�(���%

����-���

	�
��
�0�������

#������$��"�

	�
��
�0�	�
��

#������$��"�

�)�

��
*�
)��

��

�"�� �!

���*
+

� �)�

-�����"�

	�"�
��(

���"
(&���$��

��
����,��$!

	�"�
��(

��""����

� ��
 �!

�
����"�� ��.���$�

Figure 11

of the package and the packages could be encrypted
with only one thread, the original client integration
thread for handling the incoming will decode the
packets and, if needed, wake up the appropriate
sender thread for handling the output traffic.

The server side has a similar architecture, but instead
of a GUI there is a database engine and a Server-
Server intelligence module. These four threads are
always running: the Network the Server-Server the
Server-Client and the Hello thread. The first three
threads work the same way here as on the client side.
However, there are two queues; one for Server-Server
and one for Server-Client module. The Network
module makes a decision based on the type of the
destination address of the incoming packet for
selecting the appropriate queue. The Hello thread has
the simple task of periodically sending hello packets.
These packets act as keep-alive packets.

Owing to its speed, small size and easy-to-deploy
capabilities, SQLLite was selected as the database
engine. It has no transaction handling capabilities.
When one tries more than one writing process
simultaneously, it throws an exception. To avoid this,
we used the .NET frameworks ReaderLock solution
to achieve a serial access of this resource.

As we said earlier, we used the FEC encoder
implemented by Luigi Rizzo [Riz94]. We use it as a
native code.

6. EVALUATION
The raw encoding capacity with Reed-Solomon
encoding was first measured. The results are shown
in Table 1. We may conclude that the currently used
processors produce a usable throughput for 64/32 (64

nodes, and out of these 32 contain error correcting
information).

CPU Clock
Frequency

(GHz) N K
Throughput

(MBit/s)

1 64 32 40

2 64 32 80

3 64 32 120

3 200 100 38.4

Table 1
To test the performance we used a laboratory with
sixteen PC’s, each having P4 3 Ghz processors, 1
GByte of RAM and a 100 MBit/s network adapter,
while for debugging we used virtual PC’s. We
measured the throughput in different scenarios. Even
in a larger configuration when there were 16 servers
and we used a 16/8 redundancy scheme, the 100
MBit/s network bandwidth was the bottleneck. The
processor utilization was only 20% on the client side,
and less than 1% on the server side.

The above-mentioned measurements give a picture
only about the raw coding capacity of a typical PC.
Although this process is the most time-consuming
part of the whole transaction, the remaining task
could add significant delays. To be able to compare
our solution with already exiting systems we tested
our framework in different scenarios. One of the most
accepted methods of file system testing is the Andrew
benchmark [How88] which was created to measure
the efficiency of the Andrew file system. This
benchmark contains the following measurements:

• MakeDir
• Copy
• ScanDir
• ReadAll
• Compile

It measures the time needed for these tasks. Among
these popular tasks the size of the manipulated files is
important. The article [Cro98] estimates the
distribution of file sizes of the UNIX file system as a
Pareto distribution with parameters a=1.05 and
k=3800. In another paper [Dou99] it was
demonstrated that the windows file system file length
distribution could be modeled with the help of a
lognormal distribution and a tail with a two-step
lognormal distribution. As a simple, but appropriate
solution we chose the Pareto distribution to model the
file size distribution of user homes.

Currently our system is accessible only through the
GUI provided. We do not provide an API, so we
cannot use the original Andrew benchmark script. In
these circumstances we did the following and then
took measurements: we created an application which

54

generates files with the length of Pareto [Cro98]
distribution the depth of its directory path follows
linear distribution. Each character inside the files is
generated with a linear random distribution. We
uploaded and downloaded the generated file/directory
set with the help of the GUI. We used the Windows
SMB file share as a comparison partner. A test
network was set up with 10 PC’s, each having P4 3
Ghz processors, 1 GByte of RAM and 100 MBit/s
network adapter connected via a HP4108 switch as
server nodes and a similar PC as a client node. The
redundancy ratio was set to 7/3, so for every seven
original data items three error correction items were
generated. The following tasks were measured on the
LanStore and on a Windows share which was one of
the server nodes:

1. The delay of directory creation (a), and
deletion (b) in seconds, with 615 randomly
generated directories, with depth and name
space of a random linear distribution. We
executed this task on LanStore and on a
Windows share system.

2. The delay of file upload (c) and download
(d) in seconds and the throughput in
MByte/second with 200 randomly
generated files with the size distribution of
Pareto(a=1.05, k= 3800) and with random
hierarchy. The aggregate size of these files
was 4.08 Mbyte.

We obtained the following results:

 Lanstore Windows file share
 Delay Throughput Delay Throughput
a 353 - 5.3 -
b 116 - 3.8 -
c 213 0,02 3.5 1,25
d 53 0,08 6.1 0,7

Table 2
From these results we may conclude that for small
files our system is about two magnitudes slower than
the currently used network file systems. The reasons
for this lie in the distributed nature of our system. In
the current implementation every operation is
handled in separated transactions and after every
transaction a vote is taken of the success or failure of
the transaction. As we have seen with small files or
with administrative tasks like a directory tree
manipulation, these overheads can take a longer time
than the whole file upload. We can correct this
behavior by batch processing the operations. When
we upload a directory we can then assign a
transaction for the whole process instead of managing
every single operation as a transaction.

To test the framework as a video archive, we had to
measure with different file size distribution. The

video files are in most cases larger than normal files,
so we used the value of 3,800,000 for k. With this
value we generated 75 files with an aggregated size
of 1.03 GBytes and the directory hierarchy was
randomly generated. The test bench was the same as
in the previous measure. We got the following results
for file upload (e) and file download (f):

 Lanstore Windows file share
 Delay Throughput Delay Throughput
e 262 4.02 144 7,32
f 240 4.39 104 8,5

Table 3
We can see that with larger files our solution
provides a delay and throughput comparable to
traditional network file systems. With batch
processing this result can be further improved. In the
case of a stabile environment we can achieve higher
throughput than tradition file systems by sending the
error correcting data fragments only when they are
needed.

The data storage efficiency was measured as the ratio
of the size of stored files and the size of data which is
stored for every file. A record size in our database
was about 35 bytes, which is not comparable to the
stored data quantity. We may conclude that the data
storage efficiency really only depends on the used
error correcting level.

7. FUTURE WORK
So far the group intelligence module has only been
partially implemented, but we plan to finish it later
this year. We would like to implement the batch
processing and client side caching to achieve a better
performance for small files. To be able to modify the
contents we need versioning, and we plan to
implement this in early 2006. We would like to
measure the performance in larger configurations
with some 150-200 PC’s. In the future we would like
to use the LanStore as a basic building block for a
wide area video-on-demand system and a long term
archive for users’ files. The current bottleneck is the
FEC encoder; we would like to study the use of other
solutions.

8. CONCLUSIONS
In this article we presented a solution for a cheap,
reliable, high performance LAN based distributed
storage. The solution components we used are not
new but we could not find a system which is
optimized for such circumstances. The measurements
prove the usability of this solution even with current
desktop computing capabilities. We think that in the
near future with increasing processor capacity similar
solutions will be widely used.

55

9. ACKNOWLEDGEMENTS
The author would like to thank Tibor Antal, Peter
Bagrij, Tamas Horvath, Andras Maroti, and Kornel
Kallai for their creative ideas and hard work, Tibor
Csendes for his useful comments and suggestions,
and David P. Curley for checking this article from a
linguistic point of view.

10. AVAILABILITY
The source code, the binaries, the detailed
benchmarks and the tool for benchmarks will be
published and be freely available at the following
website: http://nlab.inf.u-szeged.hu/lanstore

11. REFERENCES
[Hart93] J. H. Hartman and J. K. Ousterhout. The

zebra striped network file system. Operating
Systems Review – 14th ACM Symposium on
Operating System Principles, 27(5):29–43,
December 1993.

 [Che94] P. M. Chen, E. K. Lee, G. A. Gibson, R. H.
Katz, and D. A. Patterson. RAID: High-
performance, reliable secondary storage. ACM
Computing Surveys, 1994.

[Kis92] J. Kistler and M. Satyanarayanan.
Disconnected operation in the Coda file system.
ACM Transactions on Computer Systems,
10(1):3–25, February 1992.

[Lee96] Edward K. Lee and Chandrohan A. Thekkah.
Petal: distributed virtual discs. SIGPLAN
Notices, 31(9):84-92,1-5 October 1996.

[Lam98] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16 (2), pp.
133-169, May 1998

 [Wyl00] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger,
H. Kiliccote, and P. Khosla. Survivable
information storage systems. IEEE Computer,
33(8):61–68, August 2000.

[Wyl04] J. J. Wylie, G. R. Goodson, G. R. Ganger,
and M. K. Reiter. Efficient byzantine-tolerant
erasure-coded storage. In Int. Conf. on
Dependable Systems and Networks (DSN),
Florence, Italy, June 2004.

[Cas00] M. Castro and B. Liskov. Proactive recovery
in a byzantine-fault-tolerant system. In Proc. of
OSDI, 2000.

[Str00] J. D. Strunk, G. R. Goodson, M. L.
Scheinholtz, C. A. N. Soules, and G. R. Ganger.
Self-securing storage: protecting data in
compromised systems. Symposium on Operating
Systems Design and Implementation, pages 165–
180. USENIX Association, 2000.

[Rhe03] S. Rhea, P. Eaton, D. Geels, H.
Weatherspoon, B. Zhao, and J. Kubiatowicz.
Pond: The oceanstore prototype. In Proceedings
of the Conference on File and Storage
Technologies (FAST), 2003.

[Zha01] B. Y. Zhao, J. D. Kubiatowicz, and A. D.
Joseph," Tapestry: An infrastructure for fault-
tolerant widearea location and routing," UC
Berkeley, Tech. Rep. UCB/CSD-01-1141, April
2001.

[Fro03] S. Frolund, A. Merchant, Y. Saito, S. Spence,
and A. Veitch. FAB: Enterprise Storage Systems
on a Shoestring. In 8th Workshop on Hot Topics
in Operating Systems (HOTOSVIII), Kauai, HI,
USA, May 2003.

[Imr04] Cs. Imreh, V. Bilicki. On the optimization
models of congestion control. In XXVI.
Operational Research Conference. Gyor,
Hungary, May 2004.

[Riz94] Luigi Rizzo, Effective Erasure Codes for
Reliable Computer Communication Protocols.
ACM Computer Communication Review, VOL
27, pp. 24-36, 1997.

[How88] J. H. Howard, M. L. Kazar, S. G. Menees,
D. A. Nichols, M. Satyanarayanan, R. N.
Sidebotham, and M. J. West, `̀Scale and
performance in a distributed file system,''
Transactions on Computer Systems, Vol. 6, pp.
51-81, February 1988.

[Cro98] M. Crovella, M. Taqqu, and A. Bestavros.
Heavy-Tailed Probability Distributions in the
World Wide Web. Appears in the book: A
Practical Guide To Heavy Tails: Statistical
Techniques and Applications, R. Adler, R.
Feldman and M. S. Taqqu, editors, Birkhauser,
Boston, 1998.

[Dou99] J. R. Douceur and W. J. Bolosky. A large-
scale study of filesystem contents. In ACM
SIGMETRICS’99, ps 59–70, May 1999.

56

Design and Implementation of a high-level multi-
language .NET Debugger

Dennis Strein
Omnicore Software, Werderstr. 87,

76137 Karlsruhe, Germany
MSI, Software Technology Group,

Växjö University, Sweden

strein@omnicore.com

 Hans Kratz
Omnicore Software, Werderstr. 87,

76137 Karlsruhe, Germany

kratz@omnicore.com

ABSTRACT
The Microsoft .NET Common Language Runtime (CLR) provides a low-level debugging application
programmers interface (API), which can be used to implement traditional source code debuggers but can also be
useful to implement other dynamic program introspection tools. This paper describes our experience in using
this API for the implementation of a high-level debugger. The API is difficult to use from a technical point of
view because it is implemented as a set of Component Object Model (COM) interfaces instead of a managed
.NET API. Nevertheless, it is possible to implement a debugger in managed C# code using COM-interop. We
describe our experience in taking this approach. We define a high-level debugging API and implement it in the
C# language using COM-interop to access the low-level debugging API. Furthermore, we describe the
integration of this high-level API in the multi-language development environment X-develop to enable source
code debugging of .NET languages. This paper can be useful for anybody who wants to take the same approach
to implement debuggers or other tools for dynamic program introspection.

Keywords
Debugger, CLR, multi-language, C#, COM-interop, Rotor

1. INTRODUCTION
Tracking execution and examining the internal state
of a program are important techniques for every
developer. They can be used with debuggers to find
bugs and unintended behavior. But they can also be
used in other sorts of dynamic program introspection
tools. A high-level debugger should provide a
defined user experience regardless of the underlying
technology. The developer who examines a running
program cannot be bothered with the low-level
intricacies of the underlying debugging API.
The Microsoft .NET Common Language Runtime
(CLR) provides a low-level debugging API, to
implement such tools. Using this API directly is
difficult. First the API is not easy to use from a
technical point of view, because it is implemented as

a set of COM interfaces instead of a managed API.
Thus, it cannot directly be used in managed C#
[Hei04a] code. Also the low-level debugging API
has no notions of high-level programming languages
or debugging functionality. This has to be
implemented using low-level features.
This paper describes how these problems can be
solved. We describe our experience in defining a
high-level debugger API and implementing it in
managed C# code using COM-interop to access the
low-level CLR debugging API. Furthermore, we
describe the integration of this high-level API in the
multi-language development environment X-develop
[Omn04a] to enable debugging of .NET languages.
The paper is structured as follows: Section 2 gives an
overview of our architecture. Section 3 describes the
supporting CLR debugging technologies. Section 4
explains how to use COM-interop to create a
managed wrapper for the low-level API. Section 5
describes at this API and how to implement high-
level debugging features like breakpoints, stepping
and variable introspection. Section 6 outlines the
integration of these high-level features into the multi-
language development environment X-develop to
create a full-fledged interactive debugger. Section 7
discusses related work. Finally, we summarize this
paper in Section 8.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

57

2. ARCHITECTURE
This section gives an overview of the architecture of
our debugger.

Design goals
The architecture should fulfill multiple design goals:
1. The main goal is to provide a user interface
which enables all features necessary for conventional
debugging from within the IDE. This functionality
should follow the user's expectations. The developer
should be able to set breakpoints in the source code
at which execution of the whole program is
suspended automatically. Once suspended the
developer can switch between different threads of
execution, display the current stack trace and step
through the source code. When the developer uses
single-stepping all threads of execution must be
resumed to avoid deadlock situations. The developer
also needs to be able to suspend execution at any
time to inspect what the program is doing at that
time. The interface must be powerful enough to
allow a complete examination of the program state.
2. We want to integrate the debugger into the multi-
language development environment X-develop
[Omn04a]. X-develop supports C#, J# and Visual
Basic and has an open API to extend it for new
languages. Thus, it is important that the debugger
also supports multiple languages.
3. We want to implement a high-level debugger API
which provides a clean interface to the IDE hiding all
the runtime-specific peculiarities of the low-level
debugging API.
4. The debugger should be integrated in a way that
provides maximum independence from the IDE.
Even if the debugger interface ceases to function, the
IDE should not be affected.

System Architecture
Figure 1 shows our architecture. On top, there is the
X-develop environment that communicates with the

debugger control program written in C#. This control
program uses a high-level API which provides the
desired high-level debugging functionality. The
implementation of this API is based on the low-level
CLR debugging services. The implementation is
described in detail in section 4.

3. SUPPORTING TECHNOLOGIES
This section gives an overview of the CLR
debugging services and other supporting
technologies.

CLR Debugging Services
The Common Language Runtime provides low-level
debugging services for runtime control and program
introspection. Additionally, it defines a set of
notifications for specific events that may occur
during the execution of a program. The CLR
debugging services are implemented as a set of COM
interfaces. The program being debugged runs in its
own Win32 host process. In the same process there is
a special helper thread that communicates with the
debugging services.

Symbol Manager
The CLR and the CLR debugging services know
nothing about high-level programming languages. It
knows only of the intermediate language (IL).

However, there is a mechanism for mapping source
code to IL code and vice versa. The compilers for the
various .NET languages store the mapping
information in a separate program database file
(PDB). This mapping information can be used for
mapping between lines in the source code and
positions in the IL code or for mapping between
variable names and their respective addresses. The
component that allows access to this information is
called the symbol manager. The symbol manager
API is part of the .NET core libraries. It can be found
in the namespace
System.Diagnostics.SymbolStore.

Additionally to the PDB files the executable files
themselves contain information describing method
names and signatures, class names, etc. This
information is called metadata. It can also be used for
source-to-IL mapping. For example it is possible to
determine all the fields of a given class using
metadata. The metadata API is a COM API like the
debugger API.

One key benefit of using the compiler provided
mapping information is that this information can be
accessed uniformly for all programming languages.
Thus, it provides support for multi-language
debugging without any further work per

X-develop environment

Debugger control program with our
high-level C# debugging API

Low-level CLR debugging API

Figure 1. Architecture of our debugger

58

programming language. The work is done in the
compilers.

For basic debugging functionality this information is
sufficient. For more advanced applications a more
detailed mapping might be desired. This would
require additional static analysis of the source code
in the compiler. Examples are expression-level
stepping in debuggers or back-in-time debuggers.

4. USING COM INTEROP TO ACCESS
THE CLR DEBUGGING SERVICES
Although the CLR debugging API is a classic COM
API it is possible to implement a debugger in
managed code using COM-interop. The advantage of
this approach is that we can use C# (or any other
managed .NET language) to implement the
debugger. In this section, we give a step-by-step
description how to achieve this.

About COM-interop
COM-interop is a technology to use classic COM
APIs from managed code. This is done by creating
managed wrapper classes representing the COM
interfaces. This wrapper classes can than be called
like normal managed classes. When calling a COM
method from C# code, the CLR will internally
marshal the arguments and return values to/from the
COM object. Creating an instance of a COM class
can be done in C# by simply creating a new instance
using the new keyword. Internally, this causes a call
to the native method CoCreateInstance.

Wrapping the debugger COM API
The preferred way to create wrapper classes is to use
the tool TlbImp.exe that is included in
Microsoft’s .NET framework software development
kit (SDK). This tool reads a COM type library
definition file (TLB) and converts it to a managed
dynamic link library (DLL) containing the wrapper
classes. The file cordebug.tlb that is part of
Microsoft’s .NET framework SDK contains the
definition of the debugger API. To create a wrapper
assembly for this file we initially use TlbImp.exe
to create a wrapper DLL. However, in this special
case the DLL will not be complete. On the one hand
there are classes missing that cannot be automatically
converted by TlbImp.exe, on the other hand even
some definitions in cordebug.tlb are not
complete. To solve this problem we disassemble the
wrapper DLL using ILdasm.exe. This tool is an
intermediate language disassembler and is also part
of the SDK. The result is an editable assembler
version of the DLL. We can now add the missing
classes by hand and adapt incomplete method
signatures. Afterwards we use the SDK assembler

ILasm.exe to create a DLL once again from the
assembly file.

The classes in our wrapper DLL can now be used
from C# code to create a high-level debugger API.
We describe the classes in detail in section 5.

Our approach works with .NET 1.1 and .NET 2.0
depending on which version we want to target. The
Rotor Shared Source CLR [Mic02a] implements the
ICorDebug COM interface as well and can be used
in place of a MS .NET framework.

Wrapping the metadata COM API
It is also possible to write a wrapper class in C#.
Since the required metadata API is quite small we
choose this approach. We only have to write a
wrapper for the IMetadataImport interface. A
C++ header file containing the definition can be
found in the file cor.h, which is part of the SDK. A
wrapper in C# consists of a single C# interface,
which contains the same methods as defined in cor.h.
This interface has to be marked with the
ComImport attribute as well as the correct Guid
attribute. The Guid of the IMetadataImport
interface can be found in the file cor.h. Now we
can use the C# wrapper class to access the metadata
of assemblies.

5. IMPLEMENTATION OF A HIGH-
LEVEL API
This section describes how to use the low-level API
to implement a high-level debugging API, which is
suited for integration into a development
environment. Our high-level API allows to run
programs, set breakpoints in source code, step single
lines, introspect variables defined in the source code
and to browse the fields of objects. The low-level
API on the other hand provides access to the runtime
and is not limited to our particular use case. In the
following sections we will describe in detail on how
to implement specific features affiliated with
debugging. Figure 2 shows the architecture of our
debugger and the high-level debugging API
implementation.

Initializing the debugger
The first thing the debugger has to do is to create an
instance of the ICorDebug interface. This is done
in a completely different way in .NET 1.1 compared
to .NET 2.0.

COM-activation is used in .NET 1.1. COM-
activation is done in C# by simply creating an object
of the COM wrapper class. In our case, new
CorDebugClass() will create the correct class,
which is an instance of the ICorDebug interface.

59

 However, this causes problems. If one has a .NET
1.1 debugger debugging a .NET 1.1 program, the
.NET 1.1 implementation of ICorDebug will be
used. As soon as .NET 2.0 is installed, that scenario
is automatically updated to use the .NET 2.0
implementation of ICorDebug. Now, if the .NET
2.0 implementation is slightly different than the 1.1
implementation, installing the 2.0 version breaks the
1.1 debugging scenario.

Thus, since version 2.0, the debugger has to create
the ICorDebug object using the method
CreateDebuggingInterfaceFromVersion.
This method takes the desired .NET version as an
argument. The method is defined in mscoree.dll,
which is part of the .NET framework. In C# this
method can be called by defining an extern method.

With the Rotor Shared Source CLR [Mic02a] the
ICorDebug object can be obtained in the same way
as for the .NET 1.1 framework. But before this
method can be used the mscordbi.dll of Rotor
has to be registered as a COM server using the
regsvr32 tool. Unfortunately this is just the
scenario which the second method was designed to
avoid: Once the Rotor mscordbi.dll is
registered the MS .NET 1.1 framework ICorDebug
object can no longer be created using COM-
activation.

The ICorDebug object is the entry point to all
debugging services. The debugger has to call the
Initialize method of the ICorDebug object
before doing anything else.

Handling events
The CLR will notify the debugger whenever certain
events occur. To make this possible the debugger has
to provide an implementation of the
ICorDebugManagedCallback interface. This
interface has to be registered using the

SetManagedHandler method of the
ICorDebug object. The registered implementation
will only receive events that occur when debugging
managed code. There is also a
ICorDebugUnmanagedCallback interface that
can be used for debugging unmanaged code.

Debugger control program with our
high-level C# debugging API

Symbol
Manager

API

Metadata
API

CLR
debugging

API
Whenever an event is raised the affected process will
be suspended. This allows the debugger to handle
these events in an appropriate way. Afterwards the
affected process has to be resumed. The process is
passed as an ICorDebugProcess object to the
corresponding interface method. The debugger has to
call the Continue method of this object to resume
execution. This has to be done for all events even if
they do not require special handling. Otherwise the
execution will not continue.

.PDB .EXE CLR

Figure 2. Implementation Overview

There is one event that needs special treatment. That
is the CreateAppDomain event. It is called when
the CLR application domain of the process is created.
The method will receive an
ICorDebugAppDomain object representing the
application domain. In order to receive further events
it is necessary to call the Attach method of this
object.

We will describe some other relevant events in the
following the sections as well.

Creating a process
The ICorDebug interface provides the method
CreateProcess to create a process to debug. This
method takes essentially the same arguments as the
common Win32 method with the same name. The
CreateProcess method returns an
ICorDebugProcess object representing the
process. The process will be created asynchronously
after the call and the CreateProcess method of
the ICorDebugManagedCallback interface is
called by the debugger once the process has actually
been created. As with all events the process will be
suspended after this event.

Suspending and resuming the process
Suspending and resuming program execution is a
common debugger feature. A process can be
suspended by calling the Stop method of the
ICorDebugProcess object. This method takes an
integer timeout parameter that should be set to some
high value. Otherwise crashes of the CLR can occur.

To resume execution we use the Continue method
of the ICorDebugProcess object.

60

Mapping between source and IL code
The next features are more difficult to implement
than the previous ones. The reason for this is that we
now need to map between source code and IL code.
The CLR debugging API itself has no notion of
source code. Instead, the mapping has to be done by
the debugger. Section 2 describes how symbol
information is generated by the compilers. We will
now show how to access this information.

First, the IMetadataImport interface can be used
to access metadata of a given module. For a given
module represented by an ICorDebugModule object,
we can get an IMetadataImport object by
calling the GetMetaDataInterface method.

The ISymbolReader interface can be used to
access mapping information form PDB files. The
way to create an ISymbolReader object differs
between .NET 1.1 and .NET 2.0.

In .NET 1.1 the debugger has to create a
SymBinder object. This class is defined in
ISymWrapper.dll, which consequently has to be
referenced by the debugger. The GetReader
method of the SymBinder object returns the
desired ISymbolReader object.

In .NET 2.0 the GetReaderForFile method of
the SymbolBinder interface that is part of the core
library can be used.

For the core debugging features described in this
paper the information provided by the metadata and
symbol manager APIs is sufficient. The following
sections show particular use cases.

Setting breakpoints
Breakpoints are set in certain positions in source
files. With the CLR debugging API however, a
breakpoint can only be set on a specific point in the
intermediate language (IL) level. Hence, we have to
implement the mapping between source code and
intermediate code. To do this, we use symbolic
information as described in the last section.

5.1.1 Source-to-IL mapping
To set a breakpoint with the debugging API, the IL
position for a given position (line) in a source file is
required. To achieve this, the debugger proceeds as
follows: first it iterates all loaded modules,
respectively the ICorDebugModule objects. For
each module the debugger creates an
ISymbolReader object to access source-to-IL
mapping information as described in the previous
section. Then we call the GetDocuments method
to obtain all source files in the module. If the
breakpoint source file is found in the module we can

use the GetMethodFromDocumentPosition to
obtain the method at the breakpoint position
represented by an ISymbolMethod object. The
GetFunctionFromToken method will then
return an ICorDebugFunction object
representing this method in the debugging API.

The next step is to map the line in the source code to
the corresponding IL instruction. To do this we can
once again use compiler generated information, so
called sequence points. The sequence points of a
method specify for each statement in the source code
where it can be found in the IL code. Thus, the
desired IL instruction can be found by iterating each
sequence point and comparing its line number with
the breakpoint line number.

The sequence points are delivered by the
GetSequencePoints method of the
ISymbolMethod object.

5.1.2 Setting the breakpoint
Once the source-to-IL mapping is done setting the
actual breakpoint is possible. First the debugger calls
the GetILCode method of the
ICorDebugFunction object, which returns an
ICorDebugCode object, representing the methods
IL code. Then we call the CreateBreakpoint
method of this object with the IL position as an
argument. The breakpoint is now set and the
debugged process will suspend once it is hit.

5.1.3 Handling breakpoint events
As soon as the execution of any thread in the CLR
passes the breakpoint the whole process will be
suspended and the Breakpoint event of the
ICorDebugManagedCallback will be raised.
This event contains an ICorDebugThread object
representing the thread that has passed the
breakpoint. We handle this event by raising an event
in the debugger GUI. The GUI now has to show the
affected thread, the source position it has stopped at,
allow stepping the code and support introspection of
variables and object contents. The implementation of
these features is described in the next sections.

Accessing the stack trace
To show the current execution point when the
debugger is suspended we need to access the stack
trace with current IL positions of the affected thread.
We then map this IL position to a position in a
source file using sequence points.

A stack trace of a CLR thread is separated into a
series of so called chains. Each chain contains a
series of frames. We can use the
EnumerateChains and EnumerateFrames

61

methods to access those. The result is a series of
ICorDebugFrame objects. Each frame object
contains the current IL position. To map these
positions to source positions we use symbol
information and sequence points as described in the
breakpoint section.

Stepping source code
When the debugger has been suspended at a given
line in the source code, it offers the possibility to step
over the next line in the source code, i.e. executing
just this line. Additionally, a step-in feature will step
into the next method called by the stepped line.
Finally, a step-out feature will execute the rest of the
current method and will stop after the call to this
method.

To implement stepping we proceed as follows: a call
to the GetActiveFrame method of the current
ICorDebugThread object will returns an
ICorDebugFrame object. Now the debugger has
to create a stepper object by calling the
CreateStepper method, which returns an
ICorDebugStepper object. The desired stepping
behavior can be achieved by configuring this object.

5.1.4 Step-over
We use the StepRange method of the
ICorDebugStepper object to specify the IL
instructions we want to step over. In fact, this method
takes the IL instructions that should not be stepped as
an argument. To calculate those, the debugger once
again uses the sequence points of the current method
as described in the breakpoint section. The sequence
points contain the information which IL instructions
represent the source code line to be stepped.

5.1.5 Step-in
Step-in can be implement just like step-over with the
difference of passing an additional argument to the
StepRange method.

5.1.6 Step-out
Step-out does not require source-to-IL mapping.
Instead we can just use the StepOut method of the
ICorDebugStepper object.

5.1.7 Other stepping behavior
The debugging API is flexible enough to configure
more stepping features than those described here.
However, its main limitation is the lack of an
appropriate source-to-IL mapping. For example if we
want to step single expressions instead of statements,
the provided mapping information is not sufficient.
In this situation additional static source code analysis
is required.

Accessing local variables
The debugger should show all variables defined at
the current position, and their value. To do this, we
first resolve the defined local variable names in the
source code using the compiler generated source-to-
IL mapping. This mapping will also give us the
address of each variable, which can be then used to
determine its value.

5.1.8 Resolving declared variables
To determine all declared variables at the current
position the debugger first has to retrieve an
ISymbolMethod object representing the current
method. The variables are grouped into scopes in
which they are defined. The root scope of the method
is returned as an ISymbolScope object by the
RootScope property of the ISymbolMethod
object. The subscopes of a scope are returned by the
GetChildren method. The variables of a scope
are returned by the GetLocals method. The
debugger will use these methods and search for
declared variables. The ISymbolScope objects
contain the start and end position in the source file.
This allows to determine the declared variables at a
given source position.

5.1.9 Accessing the value
To access the value of a local variable of an
ICorDebugFrame object the debugger calls the
GetLocalVariable method. This method takes
the address of the local variable and returns an
ICorDebugValue object representing the value.

5.1.10 Rendering values
ICorDebugValue is the base of a hierarchy of
interfaces representing different kinds of values. For
primitive values the GetValue method will return a
pointer to the bytes representing the actual value.
Note that in C# the use of unsafe code and the unsafe
keyword are necessary to access this value. The next
section describes how to access the content of values
representing object references.

Accessing object contents
If a value is a reference to an object, we want to
access the fields of this object with their values.
Doing this recursively allows to access the complete
program state.

A value of an object is represented by an
ICorDebugObjectValue object. The
GetFieldValue method of this object will return
the value. The field is identified by an integer token.
Again we have to use the source-to-IL mapping
information to determine the declared fields with
their token. This is done by using the EnumFields

62

and GetFieldProps methods of the
IMetadataImport interface.

Conclusion
The previous sections described how to use the low-
level CLR debugger API to implement features of a
high-level debugger. We make them available via a
high-level debugger API – each feature is provided
by a particular method. The low-level API is not
limited to this use case though. It can also be used to
implement other tools for dynamic program
introspection. There are also more features in the
low-level API than those described here. For
example it is possible to suspend and resume
individual threads, or modify data in the debugged
program. This is required to implement further
debugging features or for other applications.

Figure 3. Breakpoints

The “Run-in- Debugger” function will start the
debugger control program and set breakpoints by
sending the appropriate command packets. Once a
breakpoint has been hit, socket communication is
used to obtain the stack trace and associated source
position to show where the debugged program has
stopped. Figure 3 shows this scenario.

6. INTEGRATION IN X-DEVELOP
This section outlines the integration of the debugger
functionality with the development environment X-
develop.

Communication protocol
In order to achieve maximum separation between
IDE and debugger, the debugger interface and the
debugger control program run in different processes
and communicate using sockets. This architecture
also enables easy implementation of remote
debugging later on. There are three types of packets
used for communication between IDE and debugger
control program: command packets, reply packets
and event packets. After startup of the debugger
control program the IDE sends command and request
packets to the debugger control program which in
turn. Those command and request packets are
modeled around the use cases identified in the
previous section. When the debugger receives a
command packet it carries out the requested action
without sending a reply. When the IDE requests
information from the debugger control program, a
reply packet is generated containing the result or an
error flag if the information could not be obtained.
When a breakpoint is hit or execution is suspended
after a step operation, the debugger control program
sends an event packet back to the IDE.

GUI
The GUI provides user access to the debugging
functions. X-develop displays the source code of the
debugged program in its editor and allows setting of
breakpoints in particular lines.

Figure 4. Variables

The user can continue program execution at any time
using the Continue function. It is also possible to step
through the program using the presented stepping
functions. Additionally, all variables declared at the
current position will be shown together with their
value in a tree widget – see Figure 4. If the value is
an object reference it may be further expanded to see
the fields of the object and their respective values.

Experience
The integration in X-develop allows testing the
performance and stability of the debugger. Our
experience was positive:

1. Except for initial hurdles with COM-interop the
implementation was straightforward.

2. Real-world stability of the debugger
implementation was good. All functions work as
intended. Debugging multi-threaded applications
works as well as simple single-threaded applications.

63

3. Debugger responsiveness is excellent. We
measured the “stepping speed”. This is the time
between pressing the step button, execution of the
step inside the debugger and the callback event with
the new position. The measured time was always
between 50 and 500 milliseconds. This is sufficiently
fast for a responsive user experience.

7. RELATED WORK
The CLR debugging API is explained in detail in the
documentation accompanying the .NET SDK. While
being a comprehensive guide to the low-level API, it
lacks information on how to put together a working
debugger. Neither examples nor a tutorial are
included.
Jon Shute published a series of articles on how to
write a debugger with .NET using the CLR
debugging API [Shu04a]. Unfortunately, the articles
only cover a few details and uses example code
written in C++.
The .NET SDK contains the source code of CorDbg -
a C++ command line debugger using the CLR
debugging COM API directly. It has no high-level
API abstraction nor is it written in managed code.
Microsoft .NET 2.0 provides the source code of a
command line debugger (Mdbg) that is also written
in managed C# code. This tool also uses COM-
interop to access the native debugging API.
However, this tool does not include any
documentation how the integration of the COM
classes is performed. It only works with the 2.0
framework and it does not provide a high-level API
abstraction. Furthermore, our architecture can easily
be extended to support remote debugging and it
offers a stronger separation between the debugger
and the debuggee.

8. CONCLUSION AND FUTURE
WORK
We have described the design and implementation of
a high-level multi-language debugger for the .NET

CLR. One advantage of our approach is that it allows
to use managed C# (or any other .NET language) to
implement the debugger. This can be useful for
everybody who wants to take the same approach to
implement debuggers or other tools for dynamic
programming introspection.
We integrated the debugger in the development
environment X-develop, but it is not limited to this
particular use case.
The implementation of the high-level debugging API
for Mono using the Mono.Debugger low-level
API is underway.
The CLR debugging services provide rich access to
the state of executed programs. The main limitation
is the lack of additional source-to-IL mapping
information. The information generated by the
compilers for the various .NET languages is
sufficient to implement the basic functionality. But
for more advanced applications, additional static
source code analysis is required. A good example for
such an application is a back-in-time debugger
[Kra04a] [Omn04b]. Such a debugger allows
stepping backwards by replaying the previously
recorded program execution.

9. REFERENCES
[Hei04a] A. Hejlsberg, S. Wiltamuth, P. Golde. The C#

Programming Language. Addison-Wesley, 2004.
[Kra04a] Hans Kratz. Implementierung eines Debuggers

mit Rückwärtsschrittfunktion. Diplomarbeit. 2004. In
german.

[Mic02a] Microsoft. Shared source common language
infrastructure. Published on the web at
http://msdn.microsoft.com/net/sscli, 2002.

 [Omn04a] Omnicore Software. X-develop. Published on
the web at http://www.x-develop.com, 2004.

[Omn04b] Omnicore Software. CodeGuide. Published on
the web at http://www.omnicore.com, 2004.

[Shu04a] Jon Shute. Ramblings about .NET and debuggers.
Published as a web page at
http://blogs.chimpswithkeyboards.com/jonshute/, 2004.

64

Analysis of the
.NET CLR Exception Handling Mechanism

Nicu G. Fruja
Computer Science Department, ETH Zürich

fruja@inf.ethz.ch

Egon Börger
Dipartimento di Informatica, Università di Pisa

boerger@di.unipi.it

ABSTRACT
We provide a complete mathematical model for the exception handling mechanism of the Common Language Run-
time (CLR), the virtual machine underlying the interpretation of .NET programs. The goal is to use this rigorous
model in the corresponding part of the still-to-be-developed soundness proof for the CLR bytecode verifier.

Keywords
exception handling, .NET CLR, .NET CIL, bytecode

1 INTRODUCTION

This work is part of a larger project [6] which aims
at establishing some outstanding properties of C] and
CLR by mathematical proofs. Examples are the cor-
rectness of the bytecode verifier of CLR, the type
safety (along the lines of the first author’s correctness
proof [12] for the definite assignment rules of C]), the
correctness of a general compilation scheme. We try
to reuse as much as possible and to extend where nec-
essary similar work which has been done for Java and
the Java Virtual Machine (JVM) [15]. As part of this
effort, in [8] an abstract interpreter has been developed
for C], including a thread and memory model [9]; see
also [10] for a comparative view of the abstract inter-
preters for Java and for C].

In [7] an abstract model is defined for the CLR vir-
tual machine without the exception handling instruc-
tions, but including all the constructs which deal with
the interpretation of the procedural, object-oriented
and unsafe constructs of .NET compatible languages
such as C], C++, Visual Basic, VBScript, etc. The
reason why we present here a separate model for the

Permission to make digital or hard copies of all part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or fee.
.NET Technologies’2005Conference proceedings,

ISBN 80-75832,/0,0
Copyright UNION Agency – Science Press, Plzen, Czech Republic

exception handling mechanism of CLR is to be found
in the numerous non-trivial problems we encountered
in an attempt to fill in the missing parts on exception
handling in the ECMA standard [1]. Already in JVM
the most difficult part for the correctness proof of the
bytecode verifier was the one dealing with exception
handling (see [15,§16]). This holds in a stronger sense
also for CLR. The concrete purposes we are pursu-
ing in this paper are twofold. First, we want to de-
fine a rigorous ground model for the CLR exception
mechanism, to be used as reference model for that part
of the still-to-be-developed correctness proof for the
bytecode verifier. Secondly, we want to clarify the nu-
merous issues concerning exception handling which
are left open in the ECMA standard, but relevant for
a correct understanding of the CLR mechanism. We
do not discuss here its design rationale nor any design
alternatives.

The ECMA standard for CLR contains only a few
yet incomplete paragraphs about the exception han-
dling mechanism. A more detailed description of the
mechanism can be found in one of very few existing
documents on the CLR exception handling [2]. The
CLR mechanism has its origins in the Windows NT
Structured Exception Handling (SEH). An interested
reader can find all the insights of the SEH in [3]. What
we are striving for, the CLR type safety, is proved for a
subset of CLR in [4]. However, that approach does not
consider the exception handling classified in [4,§4] as
a fairly elaborate model that permits a unified view of
exceptions inC++, C], and other high-level languages.
So far, no formal model has been developed for the
CLR exception handling. The JVM exception mech-
anism, which differs a lot from the one of CLR, has
been formalized in [16, 15].

65

We use three different methods to check the faithful-
ness (with respect to CLR) of the modeling decisions
we had to take where the ECMA standard exhibits de-
plorable gaps. First of all we made a series of exper-
iments with CLR, some of which are made available
in [5] to allow the reader to redo and check them. We
hope that these programs will be of interest to the prac-
titioner and compiler writer, as they show border cases
which have to be considered to get a full understand-
ing and definition of exception handling in CLR. Sec-
ondly, to provide some authoritative evidence for the
correctness of the modeling ideas we were led to by
our experiments, over the Fall of 2004 the first author
had an electronic discussion with Jonathan Keljo, the
CLR Exception System Manager, which essentially
confirmed our ideas about the exception mechanism
issues left open in the ECMA documents. Last but not
least a way is provided to test the internal correctness
of the model presented in this paper and its confor-
mance to the experiments with CLR, namely by an ex-
ecutable version of the CLR model, using AsmL [18].
Upon completion of the AsmL implementation of the
entire CLR model the full details will be made avail-
able in [14].

Since the focus of this paper is the exception mech-
anism of CLR, we assume the reader to be knowledge-
able about (or at least to have a rough understand-
ing of) CLR. For the sake of precision we refer in
this paper without further explanations to the model
EXECCLRN defined in [7], which describes what the
machine does upon its ”normal” (exception-free) exe-
cution. Our model for CLR together with the excep-
tion mechanism comes in the form of an Abstract State
Machine (ASM) CLRE .

Since the intuitive understanding of the ASMs ma-
chines as pseudo-code over abstract data structures is
sufficient for the comprehension of CLRE , we abstain
here from repeating the formal definition of ASMs
which can be found in the AsmBook [17]. How-
ever, for the reader’s convenience we summarize here
the most important concepts and notations that are
used in the ASMs throughout this paper. An abstract
state of an ASM is given by a set of dynamic func-
tions. Nullary dynamic functions correspond to ordi-
nary state variables. Formally all functions are total.
They may, however, return the special elementundef
if they are not defined at an argument. In each step,
the machine updates in parallel some of the functions
at certain arguments. The updates are programmed us-
ing transition rulesP, Q with the following meaning:

f (s) := t updatef ats to t
if ϕ then P elseQ if ϕ, then executeP, elseQ
P Q executeP andQ in parallel
let x = t in P assignt to x and then executeP
P seqQ executeP and thenQ
P or Q executeP or Q

Notational conventionsIn the paper, beside the usual
list operations (e.g.push, pop, top, length, ·)1, we use
a different operation: for a listL, split(L,1) splits off
the last element ofL. More exactly,split(L,1) is the
pair (L′, [x]) whereL′ · [x] = L.

The paper is organized as follows. We list in Sec-
tion 2 a few notations defined in [7] and which are
used throughout the rest of the paper. Section 3 gives
an overview of the CLR exception handling mecha-
nism. The elements of the formalization are intro-
duced in Section 4. Section 5 defines the so-called
StackWalkpass of the exception mechanism. The other
two passes,UnwindandLeaveare defined in Section 6
and Section 7, respectively. The execution rules of
CLRE are introduced in Section 8. Section 9 con-
cludes.

2 PRELIMINARIES

In this section, we summarize briefly the notations
introduced in [7] which are relevant for the exception
handling mechanism. For detailed description we refer
the reader to [7].

A call frame consists of a program counterpc : Pc,
local variables addresseslocAdr : Map(Local, Adr),
arguments addressesargAdr : Map(Arg, Adr), an
evaluation stack2 evalStack : List(Value), and a
method referencemeth : MRef. The frame denotes
the currently executed frame. Accordingly,pc gives
the program counter of the current frame,locAdr the
local variables addresses of the current frame, etc.

The stack of call frames is denoted by
frameStack and is defined as a list of frames.
Note that we separate the current frame from the
stack of call frames, i.e.frame is not contained in
frameStack.

The macros PUSHFRAME and POPFRAME are used
to push and pop theframe, respectively.

PUSHFRAME ≡ push(frameStack, frame)

POPFRAME ≡
let (frameStack′,

[(pc′, locAdr′, argAdr′, evalStack′, meth′)])
= split(frameStack, 1) in

pc := pc′

locAdr := locAdr′

argAdr := argAdr′

evalStack := evalStack′

meth := meth′

frameStack:= frameStack′

1The “·” denotes the operationappendfor lists.
2In order to simplify the exposition we describe here the

evalStackas a list of values though [7] defines it as a list of pairs
from Value× Type.

66

Fig. 1 The CLRE machine

CLRE ≡
if switch= ExcMechthen

EXCCLR
elseifswitch= Noswitchthen

INITIALIZE CLASS or EXECCLRE(code(pc))

3 THE OVERALL PICTURE

Every time an exception occurs, the control is trans-
ferred from “normal” execution (inEXECCLRE) to
a so-called “exception handling mechanism” which
we model as a submachineEXCCLR. To switch
from normal execution (read: in modeNoswitch)
to this new component, the mode is set to, say,
switch := ExcMechwhich interruptsEXECCLRE

and triggers the execution ofEXCCLR. The ma-
chine EXECCLRE is an extension of the exception-
handling-free machineEXECCLRN by a submachine
which executes instructions related to exceptions (like
Throw, Rethrow, etc.); it will be defined in Fig. 4. Due
to the very weak conditions imposed by the ECMA
standard on class initialization, the overall structure
of CLRE has to foresee that the initialization of a
beforefieldinit 3 class may start at any moment
as analyzed in detail in [11]; this explains the defini-
tion of CLRE as a machine which, in the normal ex-
ecution mode, non-deterministically chooses whether
to start a class initialization or to execute the current
instructioncode(pc) pointed at by the program counter
pc (see Fig. 1).

The exception handling mechanism proceeds in
two passes. In the first pass, the run-time sys-
tem runs a “stack walk” searching, in the possibly
empty exception handling array associated byexcHA:
Map(MRef, List(Exc)) to the current method, for the
first handler that might want to handle the exception:

• acatch handler whosetypeis a supertype of the
type of the exception, or

• a filter handler – to see whether afilter
wants to handle an exception, one has first to exe-
cute (in the first pass) the code in the filter region:
if it returns1, then it is chosen to handle the ex-
ception; if it returns0, this handler is not good to
handle the exception.

Visual Basic and Managed C++ have special
catch blocks which can “filter” the exceptions based
on the exception type and / or any conditional expres-
sion. These are compiled intofilter handlers in the

3The ECMA standard states in [1, Partition I,§8.9.5] that, if
a class is markedbeforefieldinit , then the class initializer
method is executedat any time beforethe first access to any static
field defined for that class.

Common Intermediate Language (CIL) bytecode. As
we will see, thefilter handlers bring a lot of com-
plexity to the exceptions mechanism.

The ECMA standard does not clarify what happens
if the execution of thefilter or of a method called
by it throws an exception. The currently handled ex-
ception is known as anouter exceptionwhile the newly
occured exception is called aninner exception. As we
will see below, the outer exception is not discarded but
its context is saved byEXCCLR while the inner ex-
ception becomes the outer exception.

If a match is not found in thefaulting frame, i.e. the
frame where the exception has been raised, the calling
method is searched, and so on. This search eventu-
ally terminates since theexcHAof theentrypoint
method has as last entry a so-calledbackstop entry
placed by the operating system. When a match is
found, the first pass terminates and in the second pass,
called “unwinding of the stack”, CLR walks once
more through the stack of call frames to the handler
determined in the first pass, but this time executing
thefinally andfault 4 handlers and popping their
frames. It then starts the corresponding exception han-
dler.

The reader might ask why there are two passes,
i.e. why the handling mechanism does not proceed
in a single pass by executing also thefinally and
fault handlers. The answer is to be found in the ori-
gins of the CLR exception handling mechanism: the
two pass model was invented for Windows NT, before
the CLR was ever envisioned. There are two advan-
tages of a 2-pass model:

• it allows afilter to update the exception con-
text and then continue the faulting exception;

• it allows for better debugging, since one can of-
ten detect that an exception will go unhandled in
the first pass, without any second pass backout
disturbing the exception context;

4 THE GLOBAL VIEW OF EXCCLR

In this section, we provide some detail on the el-
ements, functions and predicates needed to turn the
overall picture into a rigorous model.

The elements of an exception handling array
excHA : Map(MRef, List(Exc)) are known as
handlersand can be of four kinds. They are elements
of a setExc:

4Currently, no language (other than CIL) exposesfault han-
dlers directly. Afault handler is simply afinally handler that
only executes in the exceptional case.

67

ClauseKind = catch | filter
| finally | fault

Exc = Exc(clauseKind : ClauseKind
tryStart : Pc
tryLength : N
handlerStart : Pc
handlerLength : N
type : ObjClass
filterStart : Pc)

Any 7-tuple of the above form describes a handler
of kind clauseKindwhich “protects” the region5 that
starts attryStartand has the lengthtryLength, handles
the exception in an area of instructions that starts at
handlerStartand has the lengthhandlerLength– we
refer to this area as thehandler region; if the han-
dler is of kindcatch , then thetypeof exceptions it
handles is provided, whereas if the handler is of kind
filter then the first instruction of thefilter re-
gion is at filterStart. In case of afilter handler,
the handler region starting athandlerStart immedi-
ately follows thefilter region – consequently we
have filterStart < handlerStart. We often refer to
the sequence of instructions betweenfilterStart and
handlerStart− 1 as thefilter region. We assume
that afilterStart is defined for a handler if and only if
the handler is of kindfilter , otherwisefilterStart is
undefined.
To simplify the further presentation, we define the
predicates in Fig. 2 for an instruction located at pro-
gram counter positionpos ∈ Pc and a handlerh ∈
Exc. Note that if the predicateisInFilter is true,
then filterStart is defined and thereforeh is of kind
filter . Based on the lexical nesting constraints of
protected blocks specified in [1, Partition I,§12.4.2.7],
one can prove the following property:

Disjointness 1 The predicates isInTry, isInHandler
and isInFilter are pairwise disjoint.

We assume all the constraints concerning the lexical
nesting of handlers specified in the standard [1, Par-
tition I,§12.4.2.7]. The ECMA standard [1, Partition
I,§12.4.2.5] ordering assumption on handlers is:

Ordering assumption If handlers are nested, the
most deeply nested try blocks shall come in the ex-
ception handling array before the try blocks that
enclose them.

Only one handler region per try block? The
ECMA standard specifies in [1, Partition I,§12.4.2]

5We will refer to this region asprotected regionor try block.

that a singletry block shall have exactly one han-
dler region associated with it. But the IL assembler
ilasm does accept alsotry blocks with more than
onecatch handler block. This discrepancy is solved
if we assume that everytry block with more than
one catch block which is accepted by theilasm
is translated in a semantics-preserving way as follows:

.try {
block

} catch block1
catch block2

=⇒

.try {
.try {

block
} catch block1

} catch block2

To handle an exception, theEXCCLR needs to record:

• the exception referenceexc,

• the handlingpass,

• a stackCursor – i.e. the position currently
reached in the stack of call frames (a frame)
and in the exception handling array (an index in
excHA),

• the suitablehandlerdetermined at the end of the
StackWalkpass (if any) is the handler that is go-
ing to handle the exception in the passUnwind
– until the end of theStackWalkpass,handler is
undefined.

According to the ECMA standard, every normal ex-
ecution of atry block or acatch /filter handler
region must end with aLeave(pos) instruction. When
doing this,EXCCLR has to record the currentpassand
stackCursortogether with thetargetup to which every
includedfinally code has to be executed.

ExcRec=

ExcRec(exc : ObjRef
pass : {StackWalk,Unwind}
stackCursor : Frame× N
handler : Frame× N)

LeaveRec=

LeaveRec(pass : {Leave}
stackCursor : Frame× N
target : Pc)

We list some constraints which will be needed below
to understand the treatment of theseLeave instruc-
tions.

68

Fig. 2 The predicatesisInTry, isInHandlerandisInFilter

isInTry(pos, h) ⇔ tryStart(h) ≤ pos< tryStart(h) + tryLength(h)
isInHandler(pos, h) ⇔ handlerStart(h) ≤ pos< handlerStart(h) + handlerLength(h)
isInFilter(pos, h) ⇔ filterStart(h) ≤ pos< handlerStart(h)

Syntactic constraints:

1. It is not legal to exit with aLeaveinstruction
a filter region, afinally /fault han-
dler region.

2. It is not legal to branch with aLeaveinstruc-
tion into a handler region from outside the re-
gion.

3. It is legal to exit with aLeave a catch
handler region and branch to any instruction
within the associatedtry block, so long as
that branch target is not protected by yet an-
othertry block.

The nesting of passes determinesEXCCLR to main-
tain an initially empty stack of exception or leave
records for the passes that are still to be performed.

passRecStack: List(ExcRec∪ LeaveRec)
passRecStack= []

In the initial state ofEXCCLR, there is no pass to
be executed, i.e.pass= undef.

We can now summarize the overall behavior of
EXCCLR, which is defined in Fig. 3 and analyzed
in detail in the following sections, by saying that if
there is a handler in the frame defined bystackCursor,
then EXCCLR will try to find (when StackWalking)
or to execute (whenUnwinding) or to leave (when
Leaveing) the corresponding handler; otherwise it will
continue its work in the invoker frame or end itsLeave
pass at thetarget.

5 THE StackWalkPASS

During aStackWalkpass,EXCCLR starts in the cur-
rent frameto search for a suitable handler of the cur-
rent exception in this frame. Such a handler exists if
the search positionn in the current frame has not yet
reached the last element of the handlers arrayexcHA
of the corresponding methodm.

existsHanWithinFrame((, , , , , m), n) ⇔
n < length(excHA(m))

If there are no (more) handlers in the frame pointed
to by stackCursor, then the search has to be contin-

ued at the invoker frame. This means to reset the
stackCursorto point to the invoker frame.

SEARCHINVFRAME(f) ≡
let · [f ′, f] · = frameStack· [frame] in

RESET(stackCursor, f ′)

There are three groups of possible handlersh
EXCCLR is looking for in a given frame during its
StackWalk:

• a catch handler whosetry block protects the
program counterpc of the frame pointed at by
stackCursorand whosetypeis a supertype of the
exception type;

matchCatch(pos, t, h) ⇔
isInTry(pos, h) ∧ clauseKind(h) = catch ∧
t � type(h)

• a filter handler whosetry block protects the
pcof the frame pointed at bystackCursor;

matchFilter(pos, h) ⇔
isInTry(pos, h) ∧ clauseKind(h) = filter

• a filter handler whosefilter region con-
tainspc of the frame pointed at bystackCursor.
This corresponds to an outer exception and will
be described in more detail below.

The order of theif clauses in thelet statement from the
ruleStackWalkis not important. This is justified by the
following property:

Disjointness 2 For every type t, the predicates
matchCatcht, matchFilter and isInFilter are pairwise
disjoint6.

The above property can be easily proved using the def-
initions of the three predicates and the propertyDis-
jointness1.

If the handler pointed to by thestackCursor, namely
hanWithinFrame((, , , , , m), n) = excHA(m)(n),
is not of any of the above types, thestackCursoris
incremented to point to the next handler in theexcHA:

6By matchCatcht we understand the predicate defined by the set
{(pos, h) | matchCatch(pos,t,h)}.

69

GOTONXTHAN ≡ stackCursor:= (f , n + 1)
where stackCursor= (f , n)

The Ordering assumptionstated in Section 4 and
the lexical nesting constraints stated in [1, Partition
I,§12.4.2.7] ensure that if thestackCursorpoints to a
handler of one of the above types then this handler is
the first handler in the exception handling array (start-
ing at the position indicated in thestackCursor) of any
of the above types.

If the handler pointed to by thestackCursor is
a matching7 catch then this handler becomes the
handler to handle the exception in the passUnwind.
ThestackCursoris reset to be reused for theUnwind
pass: it shall point to the faulting frame, i.e. the cur-
rent frame. Note that duringStackWalk, framealways
points to the faulting frame except in case afilter
region is executed. However, the frame built to execute
a filter is never searched for a handler correspond-
ing to the current exception.

FOUNDHANDLER ≡
pass:= Unwind
handler:= stackCursor

RESET(s, f) ≡ s := (f , 0)

If the handler is afilter then by means of
EXECFILTER its filter region is executed. The ex-
ecution is performed in a separate frame constructed
especially for this purpose. However this important
detail is omitted by the ECMA standard [1]. The
currently-to-be-executed frame becomes the frame for
executing thefilter region. The faulting excep-
tion frame is pushed on theframeStack. The current
frame points now to the method, local variables and
arguments of the frame in whichstackCursoris, it
has the exception reference on the evaluation stack
evalStackand the program counterpc set to the be-
ginningfilterStart of the filter region. Theswitch
is set toNoswitchin order to pass the control to the
normal machineEXECCLRE .

7We use theactualTypeOffunction defined in [7] to determine
the run-time type of the exception.

Fig. 3 The exception handling machineEXCCLR
EXCCLR ≡

match pass
StackWalk→

if existsHanWithinFrame(stackCursor) then
let h = hanWithinFrame(stackCursor) in

if matchCatch(pos, actualTypeOf(exc), h) then
FOUNDHANDLER

RESET(stackCursor, frame)
elseifmatchFilter(pos, h) then EXECFILTER(h)
elseif isInFilter(pos, h) then EXIT INNEREXC

elseGOTONXTHAN

else SEARCHINVFRAME(f)
where stackCursor= (f ,) and f = (pos, , , ,)

Unwind→
if existsHanWithinFrame(stackCursor) then

let h = hanWithinFrame(stackCursor) in
if matchTargetHan(handler, stackCursor) then

EXECHAN(h)
elseifmatchFinFault(pc, h) then

EXECHAN(h)
GOTONXTHAN

elseif isInHandler(pc, h) then
ABORTPREVPASSREC

GOTONXTHAN

elseif isInFilter(pc, h) then
CONTINUEOUTEREXC

elseGOTONXTHAN

else
POPFRAME

SEARCHINVFRAME(frame)

Leave→
if existsHanWithinFrame(stackCursor) then

let h = hanWithinFrame(stackCursor) in
if isFinFromTo(h, pc, target) then

EXECHAN(h)
if isRealHanFromTo(h, pc, target) then

ABORTPREVPASSREC

GOTONXTHAN

else
pc := target
POPREC

switch:= Noswitch

EXECFILTER(h) ≡
pc := filterStart(h)
evalStack:= [exc]
locAdr := locAdr′

argAdr := argAdr′

meth:= meth′

PUSHFRAME

switch:= Noswitch
where stackCursor=

((, locAdr′, argAdr′, , meth′),)

Exceptions in filter region? It is not documented
in the ECMA standard what happens if an (inner) ex-
ception is thrown while executing thefilter region
during theStackWalkpass of an outer exception. The

70

following cases are to be considered:

• if the exception is taken care of in thefilter
region, i.e. it is successfully handled by a
catch /filter handler or it is aborted because
it occured in yet anotherfilter region of a
nested handler (see theisInFilter clause), then the
given filter region continues executing nor-
mally (after the exception has been taken care of);

• if the exception is not taken care of in the
filter region then the exception is not prop-
agated further, but itsStackWalkis exited (see
Fig. 3). The exception will be discarded but only
after theEXCCLR runs itsUnwind pass to exe-
cute all thefinally andfault handlers (see
Tests 6, 8 and 9 in [5]).

EXIT INNEREXC ≡
pass:= Unwind
RESET(stackCursor, frame)

6 THE Unwind PASS

As soon as the passStackWalk terminates,
the EXCCLR starts the Unwind pass with the
stackCursorpointing to the faulting exception frame.
Starting there, one has to walk down to thehandlerde-
termined in theStackWalk, executing on the way ev-
ery finally /fault handler region. This happens
also in casehandler is undef. WhenUnwinding, the
EXCCLR searches for

• the matching target handler, i.e. thehandlerde-
termined at the end of theStackWalkpass (if
any) –handlercan beundef if the search in the
StackWalkhas been exited because the exception
was thrown in afilter region. Also the two
handlerandstackCursorframes in question have
to coincide. We say that two frames are the same
if the address arrays of their local variables and
arguments as well as their method names coin-
cide.

matchTargetHan((f1, n1), (f2, n2)) ⇔
sameFrame(f1, f2) ∧ n1 = n2

sameFrame(f1, f2) ⇔
pri(f1) = pri(f2),∀i ∈ {2, 3, 5}

• a matchingfinally /fault handler whose as-
sociatedtry block protects thepc;

matchFinFault(pos, h) ⇔
isInTry(pos, h)∧
clauseKind(h) ∈ {finally , fault }

• a handler whose handler region containspc;

• a filter handler whosefilter region con-
tainspc;

The order of the last threeif clauses in thelet statement
from the ruleUnwind is not important. It only matters
that the first clause is guarded bymatchTargetHan.

Disjointness 3 The following predicates are pairwise
disjoint: matchFinFault, isInHandler and isInFilter.

The property can be proved using the definitions of the
predicates and the propertyDisjointness1.

The Ordering assumptionin Section 4 and the
lexical nesting constraints given in [1, Partition
I,§12.4.2.7] ensure that if thestackCursorpoints to a
handler of one of the above types then this handler is
the first handler in the exception handling array (start-
ing at the position indicated in thestackCursor) of any
of the above types.

If the handler pointed to by thestackCursoris the
handler found in theStackWalk, its handler region is
executed through EXECHAN: the pc is set to the be-
ginning of the handler region, the exception reference
is loaded on the evaluation stack (when EXECHAN is
applied for executingfinally /fault handler re-
gions the current exception is not pushed onevalStack)
and the control switches toEXECCLRE .

EXECHAN(h) ≡
pc := handlerStart(h)
evalStack:=

if clauseKind(h) ∈ {catch , filter } then
[exc]

else
[]

switch:= Noswitch

If the handler pointed to by thestackCursoris a
matching finally /fault handler, its handler re-
gion is executed with initially empty evaluation stack.
At the same time, thestackCursor is incremented
through GOTONXTHAN.

Let us assume that the handler pointed to by
stackCursoris an arbitrary handler whose handler re-
gion containspc.
Exceptions in handler region?The ECMA standard
does not specify what should happen if an exception is
raised in a handler region. The experimentation in [5]
can be resumed by the following rules of thumb for
exceptions thrown in a handler region similarly to the
case of nested exceptions infilter code:

• if the exception is taken care of in the han-
dler region, i.e. it is successfully handled by a

71

catch /filter handler or it is discarded (be-
cause it occured in afilter region of a nested
handler), then the handler region continues exe-
cuting normally (after the exception is taken care
of);

• if the exception is not taken care of in the handler
region, i.e, escapes the handler region, then

– the previous pass ofEXCCLR is aborted
through ABORTPREVPASSREC;

ABORTPREVPASSREC≡ pop(passRecStack)

– the exception is propagated further, i.e. the
Unwind pass continues via GOTONXTHAN (see
Fig. 3) which sets thestackCursorto the next
handler inexcHA.

The execution of a handler region can only occur
whenEXCCLR runs in theUnwindandLeavepasses:
in Unwind handler regions of any kind are executed
whereas inLeave only finally handler regions
are executed. If the raised exception occured while
EXCCLR runs anUnwind pass for handling an outer
exception, theUnwind pass of the outer exception is
stopped and the corresponding pass record is popped
from passRecStack(seeTests 1, 3 and 4 in [5]). If
the exception has been thrown whileEXCCLR runs a
Leavepass for executingfinally handlers on the
way from aLeaveinstruction to its target, then this
pass is stopped and its associated pass record is popped
off passRecStack(seeTest 2 in [5]).
In this way an exception can go “unhandled” without
taking down the process, namely if an outer exception
goes unhandled, but an inner exception is successfully
handled (see the second case of the preceding case dis-
tinction).

If the handler pointed to by thestackCursor is
a filter handler whosefilter region contains
pc, then the current (inner) exception is aborted and
the filter considered as not providing a handler
for the outer exception. So there is no way to
exit a filter region with an exception. This en-
sures that the frame built by EXECFILTER for exe-
cuting a filter region is used only for this pur-
pose. The handling of the outer exception is con-
tinued through CONTINUEOUTEREXC (see Fig. 3)
which pops the frame built for executing thefilter
region, pops from thepassRecStackthe pass record
corresponding to the inner exception and reestablishes
the pass context of the outer exception, but with
thestackCursorpointing to the handler following the
just inspectedfilter handler. The updates of the
stackCursorin POPREC and GOTONXTHAN are done
sequentially such that the update in GOTONXTHAN

overwrites the update in POPREC.

CONTINUEOUTEREXC ≡
POPFRAME

POPREC seqGOTONXTHAN

POPREC≡
if passRecStack= [] then

SETRECUNDEF

switch:= Noswitch
else let(passRecStack′, [r]) =

split(passRecStack, 1) in
if r ∈ ExcRecthen

let (exc′, pass′, stackCursor′, handler′) = r in
exc := exc′

pass := pass′

stackCursor:= stackCursor′

handler := handler′

if r ∈ LeaveRecthen
let (pass′, stackCursor′, target′) = r in
pass := pass′

stackCursor:= stackCursor′

target := target′

passRecStack:= passRecStack′

SETRECUNDEF≡
exc := undef
pass := undef
stackCursor:= undef
target := undef
handler := undef

If the handler pointed to by thestackCursoris not of
any of the above types, thestackCursoris incremented
to point to the next handler in theexcHA.

If the Unwindpass exhausted all the handlers in the
frame indicated instackCursorthen the current frame
is popped fromframeStackand theUnwindpass con-
tinues in the invoker frame of the current frame.
Exceptions in class initializers? If an exception oc-
curs in a class initializer.cctor then the class shall
be marked as being in a specific erroneous state and
a TypeInitializationException is thrown.
This means that an exception can and will escape
the body of an initializer only by the specific ex-
ceptionTypeInitializationException . Any
further attempt to access the corresponding class in
the current application domain will throwthe same
TypeInitializationException object. Un-
fortunately, this detail is not specified by the ECMA
standard but it seems to correspond to the actual
CLR implementation and it complies with the re-
lated specification for C] in the ECMA standard (see
Test 7 in [5]). Therefore we assume that the
code sequence of every.cctor is embedded into

72

a catch handler. Thiscatch handler catches ex-
ceptions of typeObject , i.e. any exception, oc-
cured in.cctor , discards it, creates an object of type
TypeInitializationException 8 and throws
the new exception.

7 THE LeavePASS

The EXCCLR machine gets into theLeave pass
whenEXECCLRE executes aLeaveinstruction upon
the normal termination of atry block or of a
catch /filter handler region. One has to exe-
cute the handler regions of allfinally handlers on
the way from theLeave instruction to the instruc-
tion whose program counter is given by theLeave
target parameter. ThestackCursorused in theLeave
pass is initialized by theLeave instruction. In the
Leavepass, theEXCCLR machine searches for

• finally handlers that are “on the way” from
thepc to thetarget,

• real handlers, i.e.catch /filter handlers that
are “on the way” from thepc to thetarget– more
details are given below.

If the handler pointed to bystackCursor is a
finally handler on the way frompc to thetargetpo-
sition of the currentLeavepass record then the handler
region of this handler is executed (see Fig. 3). If the
stackCursorpoints to acatch /filter handler on
the way frompc to targetthen the previous pass record
on passRecStackis discarded (see Fig. 3). The dis-
carded record can only be referring to anUnwindpass
for handling an exception. By discarding this record,
the mechanism terminates the handling of the corre-
sponding exception.

isFinFromTo(h, pos1, pos2) ⇔
isInTry(pos1, h) ∧ clauseKind(h) = finally ∧
¬isInTry(pos2, h) ∧ ¬isInHandler(pos2, h)

isRealHanFromTo(h, pos1, pos2) ⇔
clauseKind(h) ∈ {catch , filter }∧
isInHandler(pos1, h) ∧ ¬isInHandler(pos2, h)

For each handlerEXCCLR inspects also the next
handler inexcHA. When the handlers in the current
method are exhausted,pc is set totarget, the context
of the previous pass record onpassRecStackis reestab-
lished and the control is passed to normalEXECCLRE

execution (see Fig. 3).

8In the real CLR implementation, the exception thrown
in .cctor is embedded as an inner exception in the
TypeInitializationException . We do not model
this aspect here.

8 THE RULES OF EXECCLRE

The rules ofEXECCLRE in Fig. 4 specify the effect
of the CIL instructions related to exceptions. Each of
these rules transfers the control toEXCCLR. Throw
pops the topmost evaluation stack element (seeRe-
mark below), which is supposed to be an exception
reference. It loads onEXCCLR the pass record as-
sociated to the given exception: thestackCursoris
initialized by the currentframe and 0. If the ex-
ception mechanism is already working in a pass, i.e.
pass 6= undef then the current pass record is pushed
onpassRecStack.

LOADREC(r) ≡
if r ∈ ExcPassthen

let (exc′, pass′, stackCursor′, handler′) = r in
exc := exc′

pass := pass′

stackCursor:= stackCursor′

handler := handler′

else let(pass′, stackCursor′, target′) = r in
pass := pass′

stackCursor:= stackCursor′

target := target′

if pass6= undef then PUSHREC

PUSHREC≡
if pass= Leavethen

push(passRecStack, (pass, stackCursor, target))
elsepush(passRecStack,

(exc, pass, stackCursor, handler))

If the exception reference popped from the
evalStack by the Throw instruction is null , a
NullReferenceException is thrown. For a
given classc, the macro RAISE(c) is defined by the
following code template9:

RAISE(c) ≡
NewObj(c :: .ctor)
Throw

This macro can be viewed as a static method defined in
classObject . Calling the macro is then like invoking
the corresponding method.

The ECMA standard states in [1, Partition III,§4.23]
that theRethrowinstruction is only permitted within
the body of acatch handler. However, the same in-
struction is allowed also within a handler region of
a filter (seeTest 5 in [5]) even if this does not

9The NewObj instruction called with an instance constructor
c ::.ctor creates a new object of classc and then calls the con-
structor.ctor .

73

Fig. 4 The rules ofEXECCLRE

EXECCLRE(instr) ≡
EXECCLRN (instr)
match instr

Throw→ let r = top(evalStack) in
if r 6= null then

LOADREC((r, StackWalk, (frame, 0), undef))
switch:= ExcMech

elseRAISE(NullReferenceException)

Rethrow→ LOADREC((exc, StackWalk, (frame, 0), undef))
switch:= ExcMech

EndFilter→ let val = top(evalStack) in
if val = 1 then

FOUNDHANDLER

RESET(stackCursor, top(frameStack))
elseGOTONXTHAN

POPFRAME

switch:= ExcMech

EndFinally→ evalStack:= []
switch:= ExcMech

Leave(pos) → evalStack:= []
LOADREC((Leave, (frame, 0), pos))
switch:= ExcMech

match the previous statement. It throws the same ex-
ception reference that was caught by this handler, i.e.
the current exceptionexcof EXCCLR. Formally, this
means that the pass record associated toexcis loaded
on EXCCLR.

In a filter region, there should be exactly one
EndFilter instruction. This has to be the last instruc-
tion in the filter region. EndFilter takes an inte-
ger val from the stack that is supposed to be either
0 or 1. In the ECMA standard,0 and 1 are assim-
ilated with “continue search” and “execute handler”,
respectively. There is a discrepancy between [1, Parti-
tion I,§12.4.2.5] which statesExecution cannot be re-
sumed at the location of the exception, except with a
user-filtered handlerand [1, Partition III,§3.34] which
states that the only possible return values from the
filter are “exceptioncontinue search”(0) and “excep-
tion executehandler”(1). In other words, resumable
exceptions are not (yet) supported contradicting Parti-
tion I.

If val is 1 then the filter handler to which
EndFilter corresponds becomes thehandlerto handle
the current exception in the passUnwind. Remem-
ber that thefilter handler is the handler pointed
to by thestackCursor. The stackCursoris reset to
be used for the passUnwind: it will point into the
topmost frame onframeStackwhich is actually the
faulting frame. Ifval is 0, the stackCursoris incre-
mented to point to the handler following ourfilter
handler. Independently ofval, the current frame
is discarded to reestablish the context of the fault-
ing frame. Note that we do not explicitly popval
from theevalStacksince the global dynamic function

evalStackis updated anyway in the next step through
POPFRAME to theevalStack’ of the faulting frame.

The EndFinally instruction terminates the execu-
tion of the handler region of afinally /fault han-
dler. It empties theevalStackand transfers the con-
trol to EXCCLR. A Leave instruction empties the
evalStackand loads onEXCCLR a pass record cor-
responding to aLeavepass.
Remark The reader might ask why the instruc-
tions Throw, Rethrowand EndFilter do not set the
evalStack. The reason is that this set up, i.e. the emp-
tying of theevalStack, is supposed to be either aside-
effect(the case of theThrowandRethrowinstructions)
or ensured for acorrectCIL (the case of theEndFilter
instruction). Thus, theThrowandRethrowinstructions
pass the control toEXCCLR which, in a next step,
will execute10 acatch /finally /fault handler re-
gion or afilter code or propagates the exception
in another frame. All these “events” will “clear” the
evalStack. In case ofEndFilter, the evalStackmust
contain exactly one item (anint32 which is popped
off by EndFilter). Note that this has to be checked by
the bytecode verifier and not ensured by the exception
handling mechanism.

9 CONCLUSION

We have defined an abstract model for the CLR ex-
ception handling mechanism. On one hand, this paper
has laid the ground for the mathematical correctness
proof of the CLR bytecode verifier. On the other hand,
through the analysis of the mechanism, we discovered
a few gaps in the ECMA standard for CLR. Our model
fills in these gaps and precisely specifies the behavior
of the mechanism in all the subtle but critical cases.

10 ACKNOWLEDGMENT

We are thankful to Jonathan Keljo for the useful dis-
cussion.

References
[1] Common Language Infrastructure, Standard ECMA–335.

http://www.ecma-international.org/ . 2002.

[2] Chris Brumme. The Exception Model.
Blog at http://blogs.msdn.com/cbrumme/ , 2003.

[3] Matt Pietrek. A Crash Course on the Depths of Win32TM

Structured Exception Handling. Microsoft Systems Journal,
January 1997.

[4] Andrew D. Gordon and Don Syme. Typing a Multi-Language
Intermediate Code. Technical Report Microsoft, MSR-TR-
2000-106, December 2000.

[5] N. G. Fruja. Experiments with CLR. Exam-
ple programs to determine the meaning of CLR fea-
tures not specified by the ECMA standard. Available

10One can formally prove that there is such a “step” in the further
run of theEXCCLR.

74

http://www.ecma-international.org/
http://blogs.msdn.com/cbrumme/

at http://www.inf.ethz.ch/personal/fruja/
publications/clrexctests.pdf

[6] N. G. Fruja. Type Safety in C] and .NET CLR. PhD Thesis in
preparation.

[7] N. G. Fruja. A Modular Design for the .NET CLR Architec-
ture. Proceedings of the Workshop on Abstract State Machines,
ASM’05, France.

[8] E. Börger, N. G. Fruja, V. Gervasi, R. F. Stärk. A High–Level
Modular Definition of the Semantics of C]. Journal Theoretical
Computer Science, June, 2005.

[9] R. F. Sẗark and E. B̈orger. An ASM Specification of C#
Threads and the .NET memory model. Proceedings of the
Workshop on Abstract State Machines,ASM’04, Germany,
Springer LNCS 3052 (2004) pag. 38–60.

[10] E. Börger and R. F. Stärk. Exploiting Abstraction for Speci-
fication Reuse: The Java/C# Case Study. Formal Methods for
Components and Objects: Second International Symposium,
FMCO’03, The Netherlands, Springer LNCS 3188 (2004),
pag. 42–76.

[11] N. G. Fruja. Specification and Implementation Problems for
C]. Proceedings of the Workshop on Abstract State Machines
ASM’04, Germany, Springer LNCS 3052, pag. 127–143.

[12] N. G. Fruja. The Correctness of the Definite Assignment Anal-
ysis in C]. Journal of Object Technology, vol. 3, no. 9, 2004.

[13] H. V. Jula and N.G. Fruja. An Executable Specification of
C]. Proceedings of the Workshop on Abstract State Machines,
ASM’05, France.

[14] C. Marrocco. An Executable Specification of the .NET CLR.
Diploma Thesis supervised by N. G. Fruja, ETH Zürich, 2005.

[15] R. F. Sẗark, J. Schmid, E. B̈orger. Java and the Java Vir-
tual Machine–Definition, Verification, Validation. Springer–
Verlag, 2001.

[16] E. Börger and W. Schulte. A Practical Method for Specifica-
tion and Analysis of Exception Handling – a Java JVM Case
Study. IEEE Transactions of Software Engineering, vol. 26,
2000.

[17] E. Börger and R. F. Stärk. Abstract State Machines–A Method
for High-Level System Design and Analysis. Springer-Verlag,
2003.

[18] Abstract State Machine Language (AsmL), Founda-

tions of Software Engineering Group, Microsoft Research,

Web pages at http://research.microsoft.com/

foundations/AsmL/ .

75

http://www.inf.ethz.ch/personal/fruja/publications/clrexctests.pdf
http://www.inf.ethz.ch/personal/fruja/publications/clrexctests.pdf
http://research.microsoft.com/foundations/AsmL/
http://research.microsoft.com/foundations/AsmL/

76

Designing and Implementing a MANET Network
Service Interface with Compact .NET on Pocket PC

Fabio De Rosa

Università di Roma “La Sapienza”
Dipartimento di Informatica e Sistemistica

Via Salaria 113 (2nd floor, lab C4)
 I-00198 Roma, Italy

derosa@dis.uniroma1.it

Massimo Mecella
Università di Roma “La Sapienza”

Dipartimento di Informatica e Sistemistica
Via Salaria 113 (2nd floor, room 231)

 I-00198 Roma, Italy

mecella@dis.uniroma1.it

ABSTRACT
Operators forming an ad hoc network (MANET) in emergency situations would benefit from software
supporting their interaction. To date, however, development of such a coordination layer has required
abstractions on the services and data provided by the lower network layers. In this paper we present the design
and a possible implementation of the Network Service Interface [DeRosa03a] as a .NET Compact Framework
component, coded in C#, to be run on PDAs with the Windows Mobile operating system. We chose Dynamic
Source Routing (DSR) as the routing protocol supporting inter-device communication.

Keywords
Cooperative Work – Mobile Ad hoc Network – Network Service Interface – Object and Component Design –
.NET Compact Framework – DSR.

1. INTRODUCTION
The widespread availability of network-enabled
hand-held devices (e.g. PDAs with WiFi - the
802.11x-based standard) has made pervasive
computing environment development an emerging
reality. Mobile (or Multi-hop) Ad hoc NETworks
(MANETs, [Agrawal03a]) are mobile device
networks communicating with one another via
wireless links without relying on an underlying
infrastructure. This distinguishes them from other
types of wireless networks, such as cell networks or
infrastructure-based wireless networks. Each device
in a MANET acts as an endpoint and as a router
forwarding messages to devices within radio range.
MANETs are a sound alternative to infrastructure-
based networks whenever the infrastructure is
lacking or unusable, such as in emergency
situations.

Operators acting in such emergency situations
would benefit from software supporting their
collaboration. Such a coordination layer would
enable them to execute sets of activities (in
sequence, concurrently, etc.) through specific
applications (e.g. computer supported cooperative
work - CSCW - tools [Grudin04a], workflow
management applications [Leymann00a], etc.)
running on hand-held devices, thus enabling
cooperative processes to be run. All such
applications typically require continuous inter-
device connections (e.g. for data/information
sharing, activity scheduling and coordination, etc.),
but these are not generally guaranteed in MANETs.

We investigated a specific pervasive architecture,
targeted at CSCW and workflow management
applications constituting the coordination layer and
able to maintain continuous connections among
MANET devices.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

As a typical example, consider the aftermath of an
archeological disaster: following an earthquake, a
team is equipped with mobile devices (laptops and
PDAs) and sent to the affected area to evaluate the
condition of archeological sites and buildings, with
the goal of drawing a situation map to schedule
rebuilding activities. A typical cooperative process
to be enacted by the team would be that shown in
Figure 1 (depicted as an UML Activity Diagram):

77

• the team leader has previously stored all area
details (not included in the process), including
a site map, list of the most important objects
located in the site and previous
reports/materials;

• the team is considered as an overall MANET,
in which the team leader’s device (requiring
the most computing power, therefore usually a
laptop) coordinates the other team members’
devices, by providing suitable information (e.g.
maps, sensitive objects, etc.) and assigning
activities/tasks;

• team members are equipped with hand-held
devices (PDAs), which allow them to run some
operations but do not have much computing
power. Such operations, possibly involving
various hardware items (e.g. digital cameras,
GPRS connections, computing power for
image processing, main storage, etc.), are
provided as software services to be
coordinated. Team member 1 might compile
some specific questionnaires (after a visual
analysis of a building), to be analyzed by the
team leader using specific software in order to
schedule subsequent activities; team member 3
might take pictures of the damaged buildings,
while team member 2 may be responsible for
specific processing of previous and recent
pictures (e.g. for initial identification of
architectural anomalies).

In this case, it might be useful to match new
pictures with previously stored images. The device
holding the high-resolution camera must therefore
be connected to the one containing the stored
pictures.

But in a situation such as that shown in Figure 2,
the movement of the operator/device equipped with
the camera may result in its disconnection from the
others.

A pe
such
possi
4’s d
out
ensur
coord
activi
disco
activi

The p
by t
know
takes
be sa

In re
focus
proto
other
Effec
active
some
litera
hoc O
Zone

Team Member 2
(picture store device)

Team Member 3
(camera device)

Compile Select Building

Selected
Building

Go to
Destination

Zoom on
damaged part

Send Photos
Photos

Matching

Compile

Resul
t

Data

Team Leader Team Member 1

Capture Scene

Museum

Precarious

Bell-Tower Building

Church

Hit
Area

Picture Store

Operator

Bridge

Team Leader

Camera

Movement needed to accomplish
the task

Movement needed to maintain the network
connectivity; should be adaptively driven by the
cooperative application

Figure 1. Cooperative process.

78
Figure 2. Critical situation and adaptive
management.
rvasive architecture should be able to predict
a situation, alert the coordination layer, and
bly have a “bridging” device (team member
evice) to follow the operator/device moving
of range, maintaining the connection and
ing a path between devices. In this way the
ination layer schedules the execution of new
ties based on the prediction of a
nnection, as shown in Figure 3 (note the new
ty for team member 4).

rocess’s adaptive change is centrally managed
he coordination layer, which has “global”
ledge of the status of all operators/devices and
 into account idle devices, operations that can
fely delayed, etc.

cent years, research in the MANET area has
ed on the development of appropriate routing
cols, methods for energy preservation, and
 issues on the lower four ISO/OSI layers.
tive routing in ad hoc networks is still an
ly-addressed open problem [Vaidya04a], with

 interesting proposals presented in the
ture (e.g. Dynamic Source Routing – DSR, Ad
n demand Distance Vector – AODV routing,

 Routing Protocol - Z-RP, etc.).

To da
(and
has
chara
gener
lower
netwo
layer
startin
routin

In thi
imple
[DeR
comp
the W
Sourc
suppo
know
of a M
mainl
comm
laptop

The p
workf
frame
descr
the re
show

layer, while in Section 4 we report the results of
NSI component testing experiments. In Section 5 an
example of Windows Mobile application –MANET-
Chat – is described, to show the use of the NSI
component. Finally in Section 6 we report our
conclusions and future work.

2. WORKFLOW ARCHITECTURE
Figure 4 shows the architecture supporting
cooperative work on MANETs. The various
MANET devices are equipped with some wireless
network interfaces and specific hardware for
calculating distances from neighboring devices
(Wireless Stack in the figure), while the Network
Service Interface (NSI) provides the upper layers
with the basic services for sending and receiving
messages (through multi-hop paths) to/from other
devices, by abstracting the specific routing
protocols.

Services (i.e. specific applications supporting the
device users’ tasks 1) are accessible to other devices
and can be coordinated and composed in a
cooperative process. In contrast, the coordinator
device presents the Predictive Layer on top of the
Network Service Interface, signaling any probable
disconnection to the upper Coordination Layer.

Go to
destination

Zoom on
damaged part

Send Photos
Photos

Team Member 3 (camera
device)

Team Member 4
(bridge device)

Capture Scene

Follow Team
member 3

Matching

Team Member 2 (picture
store device)

Selected
Building

Select Building

Figure 3. Modified process (details).
te, development of application layer software
thus of any information system for MANET),
required abstractions on the specific
cteristics of the routing algorithms and, more
ally, on the services and data provided by the
 network layers. [DeRosa03a] proposes a
rk service interface to be used as the basic
on which to build application software,
g from the analysis and abstraction of current
g protocols.

s paper we present the design and a possible
mentation of the Network Service Interface
osa03a] layer as a .NET Compact Framework
onent, coded in C#, to be run on PDAs with
indows Mobile operating system. Dynamic

e Routing was chosen as the routing protocol
rting inter-device communication . To our
ledge, this is the first effective implementation
ANET routing protocol for PDAs (which are

y Windows-based); current research and the
ercial tools available are targeted only at
s running Linux.

aper is organized as follows: in Section 2, the
low architecture constituting the reference
work for cooperative work on MANET is
ibed; this provides the overall framework for
sults presented in this paper. In Section 3 we
 the design of the Network Service Interface

The Predictive Layer implements a probabilistic
technique [DeRosa05a] which can predict if all
devices will still be connected in the successive
moment. At a given time instant ti in which all
devices are connected, the coordinator device
collects all device distance information and builds a
next connection graph, i.e. the most likely graph at
the next time instant ti+1, in which the predicted
connected and disconnected devices are
highlighted. In the interval [ti, ti+1], the
coordinator layer enacts the appropriate actions to
enable all devices to be still connected at ti+1. In
predicting at ti the next connection graph, the
technique considers not only the current situation,
but also recent situations and predictions (i.e., at ti-1,
ti-2, etc.), specifically considering distances
calculated in the recent past. Thus, although the
pervasive architecture guarantees that constant
connection of all devices, MANET’s evolution is
considered as it would be in a “free” scenario (i.e.
without remedial actions by the coordination layer)
when predicting the future situation. The

1 Some of these services are applications that do not

require human intervention (e.g. an image processing
utility), whereas others act as proxies in front of human
actors (e.g. the service for instructing human actors to
follow a peer is a simple GUI that alerts the human
operator by displaying a pop-up window and emitting a
signal).

79

reasonable assumption is that if two devices have
the tendency to go out of radio range if left “free”,
and are thus connected through the coordinator’s
remedial actions, then this influences the
subsequent connection probability. The predictive
layer therefore calculates a probable distance
St+1(i,j) p(i,j) (see equation 1) at time ti+1 between
each pair of MANET devices i, j, , taking into
account previous real distances h (distance history)
between devices, each with a different weight (αk/c
with αk = k and c = ∑h

k=1 αk),as more importance is
given to recent movements (h is the dimension of
the predictive algorithm temporal window).

Starting from these predicted distances and by
considering the maximum communication range
(Sdev) of the wireless technology utilized (e.g.
approximately 100 m if the device uses IEEE
802.11b), the predictive layer estimates the
probability that a pair of MANET devices (i, j) is
still within radio range at the next instant ti+1
(equation 2).

These probabilities are used to build a square
probability matrix |E| x |E| (|E| = number of
MANET mobile devices) M = (mij), in which mij =
P(t+1)

(i,j) (equation 3). This matrix is used to build
the subsequent connection graph: the set of graph
nodes is E = {e1, …,em} and the set of graph arcs is
A = {(i, j) | mij = P(i,j) ≥ β}, where 0 ≤ β ≤ 1
represents a probability threshold. The value of β
depends on the type of situation, but is normally ≥
½.

Equation 3. The square probability matrix.

The strategy of the algorithm used in the Predictive
Layer component is therefore to find the connected
components in the subsequent connection graph
(using the SUB CCDFSG procedure), and verify if
two devices ei and ej, belong to the same connected
component (the TEST CONNECTION procedure);
if so, then they will still communicate in the
subsequent instant and if not, they will lose their
connection. After building the matrix M = (mij), it is
therefore possible to verify which devices are
directly (one hop) or indirectly (multi hop)
connected to all other devices, and thus let the
coordinator decide whether or not to take actions to
maintain connection between the involved devices.
The predictive algorithm is reported below:

Equation 1. Predicted distance between two
MANET devices i, j.

PROGRAM MGR(Comps[m])

1. numcomps ← 0
2. for i ← 0 to (m - 1)
3. do if Comps[i] = 0
4. then numcomps ← numcomps + 1 Equation 2. The Probability that a couple of

MANET devices i, j being still in the radio range at
the next instant ti+1.

5. CCDFSG(M, i, numcomps, Comps[])
6. return Comps[]

SUB CCDFSG(M, i, numcomps, Comps[m])
1. Comps[i] ← numcomps
2. for each M[i, j] ≥ Beta
3. do if Comps[j] = 0
4. then CCDFSG(M, j, numcomps, Comps[])
5. return NIL

1. PROGRAM TEST CONNECTION(i, j, Comps[m])
2. if Comps[i] = Comps[j]
3. then TEST ← true
4. else TEST ←false
5. return TEST

The coordination layer manages situations when a
peer is about to disconnect (e.g. by instructing a
specific device to “Follow Peer X”). For example,
if the coordination layer realizes a workflow

80

management system, then the coordination layer
may restructure the workflow schema on the basis
of the current prediction.

The MANETServices component consists of two
main packages: the MANETService package and the
RoutingProtocol package (Fig. 6).

Client Application MANETServices.dll
<<interface>>

Network Service Interface

isLinked(peer): StructInfo

receive(StructReceive):
message

Send(message,peer):
Boolean

Bind(port): ManetSocket

close(port): void

release(): void

<uses>

 Mobile Device j

Service 3 Service 4

Network Service Interface

Wireless Stack (802.11x,
Bluetooth)

 Mobile Device i

Service 1 Service 2

Network Service Interface

Wireless Stack (802.11x,
Bluetooth)

Mobile Device Coordinator

Wireless Stack (802.11x, Bluetooth)

Network Service Interface

Coordination Layer

Predictive Layer

MANETServices.dll

Figure 4. Proposed Architecture for supporting
cooperative work on MANETs.

3. NSI COMPONENT DESIGN
Figure 5 reports the Network Service Interface API
[DeRosa03a], which provides the following
operations to the upper layers:

• bind(), which enables applications running on
the same device to be bound to the MANET
network layer;

• send(), which sends messages to a peer and
reports the success or failure of data
transmission;

• receive(), which receives messages from peers
in the MANET;

• isLinked(), which reports whether a given peer
is present in the MANET at that time;

• close(), which closes the MANET socket
related to a specific application;

• release(), which releases all resources locked
by a specific MANET socket.

Figure 5 also shows the realization and dependency
relationships among the NSI, the MANETServices
component, and a generic Client Application
running on Pocket PC. Client Applications may be
stand alone (e.g. chats, electronic agendas, etc.) or
other components using the NSI to communicate
with other network peers, and MANETServices
implements the MANET Network layer, enabling
communication among MANET mobile devices.
The MANETServices component and its constituent
packages are described below.

The
and
Rout
and
routi
inter
are c
a Ro
have
inter
routi
MAN
In fa
from
kept
For e
than
impl
a
impl
conf
settin
requ

81
Figure 5. The NSI with realization and
dependency relationships.

MANETService

RoutingProtocol
<<uses>>

IRoutingProtocol

NSI

Figure 6. The MANETServices component and

its constituting packages.
MANETService package contains all interfaces
classes implementing the NSI API. The

ingProtocol package includes all interfaces
classes implementing the specific MANET
ng protocol: e.g. in our case, the classes and
faces implementing the DSR routing protocol
ollocated in the RoutingProtocolDSR package,
utingProtocol sub-package. It was decided to
 two packages linked by the IRoutingProtocol
face (a common interface for all MANET
ng algorithms) in order to keep the
ETServices component as modular as possible.
ct, by separating the routing algorithm logic
 the MANET network management, the NSI is
independent of the routing protocol utilized.
xample, to use AODV routing protocol rather
DSR protocol, it is only necessary to

ement the AODV algorithm (e.g. by producing
RoutingProtocolAODV sub-package), by
ementing the IRoutingProtocol interface, and
igure the MANET network layer context (by
g up specific component properties). This

ires no change to the MANET management,

nor, in consequence, to the client application source
code. This is a typical application of the “Strategy”
pattern presented in [Gamma94a], in which
ConcreteStrategies are the classes realizing the
MANET routing protocols (see Figure 7).

M
Th
pa
In
(se

As
or
ma
M
ru
ma
ro

tables if any, etc. At run time there is therefore only
one MANETManager class instance which has
strict control over how and when client applications
access the NSI. The unique manager object
maintains a list of opened MANETSocket objects
for each application, which obtain shared
information through synchronized methods. For
these reasons we adopted the Singleton pattern
[Gamma94a] for the MANET communication layer
as a design solution, where the singleton class is
our MANETManager class (Figure 9).

<<interface>>

IRoutingProtocol
getRouteFor(peer): Route

getAllNetUsers(): array

getNeighbours(): array

DSR

getRouteFor(peer): Route

getAllNetUsers(): array

getNeighbours(): array

AODV

getRouteFor(peer): Route

getAllNetUsers(): array

getNeighbours(): array
Client Application

MANETManager

static getMANETManager()

bind(int port): MANETSocket

close(int port): void

release(): void

<<uses>>

MANETSocket

send(Message message): bool

isLinked(Peer peer): bool

receive(): Message

1 0..

<<uses>>

Figure 7. The Strategy pattern for MANET
routing algorithms.
ANETService Package
e main classes constituting the MANETService
ckage and realizing the Network Service
terface are MANETManager and MANETSocket
e Figure 8).

 w
 a
n

AN
nn
n

uti

4. NSI IMPLEMENTATION AND
TESTING
We implemented NSI as a .NET Compact
Framework component, coded in C#, to be run on
both PDAs, with the Windows Mobile operating
system, and laptops (or any desktop) with the
Windows operating system desktop version. The
Dynamic Source Routing protocol [Johnson94a],
specifically optimized for route caching
[Vaidya04a], was implemented to support inter-
device communication. To our knowledge, this is
the first effective implementation of a MANET
routing protocol for PDAs (which are mainly
Windows-based), as current research and the
available commercial tools are targeted only at
supporting laptops running Linux.

<<interface>>

Network Service Interface

MANETSocket MANETManager

NSIRealization

0..* 1

Figure 8. Main Classes constituting the
MANETService package.
ith a file system manager, a window manager,
 printer spooler, the MANETManager class
ages and controls concurrent access to the

ET network layer of client applications
ing on the same mobile device, specifically
aging access to shared information of the
ng protocol used, e.g. neighbor list, routing

82

Figure 9. The Singleton pattern for MANET

connection manager.
For our experiments we deployed the NSI
component on several kinds of PDA devices, with:

• IPAQ 5550 and IPAQ 5540 with 450 MHz
processors and 128 MB RAM,

and on:

• desktops with 3 GHz processors and 1 GB
RAM;

• laptops with 2.8 GHz processors and 512 MB
RAM.

W
b
p
e
f
t
t
p
p

T
d
s
t

T
c
c
m
p
d
c
R
m
a
v
b
s
a
s
1
(
t

destination node, while the data transmitting time is
relatively small (requiring four packets per message
at most). Messages over 1024 bytes must be split
into more packets, thus requiring more time to send
the message from one hop to another. In this case,
the node mobility means that connection failures
are quite likely, necessitating a great deal of packet
retransmission (this also explains why the time
increases when the message size exceeds 1024
bytes).

The second test focused on measuring component
soundness and reliability. The main goal was to
verify the capacity of connection servers to accept
and satisfy incoming packet requests from
neighbors, especially when running on PDA
devices. This was achieved by producing high
packet traffic in the network to provoke frequent
full server connection queue exceptions and thus
packet retransmissions.

(())

(())
))((

))((

))((

))((

Laboratory ‘A’ Laboratory ‘B’

192.168.0.6

192.168.0.4

192.168.0.2 192.168.0.5

192.168.0.3 192.168.0.1

)
Figure 10. Experiment environments: laptops,
desktops, and PDAs placed in adjacent rooms

and constituting an unique MANET.
e deployed heterogeneous devices in order to
etter test the NSI component and verify its
erformance on devices with different hw/sw. It is
asy to predict that when a laptop or a desktop
orwards packets to PDAs, throughput is limited by
heir different clock speeds. One of our goals was
o establish how this affects the routing protocol
erformance (in our case the DSR protocol
erformance).

he experiments were conducted indoors, with the
evices placed in several adjacent rooms to form a
ingle MANET, thus using the walls as separators
o simulate obstacles (see Figure 10).

wo kinds of test were conducted on the NSI
omponent. The first was to fine-tune various
omponent parameters such as packet size. The
aximum time spent in discovering a node route,

lus the time spent in sending data (message) to
estination node (i.e. the total time spent for the
omplete execution of the getRouteFor(peer):
oute and the send(Message message): bool
ethods – see Section 3 IRoutingProtocol interface

nd MANETSocket class) was chosen as the
alidating parameter, and 256, 512, 768, and 1024
ytes were selected as instance values for packet
ize. Results showed that 1024 byte packages were
 good compromise between the time spent in
ending the message and its size. 512, 768, and
024 byte packages take almost the same time
Figure 11). In fact with messages of this size, most
ime is spent in discovering the route to the

P
s
b
1
s
w
s
m
n
c

83
TIME (msec

acket traffic was generated
ize messages (i.e., 1, 2, 4
yte packets and straining th
 shows the results of our ex
econds) to send the whol
ith 3 and 6 hosts is repo

ize . As can be seen, the
essage increases with its

umber of packet retran
aused by the greater n

Message Dim. (byte)

Figure 11. Experiment results. X axis represents
message size in bytes, while Y axis represents
the spent time to send message with 256, 512,

768, and 1024 bytes packet size, resp.
 by decomposing fixed
 and 8 MB), into 1024
e MANET hosts. Table
periments. The time (in
e message in MANET
rted for each message
time spent in sending a
size, due to the higher
smissions, principally
umber of full server

connection queue exceptions. The different results
obtained in the two cases considered are because
there are more alternative routes to the destination
node for MANET with 6 hosts than for 3 hosts,
thus decreasing the number of connection requests
to each host.

Message

Dimension
Time for 3

hosts (in sec.)
Time for 6

hosts (in sec.)
1 MB 14 323
2 MB 90 624

4 MB 438 1800

8 MB 840 2400

5. USING THE NSI COMPONENT
In this section we report an example of Windows
Mobile application –MANET-Chat –implemented
to show the use of the NSI component (see Figure
12).

MANET-Chat is a simple chat application that may
be run independently on PDA and laptop/desktop
devices and on top of a MANET network. It uses
the NSI component as MANET network layer to
send and receive messages to and from other
devices.

The main class application is the Form class of the
System.Windows.Forms package. It includes: a
TextBox object to enter the text message; a
ComboBox object to select the list of message
destinations; the isLinked, send, and close
button objects to verify if a device is linked to the
network, send the message, and unbind the
application from the NSI component. Finally, the
bigger TextBox object is used to show incoming
messages from other network devices. The
packages needed by the chat application are
reported below. The MANETService package and
the MANETService.Utility package contain all
classes implementing the NSI component.

Table 1. Experiment results obtained for
testing the component soundness and reliability.

I
w
t
a

84
Figure 12. MANET chat application used for
testing the MANETService component.
n the class constructor, variables are initialized
ith the instance of the MANETManager class and

he MANETSocket object assigned to the
pplication by a binding operation.

/* MANET chat application */

using System;
using System.IO;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.Threading;
using System.Data;
using System.Text;
using System.Net;

/* using the MANETService package */

using MANETService;
using MANETService.Utility;

public class Form1 :
 System.Windows.Forms.Form
{
 …
 private MANETManager
 manager = null;
 private MANETSocket ms1 = null;
 private Thread listener = null;
 …
}

The send, isLinked, and close application buttons
use the NSI component’s send, isLinked, and close
methods. The receive method is called by a thread
object listening on a specific port.

6. CONCLUSION AND FUTURE
WORK
In this paper we presented the design and a possible
implementation of the Network Service Interface
layer as a .NET Compact Framework component,
coded in C#, to be run on PDAs with the Windows
Mobile operating system; we chose Dynamic
Source Routing as the routing protocol supporting
inter-device communication.

The layer prototype is available at:
http://www.dis.uniroma1.it/pub/~me
cella/projects/MobiDIS/.

We reported a set of NSI component tests and their
results. Finally, we described an example of
Windows Mobile application –MANET-Chat – in
order to show the use of the NSI component.

Future work will involve the development of the
predictive layer on top of the NSI component in the
.NET environment, using the probabilistic
technique presented in [DeRosa05a].

public Form1()
{ InitializeComponent();

/* Getting the unique MANETManager
instance */

 manager =
 MANETManager.getMANETManager()
;

/* Binding application on port 50 */

 ms1 = manager.bind(50);
 listener = new Thread(new
 ThreadStart(this));
 listener.Start();
 …
}

/* Using the NSI send() method */

public void send(){
 this.textBox3.Text = "";
 string nameDest =
 this.comboBox1.Text;
 string message =
 this.textBox1.Text;
 byte[] message_b=
 Encoding.UTF8.GetBytes(message);

 Boolean boo =
 ms1.send(nameDest,50,message_b);

 this.textBox3.Text =
 boo.ToString();
}// End the send method

…

/* Using the NSI receive() method */

public void receive(){
 …
StructReceive sr = new
StructReceive(50);
StructReceive result = null;
while(breaking)
{

result = ms1.receive(sr);

 if(result != null){
 string[] message =
 result.getMessage();
 …
 break;
 }
}
…
}// End the receive method

…
/* Using the isLinked() method */

public void isLinked(){
 string nameDest =
 this.comboBox1.Text;
 Boolean bo =
 ms1.isLinked(nameDest);
 textBox5.Text =
 bo.ToString();
}
/* The close method to unbind the
MANET chat application */

public void close(object sender,
System.EventArgs e)
{
 MANETManager.close(50);
 …
 MANETManager.release();
 …
}

85

7. ADDITIONAL AUTHORS
Fiammetta Pascucci and Piergiorgio Faraglia,
undergraduates of the Faculty of Computer
Engineering, University of Rome “La Sapienza”.

8. REFERENCES
[Agrawal03a] Agrawal, D. P., and Zeng, Q. A. ,

“Introduction to Wireless and Mobile Systems”,
Thomson Brooks/Cole, 2003.

[Grudin04a] Grudin, J., “Computer-Supported
Cooperative Work: History and Focus”, IEEE
Computer 27(5): 19-26, 1994.

[Vaidya04a] Vaidya, N. H., “Mobile Ad Hoc
Networks: Routing, MAC and Transport Issues”
Tutorial on Mobile Ad Hoc Networks,
http://www.crhc.uiuc.edu/nhv, University of
Illinois at Urbana-Champaign, USA, July 2004.

 [DeRosa03a] De Rosa, F., Di Martino, V.,
Paglione, L., and Mecella, M., “Mobile
Adaptive Information Systems on MANET:
What We Need as Basic Layer?”. In
Proceedings of the 1st IEEE Workshop on
Multichannel and Mobile Information Systems
(MMIS’03), Rome, Italy, 2003.

[DeRosa05a] De Rosa, F., Malizia, A., and
Mecella, M., “Disconnection Prediction in
Mobile Ad hoc Networks for Supporting
Cooperative Work”. IEEE Pervasive
Computing, 2005, to appear.

[Gamma94a] Gamma, E., Helm, R., Johnson,R, and
Vlissides, J., “Design Patterns: Elements of
Reusable Object-Oriented Software”. Addison-
Wesley Professional Computing Series, 1994.

[Johnson94a] Johnson, D., and Maltz, D. A.,
“Dynamic source routing in ad hoc wireless
networks," in Mobile Computing (T. Imielinski
and H. Korth, eds.), Kluwere Academic
Publishers, 1994.

86

Porting the .NET Compact Framework to Symbian
Phones – A Feasibility Assessment

Alain Gefflaut, Friedrich van Megen, Frank Siegemund, Robert Sugar

European Microsoft Innovation Center

Ritterstr. 23

D-52072 Aachen, Germany

{alaingef|fmegen|franksie|rsugar}@microsoft.com

ABSTRACT
As a result of the increasing availability and processing capacity offered by portable devices, it is important for
software providers to offer mobile services that seamlessly interoperate with business applications. However,
currently there is still a considerable technology gap between building .NET applications on PC-like systems and
programming mobile services on mid-range portable devices, a large number of which run the Symbian operating
system. As Microsoft has built its .NET Compact Framework Common Language Runtime (CLR) for high-end
mobile devices, it would be desirable to bring a reasonable subset of this technology to mid-range smartphone
devices as well. Such a platform for executing .NET applications on Symbian-enabled smartphones has then the
potential (1) to considerably facilitate the migration of .NET applications to portable devices and (2) to increase
the interoperability between software running on stationary systems and mobile services. In this paper, we present
an initial feasibility assessment for porting the .NET Compact Framework to Symbian smartphones, and analyze
how the unique characteristics of the Symbian operating system affect the portability of the .NET Compact
Framework. Based on our experiences in porting parts of the .NET Compact Framework to Symbian, we
illustrate code portability between different platforms and provide a preliminary performance analysis of the
.NET Compact Framework compared to Java.

Keywords
.Net Compact Framework – Symbian – Mobile Services – Smartphones – Software Migration.

1. INTRODUCTION
During the last two decades, mobile phones have
become almost ubiquitous. As a result of this
development, it is increasingly important for software
providers to offer mobile services that seamlessly
interoperate with their business applications in order
to improve customer satisfaction and service
availability. The .NET Framework has been a popular
platform for creating such applications and services
both on stationary computers and Windows CE-based
PDAs. However, a large number of today’s

smartphones are currently based on the Symbian
operating system, for which applications are either
developed in Symbian C++ or Java. According to a
recent study [Gar04], 80% of all smartphones
shipped in the 3rd quarter of 2004 were Symbian
phones. Hence, for the next couple of years Symbian
smartphones are likely to remain an important
platform for implementing mobile services.

As a consequence, it would be beneficial if .NET
applications could also be executed on Symbian-
enabled devices. .NET developers could then reuse
their code for mobile services instead of
reimplementing their applications from the ground up
using C++ or Java. Reimplementation can be
especially cumbersome since commonly used
CLR/.NET features may not be present in different
programming models (e.g. floating point support is
absent in some J2ME profiles, SOAP Web Services
support may be missing, XML and graphics
programming model might differ). These issues mean
that direct code reuse is not possible, which results in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 7/,75832,/0,0
Copyright UNION Agency – Science Press, Plzen, Czech Republic

87

increased costs and is likely to introduce new
program errors. Having a Common Language
Runtime (CLR) running on Symbian smartphones
also implies that developers could implement
applications for this platform using the same
programming environment and tools offered for the
.NET Framework. We would like to argue that such
an approach has the potential to considerably simplify
the migration of .NET applications to mobile devices
and makes it easier for software developers to design
mobile services that interoperate with stationary
.NET applications.

In this paper, we investigate whether it is feasible to
port the .NET Compact Framework to Symbian, and
report on our preliminary experiences in porting parts
of the .NET Compact Framework to this platform.
The paper also contains an analysis of specific
characteristics of Symbian and describes how the
internals of the Symbian operating system affect the
portability of the .NET Compact Framework.
Furthermore, we provide a preliminary performance
analysis of executing applications for Symbian
smartphones by means of the Common Language
Runtime (CLR).

The remainder of this paper is structured as follows:
The following section summarizes related work. Sect.
3 provides an overview of the .NET Compact
Framework architecture. Sect. 4 reports on our
experiences in porting parts of the .NET Compact
Framework to Symbian phones and shows how we
dealt with the specific demands of the Symbian
operating system. In Sect. 5 we evaluate our
implementation in comparison to Java. Sect. 6 gives
an outlook on future work, while Sect. 7 concludes
the paper.

2. RELATED WORK
The number of programming languages targeting the
Common Language Infrastructure (CLI) has been
steadily increasing over the years. Besides the variety
of currently supported programming languages,
however, CLI run-time technologies have also
become increasingly interesting for simplifying the
development process across different platforms and
operating systems. Examples for this development are
Microsoft’s Rotor and 3rd party Mono and DotGNU
implementations of the CLI [Rotor,Mono,DotGNU].
The last years have therefore shown a shift from
using CLI technologies for language integration on a
single platform to improving the development of
applications across different platforms and operating
systems. As the CLI has been accepted as an
international standard, the development into this
direction of cross-platform interoperability of CLI
languages is likely to persist.

While there are significant projects that aim at
supporting .NET on operating systems such as Unix
and MacOS, the major difference in hosting the CLI
on the Symbian operating system is that the latter is
explicitly targeting resource-restricted mobile
devices. Constraints regarding the amount of
available memory, computational resources, and
restrictions in the functionality provided by the
operating system pose therefore new demands on the
portability of the .NET Framework. Because of these
constraints, this paper focuses on the .NET Compact
Framework [NETCF] – which itself was designed for
mobile devices and first implemented to run on
Windows CE. Because of this, it already considers
some of the typical constraints of mobile platforms.

Most Symbian smartphones are shipped with a Java
Virtual Machine (JVM) already installed on the
phone (J2ME MIDP, the Java 2 Platform Micro
Edition Mobile Information Device Platform targets
resource-restricted mobile devices such as mobile
phones). A .NET Compact Framework
implementation for smartphones should therefore be
at least comparable to Java implementations with
respect to provided functionality and resource
consumption. Besides this fact, there are however
major differences between Java and .NET that make
a direct comparison difficult: (1) Java byte code is
often interpreted while the CLR primarily uses Just-
in-Time (JIT) compilation. (2) There are international
standards for the CLI and C#, while there is no such
standard for Java (there is a Java Community
Process, though). (3) .NET supports many
programming languages – with J# also a flavour of
Java. This can make direct comparison difficult
because this advantage can imply architectural
decisions affecting the performance of the CLI. (4)
The .NET Compact Framework comes with
functionality that is not natively supported by J2ME
MIDP. However, there are a range of publicly
available add-ons and class libraries that support
much of this functionality also on this Java platform
[J2MEWeb].

Rashid et al. [RTCE04] compare the performance of
native Symbian code with interpreted Java
applications, and Raghavan et al. [RSL04] reports on
a model-based performance evaluation of
applications on mobile devices. In the scope of our
work, test suites provided by IBM
[IBMBenchmarks], covering basic features such as
method calls, thread creation, and data access, were
used to carry out performance comparisons.

There are several papers (e.g., [Opera] and [Helix])
dealing with some of the obstacles that arise when
porting applications to the Symbian operating system.
Some of the described approaches are also applicable

88

in the context of our work and helped us find a
direction for our project.

3. ARCHITECTURE OVERVIEW
Fig. 1 gives an overview of the .NET Compact
Framework architecture and its underlying
components. As can be seen, the major constituents
of this general architecture are (1) the actual
hardware of the mobile device, (2) the operating
system that provides access to this hardware, (3) the
.NET Compact Framework CLR, which maps the
instructions of a (4) .NET application onto
instructions for the operating system and the
underlying hardware.

Figure 1: Overview of the .NET Compact
Framework Architecture

In the following, we will shortly describe these
individual components before we present our
experiences in porting parts of the .NET Compact
Framework to Symbian.

Hardware Constraints
A crucial aspect when trying to target a different
computing platform for .NET is to be aware of the
computational and functional restrictions of the
underlying hardware.

The Symbian Web site currently (February 2005)
lists 31 different Symbian OS phones, of which 13
are distributed by Nokia, 7 were built by Fujitsu for
NTT DoCoMo’s FOMA network, 3 are from Sony
Ericsson, and the others come from companies such
as Siemens and Motorola. For 21 of these 31 phones,
for which more detailed information could be found,
we looked more closely at the technical
specifications.

All of the investigated phones were built around
ARM processors or variants such as the OMAP 1510
from Texas Instruments, which itself is based on an

ARM architecture. The processor speed varied from
104 MHz for the ARM4T processor to 220 MHz for
an ARM5 CPU. As an average, most phones are
operated at processing speeds of up to around 150
MHz. Regarding display capabilities, approximately
50% of the investigated Symbian smartphones have a
screen resolution of 176x208 and the others a
resolution of 208x320. An exception is the Nokia
9290 Communicator with a screen resolution of
640x200. This relatively large screen, however, is
only used in the PDA mode of the device.

All of the smartphones we compared with each other
supported Java, and most new phones come with Java
MIDP 2.0 support. Furthermore, Bluetooth has
become a wireless communication standard that is
implemented by virtually all Symbian smartphones.
In some of the new phones Bluetooth is even
preferred over infrared; these phones are not
equipped with an infrared port. This is important
because the .NET Compact Framework provides
special classes facilitating networking and
communication over infrared links. In a port of the
Compact Framework to Symbian-enabled devices, it
therefore seems reasonable to focus more on
Bluetooth than infrared as the standard interface for
short-range communications.

The most striking difference when comparing
Symbian smartphones is in the amount of memory
integrated into the devices. While some Nokia phones
such as the Nokia N-gage or the Nokia 7650 have
only about 4 MB of internal memory to store photos
and messages, newer models such as the Nokia 6630
come with 10 MB of memory integrated (only about
6 MB of which are free to store programs or photos);
the Nokia 7710 has up to 90 MB of internal memory
[MobileReview]. With respect to non-volatile
memory, most phones offer the possibility to insert
multimedia cards (MMC) in order to increase storage
capabilities. Furthermore, the trend towards more
sophisticated digital cameras integrated into
smartphones will increase the demand for non-
volatile memory. As a consequence, it will not be the
limiting factor when porting the .NET Compact
Framework to Symbian phones. A more pressing
problem is the amount of RAM available on
smartphones. According to [MobileReview], the
amount of volatile memory available on the Nokia N-
Gage, the Nokia 7610, and the new Nokia 6630 is a
mere 379 kB, 1403 kB, and 8758 kB, respectively.

Tab. 1 compares typical hardware features of
Symbian smartphones with those of a Compaq iPAQ
PocketPC – a relatively old iPAQ model on which
the .NET Compact Framework, however,
successfully runs in a Windows CE based OS (newer
Pocket PC’s which also run the .NET Compact

Operating System
(Symbian)

Hardware
(Processor, RAM/ROM, Bluetooth, etc.)

.NET Compact Framework Application

.NET Compact Framework CLR

Class Libraries

Execution Engine

Platform Adaptation Layer

89

Framework have significantly greater resources). As
we can see, the most relevant physical difference
between the iPAQ and the smartphones is the amount
of memory integrated into the devices. Following an
exploratory approach, we tried to assess the memory
demands of a .NET Compact Framework for
smartphones by porting parts of the framework to the
Symbian platform (cf. Sect. 5). Considering the other
hardware characteristics both platforms are somewhat
similar, so that none of the hardware constraints
found on smartphones should make it impossible to
port the .NET Compact Framework to this platform.

Table 1: Typical hardware characteristics of
Symbian smartphones compared to that of an

iPAQ H3650

 iPAQ H3650 Smartphones

OS Windows Symbian

Processor 206 MHz
Intel StrongARM

up to 220 MHz
ARM architecture

Memory 32 MB RAM
16 MB Flash

typ. <<10 MB RAM
typ. < 10 MB Flash

Display 240x320
touch screen

176x208 or 208x320
typ. no touch screen

Connect IrDA, Bluetooth Bluetooth, IrDA

Operating System
The second layer in our overall architecture (cf. Fig.
1) is made up of the operating system, in our case the
Symbian OS. In many respects does the Symbian OS
considerably differ from Windows CE, which has
been the standard platform for hosting the .NET
Compact Framework CLR implementation. These
differences affect such elementary features as
multitasking, error handling, file access, and
networking. They have therefore a significant impact
on our goal to port the .NET Compact Framework.

Here are some of the Symbian characteristics that so
far caused most of the problems in our project (for a
more detailed description of these issues, please refer
to Sect. 4):

• A C++ dialect that redefines basic language
structures

• No writable global and writable static variables
allowed in DLLs

• Extensively used client/server model that, for
example, implies constraints for accessing file
and networking functions

• Event-driven programming model with a focus
on non-preemptive multitasking

• Symbian’s error handling and cleanup model

• Concepts from the Unix/Windows world such as
environment variables as well as several file and
networking functions are missing

CLR Architecture Overview
The .NET Compact Framework CLR is made up of
the following main components: (1) class libraries,
(2) execution engine, and (3) platform adaptation
layer.

The goal of the .NET Compact Framework class
libraries is to provide a basic set of classes,
interfaces, and value types that constitute the
foundation for developing applications in .NET. For
example, support for integers, boolean values or
strings, functionality for performing I/O, classes for
handling exceptions, and methods for collecting
information about loaded classes are all included in
the class libraries of the .NET Compact Framework.

The execution engine is the core component of the
CLR – it provides the fundamental services necessary
for carrying out managed code. While the execution
engine consists of a large number of individual
components, some of its most important parts are: (1)
a just-in-time (JIT) compiler (or alternatively an
interpreter), (2) a garbage collector, and (3) a class
and module loader. The decision whether to use a JIT
compiler or to immediately carry out generated
instructions in an interpreter depends on the resource
constraints of a given platform. Our preliminary port
is based on a JIT compiler, not an interpreter.

Because the design of the .NET Compact Framework
anticipated operating system portability, access to
core operating services occurs through a PAL layer.
The main responsibility of the platform adaptation
layer (PAL) is to map calls from the execution engine
to functions provided by the underlying host
operating system. In other words, the PAL serves as
the main mediator between the operating system
(Symbian OS in our case) and the CLR. As a result of
the architectural design of the .NET Framework, the
PAL is the core component that needs to be
reimplemented when porting the .NET Compact
Framework to Symbian OS. To illustrate the
responsibility of the PAL, let us consider the example
of a simple Web request. Using .NET class libraries,
the code for retrieving a Web page in C# could look
like this:

 WebRequest req;
 WebResponse resp;

 4: req = WebRequest.Create(
 “http://www.microsoft.com”);
 5: resp = req.GetResponse();

Classes such as WebRequest and WebResponse
belong to System.Net and are therefore part of the

90

class libraries provided by the .NET Compact
Framework. The method calls in lines 4 and 5 of the
above code result internally in a number of function
calls to the underlying operating system. First, the
URL “http://www.microsoft.com” must be internally
resolved into a corresponding IP address. Afterwards,
a timer is created with a callback function that is
executed when the Web page is not retrieved in a
certain time frame. Finally, a TCP socket must be
created and configured that is used to send a request
to and retrieve data from the remote Web server. The
implementation of the class libraries in the .NET
framework thereby assumes the existence of certain
hooks for handling timers and dealing with sockets on
the operating system layer. The PAL implements
these function hooks based on the capabilities of the
underlying operating system. In case of Windows CE,
these mappings to function calls of the operating
system are often straightforward. However, with
Symbian it can be much more complicated to find
appropriate mechanisms to implement the desired
semantics.

4. PORTING THE .NET COMPACT
FRAMEWORK
In this section, we describe our port of selected
components of the .NET Compact Framework to
Symbian-enabled mobile devices. Again, we would
like to point out that our work focuses on evaluating
whether it is feasible to port the .NET Compact
Framework to Symbian phones. As a result, simple
solutions were often preferred over more complex
approaches in order to get a simple version of the
Framework working as soon as possible.

In this section, we attempt to analyze the
characteristics of the Symbian operating system that
caused most of the problems in our project, and
propose solutions for dealing with these issues.

Current Status
The preliminary port presented in this paper is based
on the Microsoft .NET Compact Framework
implementation version 1 for Windows CE.
Currently, it is possible to execute basic console-
based .NET applications on two Series 60 phones
that are based on the Symbian OS: Phone A (OS v6.1
, 3 MB available memory, and a 104 MHz processor)
and Phone B (OS v8.0a, 10MB of available memory,
and a 220 MHz processor). Furthermore, we support
file access and simple networking. To achieve that,
work has not only been done on several Platform
Adaptation Layer (PAL) modules such as threading,
event handling, console output, file access, and
networking, but also on the surrounding components
that are used to load .NET DLLs and to start .NET
applications.

C++ Dialect
The flavor of C++ used to implement native Symbian
applications caused several problems in our project.
In particular, Symbian C++ introduces some peculiar
language features and programming models that were
partly introduced because of the limited device
capabilities of Symbian smartphones and partly due
to historical reasons [Nok04]. Important issues are:
(1) different standard data types, (2) a missing libc,
(3) a special exception handling mechanism, and (4)
a different memory management model.

First, simple types such as int or unsigned
long are not recommended by the Symbian
Software Development Kit (SDK), so types such as
TInt and TUInt32 had to be used instead. The
STL (Standard Template Library) is also not
supported due to size limitations.

Second, as a libc is not supported by Symbian, a
basic implementation had to be attached to our
project containing memory management (like
memcmp) or C-type string manipulation functions
(such as strlen).

Third, the GNU C++ implementation of exception
handling was not mature enough at the design time of
EPOC (the old name of Symbian), thus the designers
employed a more lightweight approach to error
handling – the “trap harness” mechanism. A function
called User::Leave() corresponds to the throw
directive, while the TRAP and TRAPD macros are
called instead of catch. Exception objects were also
replaced by simple error codes.

Furthermore, as mobile phones are switched on for
long periods of time, the ability to reclaim unused
heap cells was crucial during the design of Symbian.
Therefore, a mechanism called “two-phase-
construction” is used during object creation, and a
“cleanup stack” structure makes sure that every
object created on the heap is destroyed after it has
been used.

Writable Global and Writable Static
Variables in DLLs
The Symbian operating system was built with
memory-constraint devices in mind. Therefore, it tries
to avoid all unnecessary allocations or wastage of
main memory. To prevent allocation of memory for
writable static data in DLLs, which would have to be
allocated for each application, and to enable
eXecution In Place (XIP), DLLs that are stored in
ROM are not copied to RAM. As a consequence, the
programming environment does not support writable
static or global data because the segment containing
these values in the DLL is not writable.

If this requirement is not a major issue when writing
new applications, it becomes a major problem when

91

porting applications that have been designed to run
on operating systems supporting writable static data.
This is the case for the original Microsoft .NET
Compact Framework, which usually runs on top of
Windows class operating systems. Two strategies can
be envisaged to solve this problem. First, rewriting
the libraries was ruled out as a viable solution since
the number of writable static data was too large to
enable a manual rewrite of the libraries. The second
strategy, which is the one we followed as a way to get
a test version of the .NET Framework working as
soon as possible, consists in loading in RAM all
DLLs used by the .NET Compact Framework
application. To reach this goal, we designed and
wrote a specific loader. Starting the Framework is
then realized by calling the loader. The loader is in
charge of downloading in RAM the image of the
.NET Compact Framework binary, as well as all
libraries that it needs (including the writable data
section). The loader also performs the necessary
relocation in order to prepare the execution. Once
relocation is done, the loader identifies the entry
point defined in the .NET Compact Framework
binary and jumps to its location. Although this
solution works, it is far from optimal since it can
result in a possibly high memory footprint. While this
is not a problem in our feasibility assessment, this
issue would have to be addressed in a real, complete
port of the .NET Compact Framework to Symbian.

Starting .NET Applications
When a .NET application – which is usually
generated using a development environment and a
compiler on a Windows-based PC system – is to be
executed on a Symbian phone, it must be assigned to
our .NET Compact Framework implementation for
execution. As .NET compilers generate files in the
standard .NET portable executable file format, it is
possible to distinguish any .NET application from
native Symbian applications. Luckily, the Symbian
OS provides the concept of so called Recognizers,
which are used to assign certain file types to selected
applications. For example, HTML files can be
associated with a Web browser, PDF files with an
Acrobat reader, etc. As this association can be based
on more that just the file extension and allows us to
analyze the file to be executed, we use a special
Recognizer for starting .NET applications.

Dealing with Symbian’s Client/Server
Framework
The Symbian OS introduces a range of servers to deal
with system resources on behalf of different clients.
Examples for such servers are the file server, the
socket server, and the window server; servers are
usually located in a different process than the clients
that want to access their services. The problem with

Symbian’s client/server framework from the
perspective of the .NET Compact Framework is that
only the client thread that creates resources for
interacting with a server can use and destroy them.
This has some implications for a port of the .NET
Framework, and especially the Platform Adaptation
Layer (PAL). Imagine that there is a .NET
application consisting of two threads that both want
to access a file. In this scenario, the PAL would be
responsible for mapping the file access to
corresponding operating system functions. For
example, there would be a function like
PALFile_Open() that sends a request to the
Symbian file server to open a file. However, since
both .NET threads – which are both mapped to
Symbian threads in our implementation – might want
to open a file, this is not possible because only the
client thread that created the connection to the file
server can do that. To solve this problem, we
introduced a mediator thread that handles all
communication with the file server. Symbian OS
threads that represent threads in .NET then interact
with this additional thread in order to access files. For
the PAL implementation, this means that
PALFile_Open() does not interact with the file
server directly, but instead issues a request to the
intermediary thread communicating with the file
server. A similar mechanism is deployed to handle
networking and console access.

Dealing with Symbian’s Focus on
Cooperative Multitasking
In the desktop domain, pre-emptive multitasking
replaced cooperative multitasking years ago when
resources became cheaper and PC-like systems much
more computationally powerful. Furthermore, using
pre-emptive multitasking for different computations
that need to be carried out concurrently is much
easier from a programmer’s point of view than having
to deal with the burden to split a long-running task
into subtasks in order to keep up responsiveness.
However, although the Symbian operating system
supports pre-emptive multitasking, switching between
different pre-emptive threads is considered very
expensive and programmers are strongly encouraged
to use cooperative multitasking instead [Nok04,
Har03]. To support programmers in handling
cooperative multitasking, Symbian introduced the
concept of Active Objects as a programming
paradigm. Together with a so-called Active
Scheduler, Active Objects are supposed to facilitate
the programming of non-preemptive concurrent tasks.

However, cooperative multitasking using Active
Objects has still the disadvantage that if there is a
long-running calculation, it only will give control to
another task if it is finished. As this might severely

92

reduce the responsiveness of a user interface, for
example, books on Symbian programming [Har03,
Nok04] strongly suggests manually splitting long-
running tasks into smaller subtasks that can faster
pass on control to other subtasks, thereby improving
the overall responsiveness of the system. This,
however, does not map well with the notion of
threads in .NET because threads in .NET are
generally viewed as being preemptively scheduled.
To deal with this issue in a port of the .NET Compact
Framework there are several theoretical solutions:

(1) If there is a thread in .NET, it is possible to
generate a pre-emptively scheduled thread in the
Symbian operating system and accept the effect on
system performance this does imply. (2) When the
execution engine requests a new thread to be created
for a thread in a .NET application, a new Active
Object could be created that handles the associated
task. However, this would mean that we would need a
mechanism to automatically find a location in the
code where this active object can pass on control to a
different task. Finding a place where this can be done
requires at least the help from the JIT compiler or
special statements in the .NET code that would have
to be used by a programmer. (3) Another important
issue with threads is that Symbian’s client/server
model (see previous subsection) forces us to
introduce preemptively scheduled threads on the
operating system layer to sequentialize access to
servers (the file server, for example). In order to
reduce the number of low-level Symbian threads, it is
possible to use a single thread for all different
servers. The downside of this, however, is that a
.NET thread that wants to output a string on the
console might need to wait for a different .NET
thread that wants to do file access. Whether this can
be accepted depends mainly on the concrete .NET
application. In the current state of our port, .NET
threads are directly mapped to pre-emptively
scheduled threads on the Symbian operating system
layer.

5. EVALUATION
The purpose of this section is to estimate the
performance of a .NET Compact Framework
implementation for Symbian smartphones in
comparison to other runtime environments where
intermediate code is executed by a just-in-time
compiler or an interpreter. To achieve this goal, we
compare the time necessary to execute .NET code on
our platform with the time needed to execute Java
code on a Symbian smartphone. As it would be too
complex to compare and difficult to interpret the
runtime characteristics of complete applications
written for .NET and Java – due to the different
algorithms and optimizations Java and .NET runtimes
might use – our approach is instead based on micro-

benchmarking. Micro-benchmarks are simple
programs (usually loops) targeting a single
functionality such as memory allocation or thread
synchronization. Because of the simplicity of the
underlying programs, porting the benchmarks to both
Java MIDP and .NET is relatively simple. This also
assures that a comparison based on these benchmarks
stays fair.

In order to carry out the evaluation, we chose a suite
of micro-benchmarks originally written by IBM to
measure the performance of simple Java operations in
a standard Java Virtual Machine (JVM) environment
[IBMBenchmarks]. These benchmarks originally
targeted the desktop versions of Java and thus are
using APIs that are not available on a Symbian
smartphone. Therefore, we selected relevant tests
from this benchmarking suite and adapted them such
that they could be executed by the JVMs installed on
our Symbian smartphones. As a result, benchmarks
for the reflection interface of Java were omitted as
well as tests targeting file access functions (file
access is not supported on the smartphone JVMs used
in our tests). Additionally, we also had to drop any
benchmark using Java functionality not available to
.NET applications.

The other major change in the benchmarks dealt with
timing issues. Instead of dynamically calculating the
number of iterations of a test, we hard-coded the
number of iterations for each benchmark based on the
duration of a test. This was done because it simplifies
porting of the test framework to C#, and because it
ensures that all tests are carried out the same amount
of times on different devices. In general, faster tests
run more often than more time-consuming tests. For
the above reasons, test results measured with the
selected benchmark suite on another hardware
platform cannot be directly compared to the results
presented in this paper.

Porting the Benchmarks to C#
In a second step, we ported the selected set of micro-
benchmarks to the .NET Compact Framework using
C#. Because Java is quite similar to C#, porting the
micro-benchmarks required mainly small syntactic
modifications. For example, the C# language keeps a
different set of reserved identifiers, thus, variables
named internal or object had to be renamed.
Besides syntactic modifications, a few discrepancies
between Java and C# forced us to modify the code.

Unlike Java, for example, C# does not support the
synchronized tag for methods or classes. For
tests that required synchronized method calls, we
removed the synchronized tag and added a
lock(this) as the first statement of the method.
The lock statement in C# is used to acquire the
monitor associated to an instance of a class, thereby

93

preventing anybody else from calling a method of this
object. As a result, this statement emulates the
behavior of the synchronized tag of Java.

Another, slightly more complex modification in the
benchmarks was necessary because there is no simple
alternative to the Thread.Join() statement in the
.NET Compact Framework. This is a difference w.r.t.
the original .NET Framework, but in the Compact
Framework, it is difficult to ask a thread to wait for
the completion of another thread. To handle this
problem, we rewrote the original tests such that
explicitly generated events were used for signaling.

Micro-Benchmarks Description
The first micro-benchmark in our evaluation (cf. Tab.
2) measures memory read latency by reading the
elements of an array. The second micro-benchmark
measures the efficiency of calling a single method.
The test distinguishes between calling a plain and a
synchronized method. The third micro-benchmark
deals with thread creation. This test sequentially
creates threads and waits for them to start. Since the
Symbian documentation in many places warns against
the overhead involved when creating threads we were
especially curious how well our implementation
behaves compared to the Java thread implementation.
The fourth micro-benchmark measures the time
necessary to create new objects and the overhead
caused by inheritance. In particular, it tests the
creation of small objects derived over two
generations compared to the creation of large objects
that also inherit from a baseclass over two
generations. This test also illustrates the performance
of the memory subsystem and to some extend of the
garbage collector. The fifth micro-benchmark
measures the performance of comparing strings. The
last three tests concentrate on measuring the
performance of general array handling operations
(e.g., initialization and copying). Both Java and C#
provide support for a system-level array copy
function a programmer should use for performance
reasons. The CopyArray test therefore has two
versions, one using the system-level function, the
other using a naive copy of the array using a loop.
While this might result in a performance penalty for a
runtime that interprets code, we do not expect a big
performance hit when code is generated by a JIT
compiler. Similarly, the InitArray and
SumArray micro-benchmarks provide two versions,
one using a simple loop, the other using unrolling to
limit the cost of the loop overhead.

Results Analysis
Tab. 2 shows the results obtained by executing the
described tests on different platforms and execution
environments. For the analysis of the results, the

reader should keep in mind that the .NET tests for
Symbian smartphones were carried out on a
preliminary port of the .NET Compact Framework.

The first column of Tab. 2 shows the name of the
micro-benchmark. The second lists the parameters
used to run the micro-benchmark (starting with the
number of iterations). Columns three and four show
the results, in milliseconds, of the Java micro-
benchmarks when executing them on the JVMs that
were already installed on the smartphones used for
our experiments (cf. Sect. 4). The next three columns
show the results when carrying out the benchmarks in
a .NET Compact Framework runtime. As can be seen
in the table, we have used our port on Phone A and
Phone B (cf Sect. 4) for the tests and compared these
results with a standard .NET Compact Framework
running on a regular PDA (a T-Mobile MDA II
running PocketPC 2003 has been used for this
experiment). Although not directly comparable, the
results obtained with the PDA are useful to find out
whether performance differences between Java and
.NET are a problem of our PAL implementation or
shared between .NET runtimes on different
platforms.

As a general result, the speed of our initial port of the
.NET Compact Framework is comparable with the
corresponding Java implementation on Phone B and
sometimes significantly faster on Phone A. A likely
reason for this is that the JVM on Phone A seems to
use an interpreter, while Phone B comes with a JIT.
In two occasions, however, our port of the .NET
Compact Framework is much slower than the Java
runtime on the same device. These correspond to
tests calling synchronizes methods (we are 4.8 times
slower on Phone A) and spawning threads (we are 52
times slower on Phone A).

In case of synchronized methods, the Java
implementation of a synchronized method call takes
twice as long as calling a method that is not
synchronized. It is remarkable, however, that this is
much faster than the time needed in our port, where
calling locked method is 157 times slower than an
unsynchronized method call on Phone A. We
expected calls to a synchronized method to be
slightly slower compared to the unsynchronized
version. Furthermore, since there is no real
concurrency involved (as only one thread in this test
calls the functions), we did not expect a major
difference. Our first assumption was that our
implementation of the corresponding PAL functions
were responsible for the poor performance.

94

Table 2: Time for running benchmarks (in ms)
Java .NET Compact Framework

Test Parameter
Phone A Phone B Phone A Phone B PDA

1. MemReadLatency #1000000, 4, 512 1578 141 219 110 122

 #1000000, 8, 256 1547 125 219 109 121

2. Method Calling #1000000, internal, sync 4094 579 19703 32390 12843

 #1000000, internal, nosync 2719 203 125 62 330

 #1000000, external, nosync 2703 219 172 79 394

3. Spawn Threads #1000, <> 422 1437 21937 15062 2579

4. AllObjectConstruct #10000, small, assign, 3 219 31 63 94 61

 #10000, large, assign, 3 1125 250 ENOMEM 219 103

5. StringCompare #10000, 128 2500 328 531 250 217

 #10000, 512 9187 1157 2047 984 854

6. CopyArray #10000, 1024, simple 3890 328 250 375 389

 #10000, 1024, system 203 250 531 687 69

7. InitArray #10000, 1024, unrolled 1547 250 31 234 166

 #10000, 1024, simple 3438 235 16 250 271

8. SumArray #1000, 512,simple 187 16 531 0 15

 #1000, 512,unrolled 94 16 2047 0 12

Comparing this to the tests running on the PDA,
however, revealed that the real reason might
partially reside in the implementation of the
Compact Framework itself. This is because even on
the PDA locked code runs 39 times slower than a
function not using the lock statement (cf. previous
subsection). Spawning a thread is also considerably
slower in our Symbian .NET Compact Framework
implementation than in the Java implementation.

Right now, we are not sure if this is due to a bad
implementation in our PAL layer or to the use of
different synchronization primitives in our
adaptations of the micro-benchmarks. The result for
the same test on the PDA seems to indicate that it is
a problem of our implementation on Symbian, and
we are currently in the process of identifying the
underlying problem.

As can be seen in Tab. 2, one of the tests
(AllObjectConstruct with large objects)
failed with an out-of-memory error on Phone A. A
possible explanation for this problem is that the
garbage collector was not able to reclaim memory
as quickly as the test requested new objects to be
created. To confirm this theory, we modified the
test to manually call the garbage collector during
the test. This solved the problem, but did not allow
us to report useful results since the reported time to
execute the benchmark included the time to run the
garbage collector. Solving this issue is a work item
for us that we will investigate in the scope of our
project.

6. FUTURE WORK
Security
So far, we have not explicitly dealt with security in
our project, but there are a number of security
features that could be addressed in the future. These
features could be divided into managed code
security and the .NET Framework security.

Managed code security generally follows the
guidelines of the .NET Compact Framework, which
currently allows full access to resources through the
P/Invoke mechanism (which allows for calling
functions of the underlying OS). Later releases of
the .NET Compact Framework will support security
policies, custom permission sets, imperative and
declarative security checks [MSDNSecurity].

Our .NET Compact Framework runtime itself is a
Symbian application, thus special attention needs to
be placed on testing the implementation against
possible exploits – especially the PAL layer, which
has access to core OS features.

Porting the GUI
Symbian allows access to the GUI on several layers.
The OS itself provides a common graphics server
that provides the main window, basic drawing
functions, and event handling mechanisms. Direct
screen access is also possible. On top of that there
are several phone-specific graphic libraries, the
most common being the AVKON library built for
Series 60 phones.

95

Three distinct approaches were identified that could
be followed in implementing the GUI:

1. Using basic drawing primitives to adapt an
existing portable graphics library to Symbian
smartphones. This approach would be the
easiest to implement, but it would probably
result in a high memory footprint and a slow
performance of the UI subsystem. The look-
and-feel would also be different from native
Symbian applications.

2. Mapping .NET user interface calls to AVKON.
This would be the most convenient solution,
but there are significant differences between
the two APIs. Major problems include the
creation of resource files that the Symbian GUI
framework relies on and several threading
issues that prevent multiple threads to access
the same control or have a parent-child window
relationship.

3. Providing access for the AVKON GUI: This
would place the burden of dealing with a
device-specific library on the .NET developer,
but proxy objects and helper functions could
assist her during the process.

7. CONCLUSION
This paper evaluated the feasibility of porting the
.NET Compact Framework to Symbian
smartphones. Our analysis shows that the specifics
of the Symbian OS and the resource constraints of
today’s smartphones make porting difficult but not
impossible. Carrying out a serious port of the .NET
framework, however, would require a considerable
amount of manpower in order to appropriately react
to the constraints of the Symbian platform. Our
comparison with Java showed that .NET programs
executed on smartphones would have similar
performance characteristics. This is a very
promising result and speaks in favour of the overall
design of the .NET Compact Framework for
resource-constraint devices.

8. ACKNOWLEDGMENTS
We would like to thank Gerd Rausch for helping us
with the implementation. We thank Wolfgang
Manousek, Mark Gilbert, and Ivo Salmre for all the
competent comments regarding the .NET Compact
Framework and Symbian, and their continuous
support throughout this project.

REFERENCES
[DotGNU] The DotGNU project,

http://www.dotgnu.org.

[Gar04] Gartner. Market Share: Smartphones,
Worldwide, 3Q04,
http://www3.gartner.com/DisplayDocument?doc
_cd=125555, December 2004.

[Har03] Harrison, R. Symbian OS C++ for Mobile
Phones, Wiley & Sons, August 2003.

[Helix] Wright, G. The Symbian porting project on
HelixCommunity.org,
https://symbian.helixcommunity.org/.

[IBMBenchmarks] The jMocha Microbenchmark
Framework and Suite for Java, http://www-
124.ibm.com/developerworks/oss/jmocha/index.
html.

[J2MEWeb] Sun Microsystems: Java 2 Platform,
Micro Edition (J2ME) Web Services, Technical
White Paper, July 2004.

[MobileReview] Mobile Review Web site,
http://www.mobile-review.com.

[Mono] The Mono project, http://www.mono-
project.com/.

[MSDNSecurity] Microsoft Developers Network:
Security Goals for the .NET Compact
Framework,http://msdn.microsoft.com/library/e
n-us/dv_evtuv/html/etconSecurityGoalsForNET
CompactFramework.asp.

[NETCF] The Microsoft .NET Compact
Framework, http://msdn.microsoft.com/
smartclient/understanding/netcf/.

[Nok04] Edwards, L.; Barker, R. Developing Series
60 Applications, A Guide for Symbian OS C++
Developers, Addison-Wesley, 2004.

[Opera] Porting Opera to EPOC,
http://www.symbian.com/developer/techlib/pape
rs/khopera/opera%5Fkeithhollis.htm.

[Rotor] Stutz, D. The Microsoft Shared Source CLI
Implementation, Microsoft Corporation, Online
MSDN article, http://msdn.microsoft.com/
library/en-us/dndotnet/html/mssharsourcecli.asp,
March 2002.

[RSL04] Raghavan, G.; Salomaki A.; Lencevicius,
R. Model Based Estimation and Verification of
Mobile Device Performance, Fourth ACM
International Conference on Embedded
Software (EMSOFT ’04), Pisa, Italy, pp. 34-43,
September 2004.

[RTCE04] Rashid, O.; Thompson, R.; Coulton, P.;
Edwards, R. A Comparative Study of Mobile
Application Development in Symbian and J2ME
using Example of a Live Football Results
Service Operating over GPRS. IEEE
International Symposium on Consumer
Electronics, Reading, UK, pp. 203-207,
September 2004.

96

Executing Aspect-Oriented Component-Based
Software Architectures on .NET Technology

Jennifer Pérez, Nour Ali, Cristóbal Costa, Jose A. Carsí, Isidro Ramos

Department of Information Systems and Computation
Polytechnic University of Valencia

Camino de Vera s/n
 46022, Valencia, Spain

{jeperez | nourali | ccosta | pcarsi | iramos} @dsic.upv.es
ABSTRACT

Component-Based Software Development (CBDS) and Aspect-Oriented Software Development (AOSD) have
emerged in the last few years as new paradigms of software development. Both approaches provide techniques
to improve the structure and reusability of the code. In addition, Aspect-Oriented Programming (AOP) permits
the reduction of the maintainability and development costs of the final code by means of the separation of
concerns in aspects. However, the .NET framework does not provide support for the Aspect-Oriented approach.
In this paper, we present a solution for this lack found in .NET technology by means of a .NET middleware
called PRISMANET. PRISMANET is based on the PRISMA approach, which integrates the advantages of
AOSD and CBDS and supports dynamic reconfiguration of software architectures at run-time. This middleware
has been completely developed using the .NET framework and has been tested with real case studies, such as the
Teach Mover Robot. As a result, PRISMANET extends the .NET technology by the execution of aspects on the
.NET platform, the reconfiguration of software architectures (local and distributed) and the addition and removal
of aspects from components at run-time.

Keywords
Aspect-Oriented Programming (AOP), Component-Based Software Development (CBDS), dynamic
reconfiguration of software architectures, addition and removal of aspects at run-time, concurrency, distribution,
mobility.

1. INTRODUCTION
Complex structures, non-functional requirements,
reusability and run-time evolution are leading
properties that current software systems need to
deal with. Two software development approaches
have emerged to respond to these needs:
Component-Based Software Development (CBSD)
[Szy98] and Aspect-Oriented Software
Development (AOSD) [AOS05]
On the one hand, CBSD decomposes the system
into reusable entities called components that
provide services to the rest of the system.

On the other hand, AOSD allows for the separation
of concerns by modularizing crosscutting concerns
into a separate entity, called aspect. The
encapsulation of the aspect allows for the
reusability of the same aspect in different objects
and the evolution of an aspect without affecting the
rest of objects and aspects. The main effort in this
approach has been made at the implementation
level. As a result, this approach has emerged as a
new paradigm of software development. However,
the .NET framework does not provide support for
this new approach, making the use of .NET
technology by the “Aspect-Oriented Community”
unfeasible.
In this paper, we present a solution that provides
support to the AOSD by means of the
PRISMANET middleware. PRISMANET
implements PRISMA. PRISMA is an approach to
develop complex information systems that provides
a model and an Architecture Description Language
(ADL).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

97

PRISMA COMPILERPRISMA COMPILER
Implementation

patterns
Implementation

patterns

PRISMA
XML

PRISMA
XML

.NET FRAMEWORK

?PRISMANET

.NET Source Code.NET Source Code

Figure 1. PRISMA approach

The PRISMA model defines software architectures
by integrating AOSD and CBSD. In addition,
PRISMA supports evolution by means of a meta-
level. Its meta-level allows the evolution of types
and the dynamic reconfiguration of architectures.
The PRISMANET includes the PRISMA model, its
meta-level and the distribution support for mobility.
PRISMANET not only extends the .NET technology
by the incorporation of aspects, but it also provides
the reconfiguration of software architectures (local
and distributed) and the addition and removal of
aspects from components at run-time. These complex
features have been successfully implemented thanks
to the mechanisms that the .NET technology
provides to deal with them. The most important .NET
technology mechanisms [Rob03] that we have used
are: delegates, reflection, serialization, .NET
Remoting [Mic05] and dynamic code generation.

As a result of the PRISMANET implementation,
PRISMA software architectures can be developed
and can be executed on the .NET platform. In
addition, PRISMANET allows .NET programmers to
develop applications with aspect-oriented, mobility
and dynamic evolution properties.

Currently, the PRISMA approach allows the
development of software systems with all its
advantages by extending PRISMANET classes. The
middleware has been developed and tested with real
case studies, such as the TeachMover robot [Tea05]
and the EFTCOR teleoperation system [EFT02] to
clean the hulls of the ships. As a result of this work,
we are able to move the robot with the Aspect-
Oriented .NET technology and to develop the
PRISMA CASE model compiler based on the
middleware. For this reason, we are currently
developing the compiler in order to automatically

generate C# code from graphical diagrams (see
Figure 1).

The goal of this paper is to show how the aspect-
oriented, mobility and run-time evolution properties
of PRISMANET have been implemented using the
.NET technology mechanisms that have been
previously mentioned.
The structure of the paper is as follows: Section 2
briefly introduces the basic concepts of the
PRISMA model to understand the middleware
implementation. Section 3 explains the
PRISMANET middleware implementation in detail:
aspects and components, concurrency, mobility and
run-time evolution. Section 4 presents a comparison
with other approaches that introduce aspect-oriented
programming in .NET technology and points to the
disadvantages that PRISMA overcomes. Finally,
conclusions and further work are presented in
section 5.

2. PRISMA
The PRISMA model allows for the definition of
architectures of complex software systems [Per03].
Its main contributions are the integration of the
AOSD and the CBSD and its reflexive properties. In
this way, it specifies different characteristics
(distribution, safety, coordination, etc.) of an
architectural element (component, connector) using
aspects, and it is able to evolve its architectures by
means of a meta-level.
A component is an architectural element that
captures the functionality of the system and does not
act as a coordinator among other elements. However,
a connector is an architectural element that acts as a
coordinator among components. In the PRISMA
model, the connector does not have the references of
the components that it connects to and vice versa. In

98

this way, both components and connectors are
reusable. The channels between two connected
architectural elements have their references. The
channels that connect components and connectors are
called attachments.
Architectural elements can be seen from two
different views, internal (white box view) and
external (black box view). The white box view shows
an architectural element as a prism being an aspect of
this architectural element each side of the prism (see
Figure 2); whereas, the black box view encapsulates
its functionality and publishes a set of services that
offers to other architectural elements (see Figure 3).

Figure 2. White box view of a component

A PRISMA aspect represents a specific concern
(safety, coordination, distribution, etc) that crosscuts
the software architecture. This means that those
concerns that do not crosscut the architecture are not
going to be an aspect. In order to avoid these
crosscutting-concerns, a PRISMA architectural
element is formed by a set of aspects that describe it
from the different concerns of the architecture. The
kinds of aspect (safety, coordination, distribution,
etc) that form an architectural element depend on the
concerns of the information system that is being
specifying.The main elements that form an aspect are
the following:
• Attributes: store information about the

characteristics of the aspect.
• Valuations: specify the changes in attribute values

by the execution of a service.
• Services: offer functionality of a specific concern.
• Protocols: describe the order and the state in which

a service could be executed.
A component is formed by a set of aspects
(functional, distribution, etc.), their synchronization
relationships (aspects weaving) and one or more
ports. These ports represent the interaction points
among components. The type of ports is an interface
that publishes a set of services.

Figure 3. Black box view of a component

The weaving is the glue of the aspects forming a
prism. The weaving determines how an aspect is

connected (synchronized) with the rest of the aspects.
It indicates that the execution of an aspect service
can generate the invocation of services in other
aspects. However, to preserve the independence of
the aspect specification from the aspect weaving, the
weaving is specified outside the aspect and inside the
component.

The weaving methods are operations that describe
the causality of the weaving services. The weaving
methods are commonly used in the AOP. They are as
follows:
• after: aspect1.service is executed after

aspect2.service
• before: aspect1.service is executed before

aspect2.service
• instead: aspect1.service is executed in place of

aspect2.service

3. .NET MIDDLEWARE
PRISMA ADL (Architecture Description Language)
is a specification language independent of the
development platform. For this reason, an abstract
middleware that sits above the .NET platform has
been developed to implement .NET PRISMA
applications. This middleware is called
PRISMANET, and its implementation has been
carried out in C# language using the standard
techniques that the .NET framework provides, that is,
without extending the development platform. As a
result, PRISMANET can be executed in the .NET
platform without having to do anything else other
than starting the execution of the middleware.
PRISMANET offers the extra functionalities and
characteristics which .NET does not directly provide.
It allows for the execution of aspects, the
reconfiguration of software architectures (local and
distributed), the load of components, the creation of
execution threads, the management of the local
components, the addition and removal of aspects
from components at run-time, the mobility and
replication, etc.

PRISMANET architecture

The PRISMANET architecture is constituted by two
modules: server and framework (see Figure 4):
• PRISMA Server: This module provides services

to manage, move, maintain and evolve
components.

• PRISMA Framework: This module is the user
interface that offers the user the available services
of the Server module. In addition, the state
messages of the middleware are displayed on this
user interface.

99

Figure 4. PRISMA Middleware

As PRISMA specifies software architectures of
distributed systems, distribution needs has also been
taken into account in the development of the
middleware. PRISMANET has to run on each node
where a PRISMA application needs to be executed
(see Figure 5). Each middleware manages the
architectural elements instances that are being
executed in its specific node, providing the necessary
distribution, mobility, maintenance and evolution
services to the instances. In order to keep the
consistence of distributed software architectures and
to make the instances work as if they were local
instances, each middleware is able to interchange
information with the other middlewares of the
different nodes of a software architecture.

«TCP/IP»

«TCP/IP»

«TCP/IP»

«TCP/IP» «TCP/IP»

«TCP/IP»

«TCP/IP»

«TCP/IP»

«TCP/IP» «TCP/IP»

middleware
System

middleware
System

middleware
System

middleware
System

middleware
System

middleware
System

middleware
System

middleware
System

Figure 5. PRISMA Middleware running in

distributed nodes

There are three kinds of communications concerning
PRISMANET and the applications that run on it:
• Calls from the components to the middleware to

ask for mobility and replication services.
• Communication among different components as a

result of the execution of the application.
• Communication among different middlewares to

find out locations of components, to move
components, to evolve the architectures, etc.

PRISMA Model Implementation
Each concept defined in the PRISMA model has
been implemented in the Server module of the
PRISMANET. In this section, we focus on the
aspects and components. The implementation has
been carried out preserving the following features:

• The run-time evolution of applications must be
possible. As a result, the dynamic code generation
to add and remove aspects, components, connectors
and attachments must be allowed.

• The implementation has to be as close as possible
to the model in order to facilitate the future
automatic code generation.

• The execution of attachments, connectors and
components must be concurrent. In addition, the
concurrency among the different aspects that form
a component must be preserved.

3.2.1. Aspects
An aspect has been implemented as a C# class called
AspectBase of the PRISMANET. This class stores
the name of the aspect and its thread reference.

Figure 6. AspectBase class of PRISMANET

middleware1

1 The set of classes that appear in the figure have been

automatically generated from the source code of
PRISMANET using the Sparx tool
http://www.sparxsystems.com/

100

The AspectBase class has the references of the
component and the middleware that it belongs to in
order to request them services. In addition, as the
middleware must guarantee the execution of services
without blocking the requesters, when a service of an
aspect requires its execution while another service is
being processed, the aspect stores the service that can
not be immediately attended in a queue. As a result,
the aspect thread is continuously processing the
requests of the queue (see Figure 6). Finally, it is
important to emphasize that the AspectBase class
offers three services: startAspect to start the
execution of the aspect thread, stopAspect to stop the
execution of the aspect thread and abortAspect to
definitively stop the execution of the aspect thread.

The kinds of aspects that can be defined in the
PRISMA model are unlimited. However, each one
has the functionality described above. For this
reason, they are a subclass of the AspectBase class
and inherit this functionality (see Figure 7).

Figure 7. Classes of several kinds of aspects1

As a result, PRISMANET allows the implementation
of a specific aspect by creating a C# class that
inherits from one of the classes that represent one
kind of aspect. It is important to keep in mind that
aspects must be serializable in order to enable the
mobility of aspects in distributed architectures.

In a specific aspect, the PRISMA attributes are
implemented as private variables. The PRISMA
services are programmed as private methods that
implement their respective valuations. They also
check whether their execution is enabled in
accordance with the established order of the
protocol. An example of a specific safety aspect is
presented below:
using PRISMA;
using PRISMA.Aspects;
using PRISMA.Aspects.Types;
using PRISMA.Middleware;
using PRISMA.Attachments;

namespace Robot
[Serializable]
public class SMotion : SafetyAspect
{
 #region Definition of PRISMA Variables
 double minimun;
 double maximun;
 #endregion
 public SMotion(double initialMinimum,
 double initialMaximum) :
 base("Smotion")…
 public AsyncResult Check(double newAngle,
 out bool secure)…
}

Finally, it is important to emphasize that specific
aspects are packaged in an assembly in order to
facilitate their distribution over the network and their
integration in a library.

3.2.2. Components
A component has been implemented as a C# class
called ComponentBase of the PRISMANET. This
class stores the name of the component, its own
thread reference and its middleware reference and the
dynamic list of aspects. It stores two attributes to
control whether the component is going to stop or
move, as well as the references to the ports to be able
to receive and request services. In addition, the
ComponentBase class offers the following services:
Start to initiate the component thread execution; Stop
to stop temporarily the component thread execution;
Abort to stop definitively the component thread
execution; IsWeaved to query if an aspect of the
component is weaved with another aspect;
AddAspect and RemoveAspect to add and remove
aspects from a component; and AddWeaving and
RemoveWeaving to add and remove weavings from a
component (see Figure 8).

Figure 8. ComponentBase class of PRISMANET

middleware1

101

3.2.3. Weavings
Weavings have been implemented as a dynamic
linked list with three levels of depth. This list is part
of the component that it belongs to. Thus, this
weaving implementation facilitates the management
and evolution of the weavings. The dynamic list is
implemented by the WeavingsCollection C# class.
Each element of this dynamic list is an instance of
the AspectTypeNode C# class that contains the aspect
type and another dynamic list called
weavingAspectList. Each element of the
WeavingAspectList is an instance of the
WeavingNode C# class. This class stores the service
name, which triggers the weaving execution as well
as, a delegate of this service for its dynamic
invocation. It also stores three more lists, each of
which belongs to a weaving operator (after, before,
instead). These lists contain instances of the
WeavingMethod C# class. This class stores the
delegate, which points to the method that must be
executed as a result of the weaving
(methodDelegate). It also stores the method that has
triggered the weaving execution (origMethod), and
the weaving type (see Figure 9).

Figure 9. Dynamic list of weavings1

As a result, PRISMANET allows the implementation
of a specific component by creating a C# class that
inherits from the ComponentBase class. It is
important to keep in mind that components must be
serializable in order to enable the mobility of
components in distributed architectures. An example
of a component called Actuator is presented below:

using System;
using System.Reflection;
using PRISMA;
using PRISMA.Aspects;

using PRISMA.Aspects.Types;
using PRISMA.Components;
using PRISMA.Middleware;

namespace Robot
{
[Serializable]
 public class Actuator : ComponentBase
 {
 public Actuator(string name,
 MiddlewareSystem middlewareSystem) : base
 (name,middlewareSystem)
 {
 /* ***************************
 * * DEFINITION OF ASPECTS * *
 *****************************/
 // Creation of Functional Aspect
 AddAspect(new FActuator());
 // Creation of Safety Aspect
 AddAspect(new SMotion(initalMinimum,
 initialMaximum));

 // Achieving the references of the aspects
 IAspect functionalAspect =
 GetAspect(typeof(FunctionalAspect));
 IAspect safetyAspect =
 GetAspect(typeof(SafetyAspect));

 /* *****************************
 * DEFINITION OF WEAVINGS * *
 *******************************/
 // Weaving MoveJoint
 AddWeaving(functionalAspect,"MoveJoint",
 WeavingType.AFTERIF("secure",true),
 safetyAspect,"Check",functions);

 /* ***************************
 * * DEFINITION OF PORTS * *
 *****************************/
 InPorts.Add("IMotionJointPort",
 "IMotionJoint",
 functionalAspect);

 OutPorts.Add("IMotionJointPort",
 "IMotionJoint");}}}

Execution Model
When the execution of a service is requested from a
component, the request comes from the port that
publishes the service (step 1, Figure 10). The port
sends the request to the queue of the component (step
2, Figure 10). Once the component thread extracts
the requested service from the queue, the component
checks if the requested service has weavings
associated to it (step 3, Figure 10). If the service does
not have any weavings, its delegate is
asynchronously executed so that the component can
process another request from the queue. The delegate
execution consists of adding the service to the queue
of the corresponding aspect. Next, the aspect thread
executes the service (step 5, Figure 10). However, if
the service has weavings associated to it, before
executing step 5, the service is sent to the weaving
manager (step 4, Figure 10). The manager processes
weavings creating its own thread and freeing the
component from this task.

102

Figure 10. The execution model of a component

With regard to starting or stopping a component,
when the middleware calls the start service of a
component, the component calls the startAspect
service of each one of its aspects. On the other hand,
when the middleware calls the stop or abort services
of a component, the threads of its aspects must also
be stopped (stopAspect) or aborted (abortAspect). In
the case of stopping a component in a secure way
(stop service), a set of operations must be performed
in order to achieve a secure state that will permit the
start of the component execution in the future. A
component is in a secure state when it does not have
requests in its aspect queues and there are no
executing services. These operations consist of not
allowing anymore services in their queues and
processing every service that was stored in the queue
before the stop execution.

Adding and removing aspects at run-time
Aspects can be added to and removed from a
component at run-time. The addAspect service
inserts a new aspect inside a component. This
method verifies that the kind of aspect that is going
to be added does not already exist in the component,
since only one aspect of each kind can exist in a
component. The method updates the references of the
aspect to the component and middleware and adds
the aspect to the aspect list of the component.
Finally, dynamic code generation is used to update
the component constructor in order to make the
changes consistent. The removeAspect service
deletes an aspect from a component. First, the
method stops the aspect that is going to be removed
in a secure way. Second, it removes the aspect from
the aspect list of the component and its associated
weavings. Finally, the dynamic code generation is
used to update the changes.

Distribution Model and Mobility
PRISMANET supports the distributed
communication and the mobility of the components.
It provides the distributed communication among

components without making components aware of
each other.

3.5.1. Distributed Communication among
elements through Attachments
To make components as reusable as possible, they do
not have references to other components they
communicate with. Therefore, the components are
unaware of the components they communicate with.
The distributed communication among components
is the responsibility of attachments. Thus, an
attachment has the references of the communicating
components.
To support attachments, the middleware contains
three classes: the Attachment class, the
AttachmentServerBase class and the
AttachmentClientBase (see Figure 12). For each
component port, there is at least one instance of an
Attachment class. When a component instance is
created, the PRISMANET middleware creates the
instances of the attachments associated to each port.
Each PRISMA port has been implemented into two
queues, a client (outPort) and a server queue (inPort)
(see Figure 10), there also exists a Server Attachment
and a Client Attachment for each Attachment. An
instance of the Attachment class automatically
instantiates an AttachmentClientBase and an
AttachmentServerBase class.
An AttachmentClientBase instance has a thread that
listens to a specific outport of a component instance.
When the AttachmentClientBase instance detects that
there is a petition in the queue, the petition is
redirected to the instance of an
AttachmentServerBase. Thus, the
AttachmentClientBase instance has a reference or a
proxy of the AttachmentServerBase. The
AttachmetServerBase is a MarshalByRefObject class
of the .NET Remoting framework. This has been
necessary to create a proxy of the instance to allow
the AttachmentClientBase instance to access to it
remotely.

Figure 11. Two distributed architectural elements
connected by attachments

Middleware1

InterfaceX

OutPort

InPort

COMPONENT1

Attachment

Attachment
ClientBase

InterfaceXServer
Attachment
ServerBase

InterfaceY

OutPort

InPort

COMPONENT2

Attachment

InterfaceXClient
Attachment
ClientBase

Attachment
Server Base

Middleware2Middleware1Middleware1

InterfaceX

OutPort

InPort

COMPONENT1

Attachment

Attachment
ClientBase

InterfaceX
Server

Attachment
ServerBase

InterfaceY

OutPort

InPort

COMPONENT2

Attachment

InterfaceXClient
Attachment
ClientBase

Attachment
Server Base

Middleware2

InterfaceY

OutPort

InPort

CONNECTOR 1

Attachment

InterfaceXClient
Attachment
ClientBase

Attachment
Server Base

InterfaceY

OutPort

InPort

Attachment

InterfaceXClient
Attachment
ClientBase

Attachment
Server Base Attachment
Server Base

Middleware2Middleware2

103

Figure 12. A logical view of the attachments in the middleware1

Figure 11, shows how two distributed components
are connected together. Component1 has an
AttachmentClientBase that listens to its Output queue
and redirects services to the AttachmentServerBase
of Component2. In addition, Component2 also has an
AttacmentClientBase that listens to its Output queue
and redirects the services to the
AttachmentServerBase. Each AttachmentClientBase
and AttachmentServerBase of a component are
associated by an Attachment.
The attachments are solely responsible for the
distributed communication of the components. The
PRISMANET middleware only participates in the
creation of attachments instances between its
component instances. To store the list of attachments
in its site, each middleware has an
AttachmentCollection class (see Figure 12).
The use of attachments approximation for distributed
communication does not only allow for the
reusability of the elements but also makes distributed
applications independent of a centralized Domain
Name Server (DNS). Thus, the attachments of a
component can be seen as a distributed DNS that
contains the necessary references that allow an
instance to perform the needed communications. Our
approach prevents the failures which may be

generated as a result of failures produced by a
centralized DNS such as load saturation and
deadlock. In addition, if a certain attachment between
two architectural elements fails, their communication
among others is not affected.

3.5.2. Mobility of the elements in PRISMA
Mobility is defined as the process of transferring a
component instance and its code to a new host. The
transferred component instance must continue
executing at the new host, while conserving its state
and maintaining the same execution point.
Current technologies do not offer this definition of
mobility nor does .NET. Therefore, the mobility has
to be simulated.
To implement the mobility, we have marked all
classes of components, aspects and the inPorts and
outPort queues of the component with the
[Serializable] attribute. The ability to serialize (to
pass them by value) is provided by the .NET
Framework. However, this is not enough. The
mobility process has to ensure that the instance is at a
consistent state before it is serialized. The steps to
enable a mobility process are presented in the
following section.

104

3.5.2.1. The execution of a mobility decision
A distribution aspect of a component encapsulates
the different decisions related to mobility. This
enables the reusability of the different mobility
decisions in different components. As a result, the
component controls the mobility decisions and even
if the environment wants to make a mobility
decision, it has to go through the distribution aspect
of a component.
Figure 13 shows an interaction diagram of part of the
mobility process performed at the site where the
mobility decision of a component has been executed.
It shows the interchange of messages until the
component instance is transferred to the
RemoteMiddleware.
When a mobility decision is satisfied, the distribution
aspect asynchronously calls the PRISMANET
middleware on its site to indicate that it is willing to
move (move, Figure 13). The distribution aspect also
notifies its component thread to prepare itself to be in
a secure state so that it can be serialized (by
executing the Stop of a Component, Figure 13). A
component is at a secure state when the queues of its
aspects are empty and when there is no service being
executed. Therefore, the component thread stops
processing services from its queue. However,
services can be queued in the component inport
because the queue is also serializable. In addition, the
component thread notifies the aspect threads to stop
when they finish processing services from their
queues and when they finish executing all the
services (StopAspect, Figure 13). When the
component and aspect threads finally stop, the
PRISMANET is notified and it is able to move the
component.

3.5.2.2. Preparing to Move Attachments
The attachments also have to be prepared for
mobility if a component is moved. This is because
the attachments are the communication channels that
allow others to communicate with a specific
component. Therefore, it is also important to involve
the attachments when a component is moved.
When a component instance is completely stopped,
PRISMANET executes a service called
PrepareToMoveAttachments (Figure 13). This
service fetches the attachments of a component by
going through its ports and finding the listeners to
these ports. It checks which attachments connect the
mobile component with distributed ones. The
information associated with each attachment is saved
in a structure called the AttachmentDataTransfer (see
Figure 12). The information contains the references
of the AttachmentServerBase instances that are
connected to the AttachmentClientBase instances of
the component. It also contains the name of the
component instance that is connected to the mobile
component instance, and others.
When this task is completed, the middleware stops
the thread of the AttachmentClientBase instances of
the component. In addition, the
AttachmentServerBase instances of the distributed
component instances, connected to the mobile
component instance, are unregistered from Remoting
by using the Disconnect(MarshalByRefObject)
service. This is previously performed in order not to
allow the transfer of services to and from the mobile
component object.

{for all the component aspects}

{for all attachments}

DistributionAspect ComponentThread AspectsThreads LOCALPRISMANET RemotePRISMANETAttachmentsCol lection

move

Stop

StopAspect

PrepareToMoveAttachments

TransferComponent

Remove()

Figure 13. A simple interaction diagram showing the tasks done by at the local middleware site of the

transferred component

105

Finally, a list with all the AttachmentDataTransfer
structures of a component is created. This is
necessary for the new middleware, where the
component is going to be transferred, to allow it to
recreate the attachments on its site.

3.5.2.3. Transferring component instances
When all the information for the mobility is
prepared, the component instance with InPorts and
OutPorts is serialized, and the list with the
information of the attachments is transferred to the
middleware of the new host. The transfer process is
performed in a try/catch block in order to recover
from any failure that may occur while making the
transfer (TransferComponent, Figure 13). When the
object is correctly serialized, the original component
object is destroyed.
In addition, the attachments associated with the
mobile component are removed from the list of
attachments that exist in the site of the current
middleware by executing the Remove() method of the
AttachmentsCollection (Remove, Figure 13).

3.5.2.4. Process after transferring a component
instance

When the component instance is moved, the
receiving middleware updates the list where it stores
the components that are executing on its site by
adding the component instance moved
(componentList.Add Figure 14).
Then the middleware uses the information stored in
AttachmentServerBase structure list in order to create
the Attachments of the component instance
(createLocalAttachment, see Figure 14). However,

this is not enough because the instances of the
AttachmentClientBase of other component instances
that are connected to the instances of the
AttachmentServerBase still have the old references or
proxies. Therefore, the new proxies of each
AttachmentServerBase of the component instance are
sent to the connected instances of the
AttachmentClientBase (sendNewLocationToCouple,
Figure 14). Afterwards, the thread of each
AttachmentClientBase of the component instance is
started as well as the thread of the component
instance.
As the inPorts have not been stopped while the
moved component instance was preparing itself to be
in a secure state and to be moved, the component
instance can start executing the services which where
queued at the first middleware and were not
processed.
In this way, a mobility approximation has been
implemented preserving the state of the object after
moving it.
Our approach clearly distinguishes between moving
an object and allowing remote calls to it. This can be
done thanks to the implementation of the
attachments. In .NET Remoting, instances cannot be
MarshalByRefObjects and serializable at the same
time. As well, even if a MarshalByRefObject is
serialized a proxy is created, and it is not the real
object that is transferred. Therefore, using
attachments the indirect reference remoting to
component instances is allowed as well as their
mobility.

{for each AttachmentDataTransfer}

PRISMANET Attachment Component

componentList.Add

sendNewLocationTo Couple

AttachmentStart

createLocalAttachment

startComponentInstance

Figure 14. An interaction diagram showing the tasks done by the new middleware site after the

component is transferred

106

4. RELATED WORKS
Currently, there is an increased interest in Aspect-
Oriented Programming (AOP) which is becoming a
widely used programming technique. AOP was
initially developed for Java environments through
AspectJ [Kic01] and is being transferred to other
platforms such as .NET by means of extensions.
However, the existing .NET approaches for
supporting AOP are still in an early phase.

AspectC#[Kim02] and SourceWeave.Net [Jac04]
support AOP in .NET having available the source
code of the base code, the aspects and the weavings.
These approaches propose joining the base code with
the aspects by specifying the weavings in an XML
file. Weave.Net [Laf03] and AspectDNG [Asp05]
also define the weavings through an XML file;
however, they only use the assemblies of the base
code, the aspects and weavings to join the code
without being available the source code. Loom.Net
[Sch02] is another .NET approach for supporting
AOP. It has a graphical interface that allows the
addition of defined aspects by means of reusable
code templates and allows the performance of
weavings.

The approaches mentioned above clearly separate the
base code, the aspects and the weavings in different
entities. However, none of them supports
mechanisms for dynamically adding or removing
aspects. The Rapier-Loom.Net [Sch03] approach
does allow dynamic addition and removal of aspects,
but it defines the weavings inside the aspects thereby
losing their reusability. SetPoint [Set05] also allows
for dynamic addition and removal of aspects. Its
weaving is based on the evaluation of logical
predicates in which the base code is marked with
meta-information that permits the evaluation of such
predicates. EOS [Raj03] is another dynamic
approach which is able to attach aspects at instance-
level by means of events.

None of the approaches mentioned above takes into
account the emerging relations that result from the
aggregation of various aspects at the same point of
the base code (joinpoint). However, JAsCo.Net
[Ver03] provides an expressive language that permits
the definition of relations among aspects. JAsCo.Net
integrates AOP and CBSD. It introduces the concept
of connectors for the weaving between the aspects
and the base code which allows for a high level of
aspect reusability. An inconvenience of this
approach is that the dynamic weaving of aspects to
the base code is referential but not inclusive. This
requires an execution platform to intercept the
application and insert it into the aspects at execution
time.

The principal disadvantage of these approaches is
that none of them integrates the needed properties at
the same time to allow the mobility, the reusability
and the evolution of aspect-oriented components.
These properties are the dynamic weaving, the join
of the base code and the aspects inside the same
entity and the reusability of aspects. Therefore, the
code mobility is limited because not all the properties
of the object code can be moved. However, PRISMA
defines a model that combines AOP and the dynamic
reconfiguration of the CBSD models. The aspects are
separately defined from the weavings and are highly
reusable. The components are formed from aspects
which are inclusively and can be dynamically
aggregated. In addition, PRISMA permits the
dynamic mobility of its components, and the concept
of base code does not exist, so the component is
solely formed by aspects. The implementation of the
PRISMA model in .NET permits the dynamic
addition and removal of aspects as well as the
dynamic modification of the weavings without
stopping the execution of the component.

5. CONCLUSIONS AND FURTHER
WORK
In this paper, an innovative middleware called
PRISMANET has been presented. This middleware
is based on PRISMA model and in this way, it allows
the implementation of complex, dynamic, distributed,
aspect-oriented and component-based software
systems using C# language. PRISMANET has been
developed with C# language using the standard
techniques that the framework provides, that is,
without extending the development platform. As a
result, PRISMANET can be executed in every
computer that has the .NET framework installed.
PRISMANET offers extra functionalities for the
.NET platform. It allows the execution of aspects, the
reconfiguration of software architectures (local and
distributed), the addition and removal of aspects
from components at run-time, mobility, etc. As
explained in the paper, these functionalities have
been implemented using .NET mechanisms such as
delegates, reflection, serialization, .NET Remoting
and dynamic code generation.
PRIMANET has also been tested in industrial case
studies such as the EFTCoR teleoperation system and
the TeachMover robot. We are now working on the
PRISMA model compiler in order to integrate the
PRISMA graphical interface and the middleware in a
CASE tool and to automatically generate code from
the graphical diagrams.

107

6. ACKNOWLEDGMENTS

This work has been funded by the Department of
Science and Technology (Spain) under the National
Program for Research, Development and Innovation,
DYNAMICA project TIC2003-07776-C02-02.
PRISMANET and industrial case studies
developments are funded by the Microsoft Research
Cambridge, “PRISMA: Model Compiler of Aspect-
oriented component-based software architectures”
Project [Pri05].

7. REFERENCES

[Aos05] Aspect-Oriented Software Development,

http://aosd.net
[Asp05] AspectDNG Project,

http://aspectdng.sourceforge.net/
[EFT02] EFTCoR Project: Friendly and Cost-

Effective Technology for Coating Removal. V
Programa Marco, Subprograma Growth, G3RD-
CT-2002-00794, 2002.

[Kic01] Kiczales, G., Hilsdale, E., Hugunin, J.,
Kersten, M., Palm, J. and Griswold, W.G., An
Overview of AspectJ. In ECOOP 2001,
(Budapest, Hungary, 2001), Springer-Verlag,
pp.327-355.

[Kim02] Kim, H. AspectC#: An AOSD
implementation for C#. MSc. Thesis, Comp.Sci,
Trinity College, Dublin, Dublin, 2002.

[Jac04] Jackson A., Clarke S., SourceWeave.NET:
Cross-Language Aspect-Oriented Programming.
In Proc. of Generative Programming and
Component Engineering (GPCE 2004).
Vancouver, Canada, 2004.

[Laf03] Lafferty D., Cahill V., Language-
Independent Aspect-Oriented Programming. In
Proc. of Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2003).
Anaheim, California, USA, 2003.

[Mic05] Microsoft .Net Remoting: A Technical
Overview,
http://msdn.microsoft.com/library/default.asp?url
=/library/en-/dndotnet/html/hawkremoting.asp

[Per03] Perez J., Ramos I., Jaén J., Letelier P.,
Navarro E. (2003a); “PRISMA: Towards Quality,
Aspect Oriented and Dynamic Software
Architectures”;. In proceedings of 3rd IEEE
International Conference on Quality Software
(QSIC 2003), Dallas, Texas, USA, November, ©
IEEE Computer Society Press ISBN 0-7695-
2015-4, pp. 59-66.

[PRI05] PRISMA, http://prisma.dsic.upv.es
[Raj03] Rajan, H., Sullivan, K., Eos: Instance-Level

Aspects for Integrated System Design. In the
proceedings of the 2003 Joint European Software

Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software
Engineering (ESEC/FSE 2003), Helsinki,
Finland, September 2003.

[Rob03] Robinson S. et al. , Professional C# 2nd
Edition, Wrox Programmer to Programmer.
[Sch02] Schult, W. and Polze, A., Aspect-Oriented

Programming with C# and .NET. In 5th IEEE
International Symposium on Object-Oriented
Real-time Distributed Computing, (Washington,
DC, 2002), IEEE Computer Society Press,
pp.241-248.

[Sch03] Schult, W. and Polze, A., Speed vs. Memory
Usage – An Approach to Deal with Contrary
Aspects. In 2nd AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure
Software (ACP4IS) in AOSD 2003, (Boston,
Massachusetts, 2003).

[Set05]SetPoint! Project,
http://www.dc.uba.ar/people/proyinv/setpoint/

[Szy98] Szyperski C. , “Component software:
beyond object-oriented programming”, ACM
Press and Addison Wesley, New York, USA,
1998.

[Tea05] The TeachMover Robot,
http://www.questechzone.com/microbot/teachmo
ver.htm

[Ver03] Verspecht, D., Vanderperren, W., Suvee, D.
and Jonckers, V., JAsCo.NET: Capturing
Crosscutting Concerns in .NET Web Services. In
Proc. of Second Nordic Conference on Web
Services NCWS’03, Vaxjo, Sweden. In
“Mathematical modelling in Physics, Engineering
and Cognitive Sciences”, Vol. 8, November
2003.

108

Objective Caml on .NET:
The OCamIL Compiler and Toplevel

Raphaël Montelatici
∗

Emmanuel Chailloux
†

Bruno Pagano
‡

ABSTRACT
We present the OCamIL compiler for Objective Caml that targets .NET. Our experiment consists of adding a

new back-end to the INRIA Objective Caml compiler that generates CIL bytecode. Among all the advantages

of code reuse, ensuring compatibility while keeping all the expressiveness of the original language is particularly

interesting. This allowed us to bootstrap the OCamIL compiler as a .NET component and build an interactive

loop (toplevel) which may be embedded within .NET applications. This work deals with typing issues because

OCamIL needs to translate an untyped intermediate language into a typed bytecode. We discuss various

intermediate language retyping techniques and their consequences on performances. We also present applications

of interoperability of Objective Caml and C# components.

1. INTRODUCTION
The .NET [1] platform is often presented as a uni-

versal framework that can host software components

developed in numerous languages. It offers a Com-

mon Type System (CTS) and a runtime environment

CLR (Common Language Runtime) built on a byte-

code machine. By assuming compliance to the CTS

type system, components interoperate safely. This

has motivated the adaptation of various languages,

such as C#, J#, A#, Eiffel, Scheme, Sml, F#, P#

or Mercury.

Even though the main implementation of .NET runs

on Windows, some Open Source projects provide im-

plementations for BSD Unix and Windows (Rotor [2]

∗ Equipe Preuves, Programmes et Systèmes (UMR 7126)
Universit́e Denis Diderot (Paris 7)
2 place Jussieu, 75005 Paris, France
Email:Raphael.Montelatici@pps.jussieu.fr
† Equipe Preuves, Programmes et Systèmes (UMR 7126)
Universit́e Pierre et Marie Curie (Paris 6)
4 place Jussieu, 75005 Paris, France.
Email: Emmanuel.Chailloux@pps.jussieu.fr
‡ Esterel technologies,
679 Av Julien Lef̀ebvre, 06270, Villeneuve- Loubet, France
Email: Bruno.Pagano@esterel-technologies.com

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
.NET Technologies’2005 conference proceedings,

ISBN 80-86943-01-1

c© UNION Agency - Science Press, Plzen, Czech

and Linux (Mono [3]). That reminds of Java’s motto:

“Compile once, run everywhere”. There is a hope

for a safe and efficient multi-language platform with

a single runtime, running on numerous systems. We

experiment the integration of a full-fledged functional

language in this environment by writing a .NET com-

piler for the INRIA Objective Caml [4] (thereafter

shortened as O’Caml).

O’Caml is an ML dialect: it is a functional/imperative

statically typed language, featuring parametric poly-

morphism, an exception mechanism, an object layer

and parameterized modules. Its implementation in-

cludes a bytecode and a native code compiler, which

generates efficient programs.

OCamIL [5] is a project which aims at compiling O’-

Caml to the .NET environment. We believe it can

help make popular O’Caml applications. Our primary

goals are compatibility with O’Caml and interoper-

ability.

In order to help compliance with the original lan-

guage, OCamIL is developed as a new back-end of the

O’Caml compiler. This approach quickly succeeds in

producing a full-fledged compiler for the whole lan-

guage. We achieve bootstrapping as a sizeable com-

patibility test. Taking advantage of the .NET reflec-

tion API, OCamIL can dynamically emit code and

execute it, which is a useful feature to build a toplevel

interaction loop. Both compiler and toplevel can be

redistributed as .NET components. The main part of

O’Caml standard library and the O’Caml graphics,

threads and dynlink libraries have been ported. Func-

109

tional, imperative and object-oriented features are im-

plemented, as well as the module system (functors,

modular compilation).

Interoperability is achieved using a two-layered tech-

nique: a low-level unsafe foreign function interface

supports a high-level interfacing through O’Caml ob-

jects using an IDL approach.

We first present the relevant features of the .NET

platform from a compiler writer’s point of view, then

give an outline of the OCamIL implementation and

describe the building of the toplevel interactive loop

from the bootstrapped compiler. We then expose the

principles of OCamIL interoperability and give exam-

ples of applications. We finally discuss related work

and outline future work.

2. THE .NET PLATFORM
The .NET Common Language Runtime consists of

a typed stack-based bytecode called CIL (Common

Intermediate Language), an execution system and a

support library BCL (Base Class Library). Let us

enumerate some features of the .NET platform for

Windows developped by Microsoft:

The type system is designed around an object model

featuring single inheritance, Java-style interfaces and

exceptions. In addition to Reference Types (for heap-

allocated objects), it supports stack-allocated Value

Types (which range from basic types to complex struc-

tured types). Dedicated bytecode instructions (box

and unbox) switch between the two kinds of represen-

tation. The type system is geared towards dynamic

management: it supports run-time type tests, checked

coercions and reflection capabilities.

Safety is based on typing. Verification rules are im-

plemented in the runtime, tracking down stack incon-

sistencies and dependencies resolving errors (for in-

stance erroneous calls to foreign methods). The CIL

bytecode conforming to typing and verification con-

straints is called “managed code”. Unmanaged code

gives access to unsafe languages like C++. The run-

time environment also features a Garbage Collection

mechanism, which frees the developer from memory

management issues.

Deployment: The fundamental .NET component

is called an assembly : it is a self-contained unit of

deployment. Assemblies can be signed with a crypto-

graphic key so that the hosting computer can trust the

embedded code: this allows sharing a piece of software

by installing the assembly in the GAC (Global Assem-

bly Cache), a special assembly repository. This helps

versioning and localization management altogether.

Performances: The execution relies on a system-

atic Just In Time compilation mechanism (each method

is compiled to native code at first call). It is possible

to bypass this behavior by pre-compiling an assembly

to a native image.

The CLR provides useful features for functional lan-

guages implementations, such as tail calls. However,

closures, which are ubiquitous data structures in func-

tional languages, are not supported natively by the

CLR. The ILX extension [6] is developed to address

this issue. Parametric polymorphism is also hard to

implement efficiently, but change might be on its way

with the possible addition of Generics [7, 8] to the

forthcoming release of the CLR.

3. THE O’Caml LANGUAGE
O’Caml is a statically typed language based on a func-

tional and imperative kernel. It also integrates a class-

based object-oriented extension in its type system, for

which inheritance relation and subtyping relation for

classes are well distinguished [9]. One key feature of

the O’Caml type system is type inference. The pro-

grammer does not annotate programs with typing in-

dications: the compiler gives each expression the most

general type it can.

A class declaration defines:

• a new type abbreviation of an object type,
• a constructor function to build class instances.

An object type is characterized by the name and the

type of its methods. For instance, the following type

can be inferred for class instances which declare moveto

and toString methods:

< moveto : (int * int) -> unit;

toString : unit -> string >

At each method call site, static typing checks that

the type of the receiving instance is an object type

and that it contains the relevant method name with a

compatible type. The following example is correct if

the class point defines (or inherits) a method moveto

expecting a pair of integers as argument. Within the

O’Caml type inference, the most general types given

to objects are expressed by means of “open” types

(<..>). The function f can be used with any object

having a method moveto (’a denotes a universally

quantified type variable):

method call

let p = new point(1,1);;
p#moveto(10,2);;

functional-object style

let f o = o # moveto (10,20);;
val f : < moveto : int * int −> ’a; . . > −> ’a

110

Some of the most important characteristics of the O’-

Caml object model are:

• Class declarations allow multiple inheritance and

parametric classes.

• Method overloading is not supported.

• The method binding is always delayed.

4. THE OCamIL COMPILER
Our main goal is to port O’Caml to the .NET plat-

form and be as compatible as possible with the stan-

dard INRIA implementation. Granting priority to

compliance is not an easy task because the O’Caml

language is perpetually evolving: new versions of the

standard compiler are released on a regular basis,

yielding major additions to the language. We choose

to implement OCamIL as a back-end to the standard

compiler, in order to reuse as much code as possible

and later on to prevent tiresome modifications when

upgrading to new O’Caml versions.

To be more precise: parsing, typing and first code

transformations are left to the standard O’Caml com-

piler. Our back-end gets the internal representation

Clambda1 from the compiler front-end, as sketched in

figure 1. At that stage, several code transformations

have been realised. Further steps on the ocamlopt

branch, which specialize code for specific processor

architectures, are useless to OCamIL.

We introduce a new intermediate representation called

Tlambda, the purpose of which is discussed in the fol-

lowing sections.

CIL Bytecode

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ocamilocamlc ocamlopt

standard INRIA compilers OCamIL project

OCaml Bytecode
Instructions

Tlambda Code

Clambda Code

Cmm Code

Mach Code

Native Code

Syntax Tree

Lambda Code

Typed

Instructions

Fig. 1: OCamIL inside O’Caml.

1With respect to the Lambda code which handles functional
values, Clambda explicitly manages closures and implements
direct application.

4.1 The need for types
Compiling the Clambda intermediate code to a typed

runtime is not straightforward. First, types are dis-

carded right after type-checking, therefore Clambda

does not carry types. Second, it is already designed

to take advantage of the standard O’Caml runtime

environment peculiarities. The standard O’Caml im-

plementation uses a uniform representation to deal

with parametric polymorphism. Integer values and

pointers toward heap-allocated blocks are both repre-

sented by native machine integers and distinguished

by a bit of tag. However, when compiling to CIL,

integers are typically represented by integers (a value

type) and blocks by some reference types. This even-

tually requires boxing operations on integers in order

to make them fit in the same locations as blocks. To

achieve that, type reconstruction is required on the

Clambda code.

The following table shows an example of CIL code

generation, which is incorrect because of the involved

types are ignored. The variable t refers to an array

(implemented by an array of objects because of poly-

morphism):

O’Caml code

t.(0) + 1

Clambda code

(+ (field 0 t) 1)

CIL Comments

ldloc t Pushes the local variable t on stack.

ldc.i4.0 Pushes the integer 0.

ldelem.ref Loads an array element (by reference)

(*)

ldc.i4.1 Pushes the integer 1.

add Computes addition.

At the level of the (*)-marked line, the top of the stack

holds a reference to an object whereas the instruction

add expects an integer value type.

We introduce the Tlambda code that carries types and

includes type casting operations to address this issue.

A type-aware compiler inserts an unbox instruction

at (*). The type safety property is ensured by the

front-end type checking.

4.2 Type re-inference
As sketched in the previous section, retyping Clambda

allows to compile correct code. Moreover, accurate

typing information helps to choose data representa-

tions that avoids performance penalties.

4.2.1 Methodology.
We use a retyping algorithm that infers types on the

Clambda code. In the standard O’Caml runtime, types

are all collapsed down to a uniform representation.

There is a trade-off: on one hand we need to be as

111

accurate as possible in order to prevent inefficiencies

(typing everything to be an “object” is an option, but

a costly one because it maximizes (un)boxing opera-

tions), and on the other hand the available informa-

tion does not allow for much accuracy. We propose

the following type grammar:

T ::= int | block | string | float

| closure | unit | any

The algorithm propagates type information from the

primitives back to the whole code. Having no other

clue on source types, there is very little to retype: the

types grammar is rather poor, and is based on the

types that can be associated with the primitives (han-

dling blocks and integers, but also floats, strings and

so on). Distinguishing integers from blocks is a first

step. Furthermore, we try to identify particular kinds

of blocks wherever possible, in order to manage them

specifically. It turns out that some instances of O’-

Caml blocks: string, float, closure and unit, being

operated on by specific primitives, can be identified

contextually. In order to handle polymorphism, the

implementation assigns a representation that inherits

from the representation of block (which denotes un-

determined blocks). The type any encompasses every

other types. It is mandatory because of parametric

polymorphism, and its typical .NET representation is

the root class Object.

This simple retyping technique only requires a slight

adjustement of Clambda code to work properly.

4.2.2 Data representation.
We translate basic types according to the following

correspondences:

O’Caml bool int float string

CTS int32 int32 float64 StringBuilder

• We use StringBuilder, not string, because O’-

Caml strings are mutable.

• Since types are determined by the way values are

used in the intermediate code, O’Caml integers

and booleans are mapped to the same representa-

tion.

Tuples, arrays, records, lists and sumtype values are

traditionally represented by means of heap-allocated,

tagged blocks (in the case of a sumtype value, the

tag is used to code the involved constructor). These

types are not distinguished by the O’Caml runtime

and are operated on by the same primitives. There-

fore they cannot be identified by type reconstruction.

They are all compiled to a common generic represen-

tation: arrays of objects (object[]), requiring boxing

operations on basic type values which are not objects.

Closures are compiled to objects inheriting from Ca-

mIL.Closure, a dedicated class that declares two meth-

ods handling application: exec implements total ap-

plication and apply: object -> object is used for

partial application. Wrapped around exec, apply re-

turns a new closure ready to expect the forthcoming

arguments, or the final result value, depending on the

number of remaining arguments. The closure’s envi-

ronment is stored in object fields.

Mapping an O’Caml class hierarchy to a .NET class

hierarchy is very tempting. Besides the theoretical

issues it raises (because of the numerous differences

between the two object models), this is also hard

to achieve because of the internal representation of

O’Caml objects: starting from the first intermedi-

ate language, objects no longer show up as objects

but merely as blocks of fields and functions. O’Caml

implements the late binding mechanism by inserting

additional code within user code (the standard O’-

Caml runtime environment was originally designed for

the core language, and does not natively support an

object layer). The OCamIL compiler processes the

corresponding blocks transparently, without knowing

they are related to objects.

The current release of the OCamIL compiler was de-

veloped according to this design. The back-end ap-

proach, using retyping techniques, quickly leads to

significant achievements.

4.3 Compatibility
Compatibility is fairly complete. The standard core

library, as well as some others (the graphics, threads

and dynlink libraries) have been successfully adapted.

Large applications have been compiled and behave

consistently with the standard implementation.

Let us mention the main differences between OCamIL

and the standard implementation. First, some as-

pects of O’Caml are left implementation-dependent.

For example the order of evaluation of function ar-

guments is not specified. The INRIA compiler and

OCamIL adopt right-to-left and left-to-right eval-

uation, respectively. Second, O’Caml provides some

partially hidden, low-level and unsafe operations on

data representations. OCamIL only emulates a part

of them (actually, what is used by the implementation

of the standard library). Third, the foreign function

interface with C is replaced with a basic interface with

CIL methods (more on this topic in subsection 5.1).

We focus on managed code until now, but interfacing

with unmanaged libraries can be addressed. Finally,

the O’Caml data marshaling format is not specified.

The OCamIL implementation rely on the BCL serial-

ization API: on one hand, this leads to incompatible

data formats and on the other hand, this provides a

safe marshaling for free.

112

4.4 Bootstrapping
We describe here the different steps that lead from

OCamIL sources to a bootstrapped compiler running

in the .NET framework. Like the O’Caml compiler

itself, OCamIL is written in the O’Caml language.

More than our personal preferences for O’Caml, it

is convenient to use the implementation language of

the standard INRIA compiler because we open a new

compilation branch on it.

The successive steps needed for building and boot-

strapping OCamIL are shown in figure 2. Compiling

OCamIL from sources requires the original O’Caml

bytecode compiler (ocamlc) and runtime (referred to

as µ). In the figure, mlB stands for the original O’-

Caml bytecode.

µ

ocamil

ocamil
pre−

(src)
ocamil

(src)
ocamil ocamil

pre−

(src)
ocamil

ML

mlB

ML ML

ML
ocamil

ML

ML ML

ML

MSIL

CLR

ocamil−2

ocamil−3

ML

mlB

ML ML mlB mlB

ML

ocamlc

mlB mlB

Building Steps

Bootstrapping Steps

CILCIL

ML

ML ML

ML
ocamil−2

ocamil

CLR

CIL

CIL

CILCIL

CIL

CIL CIL CIL

CILCIL

CIL

CILCIL CIL CIL

µ

(src)

Fig. 2: Building and bootstrapping steps

4.4.1 Building steps
(following figure 2): the hybrid compiler pre-ocamil

is compiled first. It produces CIL executables and

shared libraries from O’Caml source files, but still

runs in the standard O’Caml environment. Then we

recompile OCamIL sources using the freshly compiled

compiler. This produces ocamil, which is itself a

.NET bytecode executable file. Once this is done, we

no longer need the O’Caml system nor the pre-ocamil

compiler 2.

4.4.2 Bootstrapping steps
(following figure 2): we use the newly built compiler

to compile itself. We need two rounds to reach a fix-

point (ocamil-2 is identical to ocamil-3) because of

the slight difference of operational semantics exposed

in subsection 4.3 (regarding evaluation order). When

compiling OCamIL, it affects the ordering of code gen-

eration. For that matter, pre-ocamil and ocamil do
2Later on, the pre-ocamil compiler should not be used, be-
cause it runs in a different world than executables it produces.
As explained in subsection 4.3, the O’Caml and OCamIL data
marshaling formats are not compatible. This implies that
data marshaled by programs compiled by pre-ocamil cannot
be read back by pre-ocamil, a situation that typically hap-
pens when compiling from a marshaled abstract syntax tree
instead of a source file (as preprocessors generate), or for dy-
namic linking. This also means that libraries compiled by
pre-ocamil cannot be used by ocamil: they need to be com-
piled by ocamil itself.

not strictly behave the same, so ocamil and ocamil-2

are not strictly identical. In this case it does not af-

fect the semantics of the resulting programs but only

their code layout. The additional round fixes the mis-

match.

4.5 Toplevel Building
The OCamIL compiler and executables compiled by it

run in the CLR altogether. Using the .NET dynamic

code generation and execution features provided by

the reflection API helps building a toplevel utility

ocamiltop. A toplevel iteratively compiles O’Caml

declarations on the fly and executes them, while main-

taining a symbol table. Figure 3 displays the toplevel

components and shows the processing steps of an O’-

Caml expression.

5b
ocamil

phrase
1

phrasenphrase
1

ocamiltop
Application

Domain

phrasen
-

� -

?

�-

6

6 6
6?6?

� z
...

:
.....................

....................
.....................

.....................
....................

SymTable
Toplevel
Engine

Toplevel

Output

1
Input

2

Disk

2

3
4

4

...

BCLReflection

6

...

(5c)

5a

Engine

Fig. 3: The toplevel engine

1) The toplevel engine consumes an O’Caml expres-

sion phrasen.

2) It uses the ocamil compiler engine (together with

a Symbol Table resolving free variables) to compile

the expression to CIL code.

3) The CIL code is written as a shared library file on

the hard disk.

4) The toplevel engine calls the BCL System.Reflec-

tion.Assembly::LoadFrom method to dynamically

load back the emitted assembly to memory.

5a) Calls to the reflection API manage to run a public

method of the assembly which was emitted at stage

2. It is a startup method for the compiled expression.

5b) The startup method first registers the bindings

defined by phrasen by accessing directly the table of

symbols used by the toplevel. 5c) The startup method

then runs the inner code of phrasen (that may refer

to previous expressions using the associations main-

tained in the table of symbols).

6) The execution flow returns to the toplevel loop that

handles output (typically by displaying computed val-

ues).

113

The toplevel prototype writes compiled assemblies to

disk, then reloads them back to memory. We plan

to develop a new version that directly compiles code

to memory: this allows to produce a single assembly

that grows up during the toplevel session, from which

we expect increased performance.

The toplevel tool is very useful for application devel-

opment. It also has promising applications using its

embedding capabilities.

5. INTEROPERABILITY
OCamIL interoperability capabilities are based on a

two-layered approach.

5.1 Basic Foreign Function Interface
The heart of OCamIL interoperability is a simple mech-

anism which allows to call CIL code from O’Caml

programs. It is a replacement of the original O’Caml

FFI for C code. OCamIL allows to call static methods

written in C# or in bytecode. This was widely used in

order to adapt the O’Caml standard library, replacing

the C code by calls to the .NET BCL. However, this

is limited and not type-safe: its main purpose is to

support safe, high-level communication.

5.2 O’JACARE.NET
We provide a high-level, safe interfacing of O’Caml

and C# through their object models, using an IDL

approach. We have developed a tool called O’Jaca-

ré.net that compiles IDL files and generates all nec-

essary wrappers to mix components written in both

languages. Details can be found in [10].

5.2.1 Comparing object models.
Type systems and object models can be interleaved

in many ways. There are important differences be-

tween the object models of O’Caml and C#. For in-

stance, class declarations allow multiple inheritance

and parametric classes in O’Caml but not in C#,

method overloading and class downcasting are only

supported in C# (but in O’Caml the type of self

can appear in the type of a method eventually overrid-

den in a subclass). The intersection of the two mod-

els corresponds to a simple class-based language, for

which inheritance and subtyping relations are equiva-

lent, overloading and binary methods are not allowed.

For the sake of simplicity, it does not offer multiple in-

heritance nor parametric classes. This model inspires

a basic IDL for interfacing C# and O’Caml classes.

5.2.2 Encapsulation.
In contrast to direct external calls presented above,

using O’Jacaré.net is safe and much more expres-

sive. O’Caml programs can allocate C# objects and

call instance methods. It is also possible to inherit

C# classes in O’Caml and redefine methods. Late-

binding is transparently performed between the two

languages. The other way around is also possible: li-

braries compiled by OCamIL can expose classes that

will be used in C# programs.

This requires a tricky implementation because O’-

Caml objects are no longer objects at run-time. The

mechanism that enables late-binding to run back and

forth between O’Caml and C# worlds is illustrated

in figure 4. In this example, a C# component defines

the well-known didactical classes Point and Colored-

Point that are exposed in an IDL file.

The compilation of this file generates the correspond-

ing O’Caml wrappers, allowing to allocate objects

and call methods upon the foreign C# classes as if

they were native. New O’Caml classes, such as colo-

red point ml in the figure, can inherit from them.

However, a complete and proper cross-language late-

binding mechanism cannot be implemented with such

a simple design. Let us assume that Point defines a

method toString, and that ColoredPoint both de-

fines a method getColor and overrides the definition

of toString by concatenating the results of a call

to the method getColor and a call to the method

toString of the superclass. If we redefine the getColor

method in O’Caml, and expect the toString method

to be specialized through late binding, we need to

produce an additional stub in each language: a call

to toString on colored point ml traces back to the

ColoredPoint class, which has no idea of the O’Caml

instance and thus of the redefinition of getColor.

The two stubs hold a reference to each other. The

C# stub, named ColoredPointStub, overrides each

method as a callback to the O’Caml stub callback co-

lored point and the latter defines each method as

a non-virtual call to ColoredPoint, the base-class of

the former. Following figure 4, the O’Caml class mi-

xed colored point inherits from the O’Caml stub class.

Thanks to the non-virtual call, a call to the toString

method traces back to the implementation of Colo-

redPoint Then the virtual call to getColor is late

bound to ColoredPointStub, which virtually calls the

O’Caml corresponding method on callback colored-

point, falling back on O’Caml late-binding mecha-

nism.

5.2.3 Blending two object models.
O’Jacaré.net allows to partially handle both object

models. [10] gives examples of C# objects downcast-

ing and multiple inheritance of C# classes in O’Caml.

We need the IDL glue to interoperate between O’-

Caml and C#: because of design and semantics dif-

ferences, encapsulation is needed in both ways. How-

ever, we benefit from sharing the same runtime envi-

114

� � � � � � � � � � � � 	
 � � � � � � �� � � � � � � � � � � � 	
 � � � � � � �� � � � � � � � � � � � � � �
 � � � � 	

� � � � �� � � � �� � � � �

� � � � � � � � � � � �

� � � � �

� � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � !

� � " � � # � � � � � � # � � � � �

$ % % & ' () % * %) % + , % - & . + / / /

0 � 1 � � �

2 (+ 3 4 5) 6 7 7 % + , . 3 %8 % + %) (7 % 3 , . 3 % 9 ' 7 () 7 6 + : *) . ; 7 < % = > ? @

 � � � � � � # � � � � � # � �

8 % + %) (7 % 3 , . 3 % 5 6 7 < 7 < % , (A A B (, C (7 7) 6 B - 7 %

� � � � � � � � � � � # � � � � �

Fig. 4: Relationship between classes

ronment. The communication between components is

type safe and we take advantage of unified garbage

collection and thread management.

6. APPLICATIONS
Adapting O’Caml to .NET is interesting for both com-

munities. We believe it can help make popular O’-

Caml applications, and that new possibilities are of-

fered by interoperability. Let us mention a few of

them.

O’Caml is given access to new libraries. O’-

Caml programs can use libraries ranging from graph-

ical toolkits to remoting facilities. They can be dis-

tributed as applets that run inside a browser’s win-

dows. See figure 5 for an example of O’Caml applet,

that runs a raytracer (the winning entry of the ICFP

2000 programming contest). Using O’Jacaré.net,

the same O’Caml program can be given a graphical

user interface written in C#.

See also figure 6 for an O’Caml toplevel embedded in

a graphical interface written in C#.

O’Caml benefits from new tools. We can already

use .NET tools such as debuggers or profilers on OCa-

mIL programs. It is also possible to integrate the O’-

Caml language in IDE such as Visual Studio.NET.

.NET is enriched by O’Caml. It is important to

promote programming paradigms such as functional

programming. Moreover, the O’Caml object layer

can interest OO programmers and encourage them

to give O’Caml a try. O’Caml is particularly good at

tree manipulations or symbolic computations, some of

the fields where languages such as C# cannot stand

the comparison. Syntactical tools such as Camlp4

[11], which was successfully compiled by OCamIL, can

open new tracks for writing compilers, using O’Caml

as a target language. The possibility to embed an

O’Caml toplevel component in C# applications also

offers interesting perspectives.

7. RELATED WORK
The approach described for O’Jacaré.net (two run-

time environments running side by side) has also been

used in other projects.

The Haskell interpreter, Hugs98 for .NET [12], allows

.NET classes. Its implementation is based on a mech-

anism similar to O’Caml / O’Jacaré.net. At the

level of source language, it allows a basic communica-

tion with the .NET platform which allows thorough

communication to be built upon and used through

a high level language construction. Automatic code

generation with a dedicated tool is needed to achieve

it. As for execution, it provides two virtual machines

(interpreter and CLR) running simultaneously. The

Dot-Scheme [13] project implements a FFI (Foreign

Function Interface) to the .NET platform from PLT

Scheme. Here again, execution is performed by two

virtual machines. At the language level, the imple-

mentation (based on CLR introspection capabilities)

allows an easy and direct .NET classes manipulation.

The current trend is to directly produce bytecode for

either Java (cf MLj [14]), or .NET. For .NET, a lot

of works have been done :

• for SML: SML.NET [15] and MoscowML

for .NET [16];

• for O’Caml: F# [17] and OCamIL.

115

Fig. 5: An applet running a raytracer written in O’Caml.

The main interest to use the same runtime is to facili-

tate memory management (GC) and multi-threading.

F# and OCamIL illustrate two different views of in-

teroperability. F# conception is focused on inter-

operability. Its purpose is to manipulate the .NET

proposed object model in a functional / imperative

language similar to CamlLight. The outcome is a

new Caml dialect using .NET object model. But the

.NET object model is really far from the O’Caml ob-

ject model. The advantage is to directly manipulate

CTS types, with no additional tool and in a natural

way. It provides a comfortable programming and al-

lows an implementation as direct as possible (which

guaranties better performance).

On the other hand, the used object model is not in-

tegrated as well in the functional paradigm as the

O’Caml model. In many cases, it is mandatory to

help the type inference by giving types annotations

for CTS. Then, parametric polymorphism and row

polymorphism become a kind of interfaces polymor-

phism when .NET methods are called.

On the contrary, OCamIL does not modify the orig-

inal language. There are no new constructs coming

from the target architecture and the interoperability

is managed accross the O’Caml object model.

There are two main consequences :

• the difference between the two object models for-

bids a direct compilation from O’Caml objects to

the CTS;
• this inadequacy makes it necessary to generate

stub classes (we compile IDL files with our tool

O’Jacaré.net).

To put it shortly, F# is for the C# programmer who

wants to use functional programming, and OCamIL

is for the O’Caml programmer, who wants to take

advantage of the .NET environment without changing

his favorite language.

MLj and SML.NET join together the two approaches

by proposing the essence of SML on the Java and

.NET platforms, and integrating the C# object model

(but it is true that without object features in the orig-

inal languages there is no decision to select an ob-

ject model). MoscowML for .NET only allows static

method calls.

From the Scheme side, the Bigloo compiler allows to

compile to the JVM or the CLR runtimes. As for Dot-

Scheme, the .NET features are nicely incorporated in

the Scheme language by using special functions and

macros. The Scheme language fits well in an inter-

operability setting: its syntax is easily extensible and

its dynamic typing facilitates the integration of new

features. Dynamic typing is more in the spirit of the

Java and .NET platforms that propose many services

of instrospection.

Although Eiffel is not a functional language, its .NET

version [18] encounters similar difficulties than OCa-

mIL. The two object models have a multiple inheri-

116

Fig. 6: A toplevel session in a C# window, demonstrating culture-specific ordering.

tance, parametric classes and no overloading. How-

ever their techniques of compilation strongly differ.

Eiffel relies on CTS interfaces to emulate multiple in-

heritance.

8. RETYPING TECHNIQUES AND FU-
TURE WORK

For the sake of compatibility and front-end indepen-

dence, OCamIL currently adopts a back-end approach

that leads to retype an intermediate language from

scratch. We are currently developing an alternative

implementation which retrieves source types from the

O’Caml type-checking step. Let us compare the pros

and cons of each technique.

8.1 What hinders the strict back-end ap-
proach

As mentioned in subsection 4.2, the retyping tech-

nique requires the front-end to be slightly modified.

The heart of the problem are data types with non-

uniform representations such as sumtypes. Here is a

sample sumtype definition:

type t = Zero | One | Node of t

The sumtype t declares two constant constructors and

a non-constant constructor. As for the O’Caml run-

time, these are respectively represented by integers 0,

1 and a pointer to a block containing another value

of type t. This is homogeneous in the O’Caml run-

time but the retyping algorithm eventually infers two

different types, int and block, for values of type t.

Consider the following function and its compiled rep-

resentation in Clambda code:

O’Caml code Clambda code

let cut x = let cut = closure(cut):

match x with x ->

| Node n -> n if (isint x) then x

| x -> x else (field 0 x)

Type Inferred type

t -> t Sumtype -> Sumtype

The isint primitive tests the bit of tag that dis-

tinguishes integers from pointers on blocks. In or-

der to take the duplicity of the parameter x into ac-

count, the grammar of reconstructed types needs a

new item Sumtype, that represents the union of int

and block. The function cut above receives the type

Sumtype -> Sumtype. We do not want to use the

general-purpose type any here to give a chance to

Sumtype values to be mapped to a more precise and

adequate type than Object. Of course, applying cut

to constants requires boxing operations. There is

something wrong though, as the following example

reveals:

O’Caml code Clambda code

let hell a b = let hell = closure(hell):

match a with a -> b ->

| Zero if (isint a) then

(if (a != 0) then b

-> One else 1)

| _ -> b else b

Type Inferred type

t -> t -> t Sumtype -> int -> int

The type of the parameter b is problematic. Looking

at the O’Caml source code we know that a and b are

both of type t. But looking at the Clambda code, one

is tempted to claim that b is an integer! The only in-

117

formation that the re-typing algorithm has about b is

that its type is unifiable with int (because of the sub-

expression: if (a != 0) then b else 1). Following

the policy of being as accurate as possible, b is typed

to be an integer, and the function hell receives the

type Sumtype -> int -> int. Later on, when com-

piling an application such as hell One (Node Zero),

the retyping algorithm detects inconsistency and aborts.

In general, the algorithm cannot backtrack and give

b a correct type: the definition of hell and its appli-

cations can reside in separately compiled modules.

Fortunately, there is a simple workaround. Changing

the representation of sumtypes a little bit is a quick

modification of the compiler. Because constant con-

structors can be encoded as empty blocks (the tag of

the block coding the constructor), we uniformly repre-

sent sumtypes by blocks 3. This avoids the multiplic-

ity of representations for the same type that caused

types reconstruction errors. Although this is achieved

by a slight modification of the compiler, this somehow

betrays the spirit of the back-end approach.

8.2 Types propagation
The retyping of the Clambda intermediate language is

not accurate enough, entailing costly data structure

allocation (object arrays). Data access is slowed down

by dynamic typechecking and boxing operations. Re-

trieving exact types allows to compile data to ade-

quate representations: for instance each constructor

of a given sumtype can be implemented as an ob-

ject with fields holding the parameters of construc-

tor, with their exact types. We propose to modify

the implementation of O’Caml in order to propagate

typing information along intermediate languages from

the type-checking step until the Clambda code. Main-

taining OCamIL up to date with the latest O’Caml re-

lease will be harder because types are likely to evolve

along with O’Caml development, but as explained in

the previous subsection a strict back-end implemen-

tation quickly reaches its limits anyway. Future work

will focus on implementing and exploiting type prop-

agation, and we expect important performance im-

provements. Type propagation also has applications

in debugging O’Caml programs, because the gener-

ated CIL will have more adequate types with respect

to the O’Caml source program.

9. CONCLUSION
Java’s success has popularized bytecode-based run-

timesthat offer modern techniques to improve safety,

such as typed bytecode, garbage collection and built-

in security policies. The .NET CLR is based on a

3A more complex policy can be imagined for sumtypes: rep-
resented by integers if made of constant constructors only,
and represented by blocks otherwise. However this is not ap-
propriate for O’Caml polymorphic variants which can be in-
crementally extended, for example by adding a non constant
constructor to a set of constant constructors.

similar design, and tries to improve security. These

two platforms help portability, interoperability and

offer a convenient target for compiler implementors.

The OCamIL project helps to evaluate the .NET plat-

form and the O’Caml implementation with respect to

each other. The .NET CLR is presented as a runtime

of choice to run multi-languages applications, which

implies a stricter control over pieces of code and the

addition of new features to the execution platform, in

order to support more programming features. How-

ever, these efforts have been mainly object-oriented:

originally for C#, Visual Basic and C++. Logical

and functional paradigms are not natively supported.

Closures and advanced flow-control (even exceptions)

implementation is too costly. Likewise, parametric

polymorphism does not fit well in the object models

of today’s runtimes. Fortunately, there are promising

developments towards these directions (such as ILX

and generics).

Symmetrically, language implementations need to ad-

apt to new runtimes. Compiling to a typed virtual

machine raises new issues that were not relevant in

dedicated functional virtual machines [19]: now type

information is needed down to bytecode generation.

To address efficiency issues, types have to be as ac-

curate as possible, ideally by propagating the static

type-checking step information. Appel’s slogan “Run-

time Tags Aren’t Necessary” [20] does not hold any-

more.

For the sake of compatibility and front-end indepen-

dence, OCamIL has adopted a back-end approach

that leads to retyping an intermediate language from

scratch. We are currently developing an alternative

implementation which retrieves source types from the

O’Caml type-checking step. The solution needs to

modify the implementation of O’Caml in order to

propagate typing information along intermediate lan-

guages from the type-checking step until the Clambda

code, which is successfully experimented with the de-

velopment version of OCamIL.

Despite these inadequacies, the .NET platform has

proven to be an interesting framework to develop a

compiler for. The OCamIL compiler and toplevel al-

low the development of O’Caml applications for the

.NET platform, with the guarantee of compatibility

with O’Caml (including advanced programming fea-

tures) and managed CIL code production. Other .NET

languages can consume O’Caml components, for in-

stance the OCamIL toplevel can be embedded inside

a C# application, to produce dynamically compiled

O’Caml code.

118

10. REFERENCES
[1] Thai, T.L., Lam, H.: .NET Framework

Essentials. 3rd edn. O’Reilly Edt (2003)

[2] Stutz, D., Neward, T., Shilling, G.: Shared

Source CLI. O’Reilly Edt (2003)

[3] Dumbill, E., Bornstein, N.: Mono: A

Developer’s Notebook. Developers’ Notebooks.

O’Reilly Edt (2004)

[4] Leroy, X.: The Objective Caml system release

3.06 : Documentation and user’s manual.

Technical report, Inria (2002)

http://caml.inria.fr.

[5] Montelatici, R., Chailloux, E., Pagano, B.:

OCamIL homepage (2004) http:

//www.pps.jussieu.fr/~montela/ocamil.

[6] Syme, D.: ILX: Extending the .NET common

IL for functional language interoperability.

Electronic Notes in Theoretical Computer

Science 59 (2001)

[7] Kennedy, A., Syme, D.: Design and

Implementation of Generics for the .NET

Common Language Runtime. In: Proceedings of

the Conference on Programming Language

Design and Implementation (PLDI), ACM

SIGPLAN (2001)

[8] Yu, D., Kennedy, A., Syme, D.: Formalization

of Generics for the .NET Common Language

Runtime. In: Proceedings of the 31st

Symposium on Principles of Programming

Languages (POPL), ACM SIGPLAN (2004)

[9] Remy, D., Vouillon, J.: Objective ML: An

effective object-oriented extension to ML.

Theory and Practice of Object Systems 4

(1998) 27–50

[10] Chailloux, E., Henry, G., Montelatici, R.:

Mixing the Objective Caml and C#

programming models in the .NET framework.

In: Proceedings of Int. Worshop on

Multiparadigm Programming with OO

languages (MPOOL’04). (2004)

[11] de Rauglaudre, D.: camlp4 : Reference manual.

Technical report, Inria (2002)

http://caml.inria.fr.

[12] Finne, S.: Hugs98 for .NET homepage (2003)

galois.com/~sof/hugs98.net.

[13] Pinto, P.: Dot-Scheme: A PLT Scheme FFI for

the .NET framework. In Flatt, M., ed.: Scheme

Workshop. (2003) 16–23

[14] Benton, N., Kennedy, A.: Interlanguage

Working Without Tears: Blending SML with

Java. In: International Conference on

Functional Programming. (1999)

[15] Benton, N., Kennedy, A., Russo, C., Russell,

G.: sml.net homepage (2005)

www.cl.cam.ac.uk/Research/TSG/SMLNET/.

[16] Kokholm, N., Sestoft, P.: Moscow ML .Net

Internals. (2003) http://www.dina.dk/

~sestoft/mosml.html#mosmlnet.

[17] Syme, D.: F# homepage (2005)

http://research.microsoft.com/projects/

ilx/fsharp.aspx.

[18] Simon, R., Stapf, E., Meyer, B.: Full eiffel on

the .net framework. MSDN Library, http:

//msdn.microsoft.com/library/default.asp?

url=/library/en-uspdc_eiffel.asp (2002)

[19] Leroy, X.: The effectiveness of type-based

unboxing. In: Workshop on Types in

Compilation. (1997)

[20] Appel, A.: Runtime tags aren’t necessary. Lisp

and Symbolic Computation (1989)

119

120

Implementing an OCL Compiler for .NET

László Lengyel
 Budapest University of

Technology and Economics
 Goldmann György tér 3.
Hungary 1111, Budapest

lengyel@aut.bme.hu

Tihamér Levendovszky
 Budapest University of

Technology and Economics
Goldmann György tér 3.
Hungary 1111, Budapest

tihamer@aut.bme.hu

Hassan Charaf
 Budapest University of

Technology and Economics
Goldmann György tér 3.
Hungary 1111, Budapest

hassan@aut.bme.hu

ABSTRACT

Model-Driven Architecture standardized by OMG facilitates separating the platform-independent part (PIM) and

the platform-specific part (PSM) of a system model. The platform-independent artifacts are mainly UML models

created with CASE tools. Due to this separation, PIM specified by the developers can be reused across several

implementation platforms of the software. PSM is ideally generated automatically from PIM via model

transformation steps performed by model compilers. Beyond the topology of the visual models additional

constraints must be specified, which ensure the correctness of the attributes among others. Dealing with OCL

constraints provides a solution for the unsolved issues, because topological and attribute transformation methods

cannot perform and express the problems that can be addressed by constraint validation. This paper discusses the

need for combining UML and OCL, it introduces the compilers in general, it shows the architecture of our OCL

Compiler for .NET, and it presents the lexical and syntactic analysis as well as the semantic analysis and code

generation techniques in detail. The OCL Compiler has been implemented as a module of our n-layer

multipurpose modeling and metamodel-based transformation system called Visual Modeling and Transformation

System (VMTS). The OCL Compiler module facilitates validating (i) constraints contained by the metamodels at

the time of the model instantiation process, and (ii) constraints contained by the transformation steps during the

metamodel-based graph transformation. An illustrative case study is also provided, which introduces how VMTS

generates source code from a statechart diagram, and how it validates specific properties using the OCL

Compiler.

Keywords
OCL Compiler, .NET, Constraints, Constraint Validation, UML, Metamodeling, VMTS

1. INTRODUCTION
Model transformation is a possible solution for

realizing model compiler. Its methods are vital in

several applications, for instance the Object

Management Group’s (OMG) Model-Driven

Architecture (MDA) standard [OMG03a] strongly

builds on model compilers, which automatically

create a platform-specific model from the platform-

independent models specified by the modelers.

Software model transformation provides a basis for

model compilers, which plays a central role in the

MDA architecture.

There are many CASE tools that support drawing

UML diagrams and other features like code

generation and reverse engineering. However,

support for OCL attached to model transformation

and mappings between models are rarely found in

these tools. There are several tasks that a CASE tool

should offer in order to provide support for OCL. For

example, syntax analysis of OCL expressions and a

precise mechanism for reporting syntactic errors help

in writing syntactically correct OCL statements. An

important feature is the semantic analyzer, which

reports as many errors as possible in order to help the

user develop solid OCL code.

Often we need to specify a model more precisely than

a topology-oriented visual modeling language

facilitates it. It is a prevalent case that we want to

define expressions and constraints on our model. The

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,

ISBN 80-86943-01-1

Copyright UNION Agency – Science Press, Plzen, Czech Republic

121

Object Constraint Language (OCL) [OCL03a] is a

formal language for analysis and design of software

systems. It is a subset of the industry-standard

Unified Modeling Language [UML03a] that allows

software developers to write constraints and queries

over object models. A constraint is a restriction on

one or more values of an object-oriented model or

system. There are four types of constraints. (i) An

invariant is a constraint that states a condition that

must always be met by all instances of the class, type,

or interface. (ii) A precondition to an operation is a

restriction that must be true at the moment before the

operation is executed. Obligations are specified by

postconditions. (iii) A postcondition to an operation

is a restriction that must be true at the moment that

the operation has just ended its execution. (iv) A

guard is a constraint that must be true before a state

transition fires. Besides these, OCL can be used as a

navigation language as well.

Our n-layer metamodel-based model storage and

transformation software package is called Visual

Modeling and Transformation System [Lev04a]

[Vis03a]. VMTS is implemented using Microsoft

.NET Framework [Mic03a] and illustrates an

approach, where model storage and model

transformation can be treated uniformly, and what

links them together is the notion of the metamodel.

Modeling environments built on metamodeling are

highly configurable (visual) modeling tools allowing

constraints to be specified in advance. VMTS uses

graph rewriting for model transformation as a

powerful tool with strong mathematical background

[Lev04a]. The atoms of graph transformation are

rewriting rules, where each rewriting rule consists of

a left hand side graph (LHS) and a right hand side

graph (RHS). Applying a graph rewriting rule means

finding an isomorphic occurrence (match) of LHS in

the graph to which the rule is being applied (host

graph), and replacing this subgraph with RHS.

Replacing means removing elements which are in

LHS but not in RHS, and gluing elements which are

in RHS but not in LHS. The graph transformation is

defined as an ordered sequence of rewriting rules, in

other words, we control the transformation process by

sequencing the rewriting rules. Previous work

[Lev04a] has introduced an approach, where LHS

and RHS of the rules are built from metamodel

elements. It means that an instantiation of LHS must

be found in the host graph instead of the isomorphic

subgraph of LHS. Hence LHS and RHS graphs are

the metamodels of the graphs which we find and

replace in the host graph.

Often it is not enough to match graphs using the

topological information only. There are cases in

which we want to restrict the desired match by other

properties, e.g. we want to match a subgraph with a

node which has a special property, or which has a

unique relation between the properties of the matched

nodes. The metamodel-based definition of the

rewriting rules facilitates assigning OCL constraints

to the pattern rule nodes contained by the

transformation steps, and with OCL these conditions

can be expressed easily. A precondition

(postcondition) assigned to a rewriting rule is a

Boolean expression that must be true at the moment

when the rewriting rule is fired (after the completion

of a rewriting rule). If a precondition of a rewriting

rule is not true then the rewriting rule fails without

being fired. If a postcondition of a rewriting rule is

not true after the execution of the rewriting rule, then

the rewriting rule fails. A direct corollary of this is

that an OCL expression in LHS is a precondition to

the rewriting rule, and an OCL expression in RHS is

a postcondition to the rewriting rule. A rewriting rule

can be fired if and only if all conditions enlisted in

LHS are true. Also, if a rewriting rule finished

successfully, then all the conditions enlisted in RHS

must be true.

Constraints (pre- and postconditions) facilitate

specifying precisely the execution of the steps

contained by the transformation. Using constraints for

each step, we can define the cases in detail, in which

the step can be fired, and, of course, in which not.

OCL Compiler

Metamodel

OCL constraints

in rewriting rule

Models

Instantiation

Validation

Code / binary

Matches

Matching

Checking

Rewriting

results

Firing the

rewriting rule

Use meta

elements Instantiation

Figure 1. Block diagram for checking constraints

during the rewriting process

Fig. 1 presents a block diagram to illustrate the

method how VMTS checks the rewriting rule

constraints during the rewriting process. It is possible

in VMTS that LHS and RHS use different

metamodels, but for the sake of simplicity in the

block diagram they have a common metamodel. The

rewriting rule contains OCL constraints. VMTS does

not interpret the constraints during the rewriting, but

an assembly is used that is generated by the OCL

Compiler. The rewriting process uses the matches

found by the matching process and the compiled

assembly to validate the constraints on the matched

parts of the host graph. The rewriting process

generates the rewriting result if and only if a match

satisfies the constraints (preconditions), and the step

is successful if and only if the rewriting result

122

satisfies the postconditions. In Fig. 1 the rewriting

result is also an instance model of the metamodel,

because LHS and RHS use the same metamodel.

One of the most important parts of the constraint

validation method is that our constraint checking

approach does not interpret the constraints; OCL

Compiler generates C# code and compiles it to an

assembly, which validates the metamodel and the

rewriting rule constraints. This method facilitates

determining the complexity of the constraint

validation method.

This paper introduces the steps necessary for the

implementation of the OCL Compiler for .NET,

which is capable of compiling OCL constraints into

source code and a binary file that checks the OCL

constraints on the rewriting rules of a transformation

that realizes an MDA model compiler. Our example

is a UML statechart model.

The rest of this paper is organized as follows: Section

2 introduces the concept of a compiler in general, it

presents the architecture of our OCL Compiler and it

discusses the lexical and syntactic analysis as well as

semantic analysis along with the code generation in

detail. In Section 3 we illustrate a case study how to

design a C# form behavior using Visual Studio.NET

Form editor, and how VMTS generates the user

interface handler code based on the statechart model.

In this way the programmer needs to write the

application-specific parts of the code only. Finally,

conclusions and future work are delineated in Section

4.

2. CONTRIBUTION
This section presents the general considerations

related to compilers and their modules shortly and

examines the VMTS OCL Compiler in detail.

Preprocessing
Lexical

Analysis

Syntactic

Analysis

Semantic

Analysis

Platform

Independent

Optimization

Code

Generation

Platform

Dependent

Optimization

Inner Representation

Analysis

Synthesis

 Figure 2. The steps of the compilation

Implementing a compiler is a complex task consisting

of several well-defined subparts. The input of a

compiler is a textual file written in the source

language, and the output is a textual file or a binary in

the target language. The source language and the

target language can be the same or different. The two

main parts of the compilation are: (i) the analysis of

the source language input, and (ii) the generation

(synthesis) of the target language output based on the

retrieved semantic information. Fig. 2 introduces the

steps of the compilation process.

Compiler Architecture
The OCL Compiler is a part of VMTS, therefore the

generated code and the compiled assembly have to fit

in this environment. The block diagram of VMTS

and the place of the OCL Compiler in a metamodel-

based model transformation system are depicted in

Fig. 3. The user interfaces (Adaptive Modeler, Rule

Editor) are functionally separated from the model

storage unit (AGSI Core - Attributed Graph

Architecture Supporting Inheritance), which uses an

RDBMS (Microsoft SQL Server 2000) to store the

model information. Besides this the AGSI Core

exposes its interface to any other applications which

may use other technique to process AGSI data.

Figure 3. Block structure of VMTS

The OCL Interface provides a unified interface for

the user interface modules to access constraint

validation. If it is required, it uses the OCL Compiler

and loads the compiled binary (Compiled

Constraints). AGSI Core stores and handles the

models as labeled graphs: it simply uses nodes and

edges. In OCL constraints these nodes and edges

appear with their names as types, instances and

associations. The main purpose of the AGSI Interface

is to provide a linkage between the OCL expressions

and the model over which the expression should be

evaluated. AGSI provides type information from the

AGSI Core objects. During the compilation and the

constraint validation process we run only select

commands on the AGSI Core data, therefore AGSI

Interface does not support operations modifying the

model.

Lexical and Syntactic Analysis
Lexical and syntactic analyses are realized by code in

the ANSI C language, it is generated by the tools Flex

[Fle99a] and Bison [Bis98a]. We chose these tools

because (i) the compiler is implemented using

Microsoft Visual Studio and it was easy to integrate

123

the Flex and Bison tools into this environment, and

(ii) the VMTS is executed also in the .NET

environment.

The first step of the lexical analysis is the

tokenization, which distinguishes between the

identifiers (name) and the keywords of the language.

Tokenization is achieved by a table, which contains

the keywords. The result of this process is a sequence

of tokens, which contains the meaning of the source

program.

The task of the syntactic analysis is to find the

deduction which generates the source code of the

program, starting from the sentence symbol (S). The

analysis is the same process but in the opposite

direction. The analyzer reads the sequence of the

tokens, and using the production rules it generates an

Abstract Syntax Tree (AST), which is a model of the

program that we want to compile. The AST is a direct

association between the rules in the grammar and the

nodes in the tree, and it is purely an abstract

representation of the syntax, modeled as a tree

[Ake03a] [Ham98a]. The inner nodes of the AST

contain no terminal symbols, while the leaves contain

the tokens.

Original rules Reworked rules

A -> b c? d A -> b d | b c d

A -> b c* d A -> b optionalC d

optionalC -> /* empty */

 | optionalC c

A -> b c+ d A -> b optionalC d

optionalC -> c | optionalC c

Table 1. Reworked EBNF rules for Bison

The UML specification [UML03a] uses EBNF

notation [Ext96a] for the grammar specification,

which we had to modify in certain places to be able to

process it with Bison. We had to rework the ?

(optional element), the * (0..* multiplicity) and the

+ (1..* multiplicity) notations. Table 1 presents the

original EBNF and the modified rules for Bison. The

/* empty */ notation means the empty symbol.

The generation of the AST is possible if and only if

the program is syntactically correct [Loe03a].

Semantic Analysis
OCL allows certain abbreviations in numerous places

and leaving out some identifiers if they do not cause

misconceptions (e.g. the left self identifier). Before

we can start the semantic analysis we must perform a

syntax tree transformation, which inserts the missing

identifiers into the AST.

In the OCL Compiler we cannot use the traditional

symbol table, because the symbols are not in the code

to be compiled, but it must be obtained from another

place, namely, from the VMTS model database. The

most important pieces information we need during

the compilation are: (i) we have to decide about an

identifier appearing in a type name position whether

it is already defined, and whether it is visible for the

context where it is appeared, (ii) during the OCL

property selection we have to check the selected item

of the class: whether it is an attribute, operation or

association (and in this case whether it is navigable).

For these tasks we implemented a class

(TypeHandler) which hides the duality of the

types from the other part of the OCL Compiler. We

can consider this class as a dynamic symbol table of

the types. The TypeHandler class contains the

typeOfCall function:

String typeOfCall(String typeName, String
propertyName, ’dot’|’arrow’)

A type name is passed to the function along with a

property name as a parameter, and the function

returns a type name, which describes the type of the

retrieved object when selecting the given property on

an object of the given type. The third parameter is

‘dot’ or ‘arrow’ depending whether the function call

refers to an OclAny or a Collection class. For

the built-in types the function determines the result

with the help of the System.Reflection namespace

[Mic03a], and for the model types the AGSI Interface

returns the answer.

In summary, the semantic analysis performs two

activities: it maps string-based path names onto types,

and maps OCL specific operations onto the

appropriate semantic model constructs.

Code Generation
Code generation is realized using the

System.CodeDom namespace of .NET Framework

[Mic03a]. It means that the code generation is a

syntax tree composition, from which the framework

generates the source code. Using CodeDOM the

generated source code will be syntactically correct in

all cases; our task is only to deal with the appropriate

semantic content.

The OCL Runtime (Fig. 3) contains C# language

implementation for each predefined OCL types.

Using these classes the operations contained by the

constraints can easily be expressed in the C#

language. While the current version of C# does not

support class templates, the implementation of the

collection types is more complex, than it would be

with generics. The Set, Sequence and Bag classes are

implemented as abstract classes in OCL Runtime, and

when it is required, the compiler inherits from the

adequate base class to create a new typed collection

class. The task of the inherited collection classes is

124

the type conversion, while the fundamental

operations are implemented by the base classes.

Figure 4. The input and the output of the OCL

Compiler

Fig. 4 introduces the input and output of the OCL

Compiler. In case of rewriting rules OCL Constraints

are assigned to rule nodes; recall that rewriting rules

are created from metamodel elements, therefore we

also need the metamodel to access the properties of

the meta types used in the rewriting rules.

The model data is stored in the database and the

instantiation of the model elements, in fact, does not

mean the creation of a .NET object, hence no .NET

types exist in OCL Runtime. Type handling is

realized with the OclType abstract class and its two

descendants: OclBasicType and

OclModelType.

In the CodeDOM tree there are well-defined nodes

for certain syntax tree nodes. For each invariant, pre-

and postcondition there is a public method with a

bool return type. The methods of invariant

constraints do not have parameters, while the

methods of pre- and postconditions have the same

parameters as the corresponding operation defined in

UML. Finally, every OCL expression is an instance

of the OclExpression class. It has an evaluate

method, which returns the result of the expression.

The evaluating method can be overridden in the

descendant classes; it contains the code of the subtree

starting from the oclExpression tree node.

3. A CASE STUDY
Using a case study we introduce how VMTS

generates source code from a statechart diagram,

applying graph-rewriting-based transformation

methods. Furthermore we present how it validates

specific properties using an assembly generated by an

OCL Compiler during the transformation process

with the help of constraints enlisted in the rewriting

rules. The goal of this method is that if the statechart

is specified in detail, then the generated code will

handle the user interface of the system described by

the statechart model.

The Cinema Ticket form is the main form of the

application, which is used on mobile platform to

order cinema tickets using a cellular phone.

In Fig. 5 a screenshot of the Cinema Ticket form is

presented, and its operation is modeled with a

statechart diagram (Fig. 6). The user interface edition

of the “Cinema Ticket” form is accomplished with

the form designer of the Visual Studio .NET, but the

handler code is automatically generated from the

statechart model.

When the form appears, the “Order” list is empty

(lbOrders), the combo boxes (cmbCinema,

cmbFilmTitle and cmbDate), the numeric up-down

control (nudTickets) and the “Close” button

(btnClose) are enabled, and the rest of the buttons are

disabled. The user can create an order by selecting

the desired “Cinema”, “Film” and the exact date, and

by specifying the number of the tickets. If a cinema is

selected from the “Cinema” combo box, the Title of

the “Film” combo box automatically refreshes its

value, and similarly, if a film is selected, the “Date”

combo box automatically loads the exact time when

the movie starts. The “Add Order” and “Clear Fields”

buttons (btnAddOrder and btnClearFields) become

enabled when the value of the combo boxes or the

numeric up-down control changes. Using the “Add

Order” button, the user can add the actual values to

the “Order list”.

When the “Order” list contains at least one item, the

“Order Tickets” button (btnOrderTickets) becomes

enabled and naturally if an item is selected in the

“Order” list, the “Remove” and “Edit” buttons

(btnRemove and btnEdit) are also enabled. Using the

“Order Tickets” button, the user can send the item of

the “Order” list to the cinema as an SMS (or to

cinemas if the list contains several cinemas). If the

order was successful he gets a confirmation message.

The incomplete statechart diagram of the “Cinema

Ticket” form is presented in Fig. 6, where only three

events are modeled:

cmbCinema_SelectedIndexChanged,

btnAddOrder_Click and

lbOrders_SelectedIndexChanged. The complete

statechart diagram is too large to present here.

125

Figure 5. Cinema Ticket form for mobile platform

Figure 6. Statechart model of the Cinema Ticket

form

In Fig. 6 one can see that each event has at least one

handler state. E.g. if the On_btnAddOrder_Click

event is fired, then the btnAddOrder_Click state

handles it. The On_lbOrders_SelectedIndexChanged

event is managed by four states:

lbOrders_SelectedIndexChanged, lbOrdersCount1,

lbOrdersCount2, and After_lbOrdersCount. This

event handler is decomposed into sub-states, because

the handling code depends on the value of the

lbOrders.SelectedItem property.

The case study uses the statechart model (Fig. 6) as

an input model and applies a rewriting rule (Fig. 7) to

it. In the rewriting rule the LHS graph uses the meta-

elements of the Statechart metamodel [UML03a]

[Vis03a] and the RHS graph uses the meta-elements

of the CodeDOM metamodel [Mic03a] [Vis03a]. On

the left hand side of the rewriting rule there are two

states which correspond to the statechart state, and

there is a transition between them with a 0..*

multiplicity on the side of the target state. It means

that applying this rewriting rule exhaustively to a

statechart model, it matches all the states with their

target adjacent states. The rule has to match the

accessible adjacent states, because we need them to

generate the state-transitions into the source code. Of

course, it is possible that a state has no outgoing

transitions, and the reason why we enable the 0 in the

multiplicity is that we want to match states having

only incoming transitions in order to generate

CodeDOM tree for them as well. On the right hand

side of the rewriting rule the CTypeDeclaration

represents a type declaration for a class, structure,

interface or enumeration. CMemberField can be used

to denote the declaration for a field of a type, and

126

CMemberMethod to phrase the declaration for a

method. CParameter represents a parameter

declaration for a method, property, or constructor,

and CSnippetStatement means a statement using a

literal code fragment. The code generation means a

syntax tree generation (CodeDOM tree) from which

the framework generates the C# source code.

Figure 7. Rewriting rule of the case study

In a rewriting rule we can connect the LHS elements

to the RHS elements, this relation between the LHS

and RHS elements is called causality [Kar03a], which

facilitates assigning an operation to this connection.

Causalities can express modification or removal of an

LHS element, and creation of an RHS element. In

Fig. 7 the causalities are drawn as dotted lines. The

create operation and attribute transformation, which

is one of the most important parts of the rewriting

process, are accomplished by XSL scripts. The XSL

scripts can access the attributes of the object matched

to the LHS elements, and they produce a set of

attributes for the RHS element to which the causality

point. VMTS stores models as labeled graphs, and

each node and each edge have a property XML,

which contains the attributes of the model element. In

the current case study the VMTS rewriting engine

concatenates the property XMLs of the matched

states and transitions, and it uses the result as the

input of the XSL script.

A part of the XSL script used by the case study to

generate the rewriting result is presented in Fig. 8.

The XSL selects the name of the actual state (method

name) for the methodName variable. The first part of

the script creates a NODE type Element with the

following properties: the name of the new element

should be the value of the methodName variable, the

return type should be void, the modifier attribute

should be private, the meta type should be

CodeMemberMethod, the RHSRuleNodeName should

be CMemMethod, the ContainerName should be

CinemaTicked (this is the name of the class which

contains the methods). Finally, the CreatedProperties

part is also added.

<xsl:variable name="methodName" select="//Name"/>

<xsl:template match="/">

 <RewriteResult>

 <Element>

 <ElementType>NODE</ElementType>

 <Name><xsl:value-of select="$methodName"/></Name>

 <ReturnType>void</ReturnType>

 <Attributes>private</Attributes>

 <MetaTypeName>CodeMemberMethod</MetaTypeName>

 <RHSRuleNodeName>CMemMethod</RHSRuleNodeName>

 <ContainerName>CinemaTicket</ContainerName>

 <CreatedProperties>

 <CodeMemberMethod>

 <Name><xsl:value-of select="$methodName"/></Name>

 <ReturnType>void</ReturnType>

 <Attributes>private</Attributes>

 </CodeMemberMethod>

 </CreatedProperties>

 </Element>

 <Element>

 <ElementType>NODE</ElementType>

 <Name>sender</Name>

 <Type>object</Type>

 <MetaTypeName>CodeParameterDeclarationExpression

 </MetaTypeName>

 <RHSRuleNodeName>CParameter</RHSRuleNodeName>

 <ContainerName><xsl:value-of

 select="$methodName"/></ContainerName>

 <CreatedProperties>

 <CodeParameterDeclarationExpression>

 <Name>sender</Name>

 <Type>object</Type>

 </CodeParameterDeclarationExpression>

 </CreatedProperties>

 </Element>

...

 <xsl:for-each select="//InternalTransition/Statement">

 <xsl:call-template name="codeSnippetStatement"/>

 </xsl:for-each>

...

 </RewriteResult>

</xsl:template>

<xsl:template name="codeSnippetStatement">

 <Element>

 <ElementType>NODE</ElementType>

 <Name>Snippet</Name>

 <Statement><xsl:value-of select="Value"/></Statement>

 <MetaTypeName>CodeSnippetStatement</MetaTypeName>

 <RHSRuleNodeName>CSnipStat</RHSRuleNodeName>

 <ContainerName><xsl:value-of

 select="$methodName"/></ContainerName>

 <CreatedProperties>

 <CodeSnippetStatement>

 <Statement><xsl:value-of select="Value"/></Statement>

 </CodeSnippetStatement>

 </CreatedProperties>

 </Element>

 …

</xsl:template>

...

Figure 8. A part of the XSL script used by the

case study to generate the rewriting result

The second presented XSL segment creates a

parameter for the method, the third part selects the

127

Statements of the internal transitions, and it calls the

codeSnippetStatement template for each Statement.

Finally, a part of the codeSnippetStatement template

is depicted.

Constraint Validation
We assign constraints to model elements and to the

steps accomplished by generators to fully specify

models and rewriting rules. With the help of these

constraints we obtain a precise and consistent

description of the transformation steps. In VMTS the

main method to specify constraint validation is the

relation between the pre- and postconditions and the

OCL constraints assigned to the rewriting rules.

When we initialize the controls in .NET, e.g. change

the Text value of a text box, then it a TextChanged

event is raised, or the SelectedIndex property of a

combo box is set, when it is sent a

SelectedIndexChanged event. This behavior of the

controls affects the operation of the form in an

inappropriate way. There is an example for that in the

case study, when the user selects an item in the

“Orders list” and clicks on the “Edit” button, the form

has to show the properties of the selected order.

Hence it has to change the SelectedIndex value of the

“Cinema” combo box, the SelectedIndex value of the

“Film” combo box and so on. The effect of these

operations is that the “Add Order” and “Clear Fields”

buttons become enabled, but we do not want them so,

because it is not a real property modification. We can

eliminate this undesirable operation with a constraint

(postcondition of the rewriting rule):

context CMemberMethod inv handle_changes:

if self.Type = ‘EventHandler’ then self.Statements.Count >

0 and self.Statements[0].Value = ‘if (!m_bHandleChanges)

return;‘

This invariant constraint describes that if the type of

an CMemberMethod object is EventHandler, then it

should have more than zero Statement, and the value

of the first statement should be ‘if

(!m_bHandleChanges) return;’. A snippet statement is a

code fragment, and this snippet guarantees that the

event handler functions do not handle the events if

the value of m_bHandleChanges variable is false.

In the “Cinema Ticket” order we require that the

number of ordered tickets for a film to be at least 1

but maximum 12. Therefore if the user would like to

add an order to the “Orders list”, we have to validate

that the value of the “Number of tickets” control is

between 1 and 12. Therefore if the value of the

nudTickets.Value is not proper, we have to prevent

adding the actual values to the “Orders list”, until the

user does not modify the “Number of tickets” field.

The constraint that describes this condition is the

following (postcondition of the rewriting rule):

context CMemberMethod inv name_length:

if self.Name = ‘btnAddOrder_Click’ then

self.Statements.Count > 1 and self.Statements[1].Value =

‘if (nudTickets.Value < 1 || nudTickets.Value > 12) return;‘

Using the following constraint (precondition of the

rewriting rule), the rewriting rule validates that the

states with the generated CodeDOM tree are not

unreachable (isolated) states in the statechart

diagram. It means that starting from the start state we

can reach these states.

context state inv constraint_unreachable:

self.IsStartState or self.InTransitions->size() > 0

To validate the code which is generated by the OCL

Compiler, please refer to [Vis03a].

When we generate source code from a statechart

model, there is usually a function for each state in the

generated source code, which implements the

behavior of the state (the transitions and the internal

transitions as well). In form-based, event-driven

development the event handler methods of the

controls provide the operation logic of the forms.

Therefore the goal of the case study is to generate the

skeleton of the user interface handler code; VMTS

generates that part of the event handler methods for

which it has enough information in the statechart

diagram. E.g. based on the incoming and outgoing

transitions and their conditions, the generator can

produce a complete event handler function from

several model states. An example in the case study is

the lbOrders_SelectedIndexChanged event handler

method, which is generated from four states, and its if

branches are generated from the transition conditions.

Furthermore the transformation generates the code

fragments recommended by the constraints; a part of

this code can be assertion code. An assertion checks a

condition and displays a message if the condition is

false. Assertions support the testing procedure and

contribute to the correct operation.

Based on the presented principles, the whole process

of the case study is the following: The OCL Compiler

generates the constraint validation assembly, the

matching process searches for topological matches in

the statechart model (host graph). Then the

Validation Module uses the validation assembly and

checks the LHS graph containing constraints

(preconditions) continuously at matching time or after

the matching process on the found matches (this

option if configurable in the system). If and only if a

match satisfies the preconditions, the rewriting

process generates the rewriting result with the help of

a user defined XSL script. The Validation Module

128

checks the RHS graph containing constraints

(postconditions) on the rewriting result. The rewriting

rule is finished successfully if and only if the

rewriting result satisfies the postconditions.

private void cmbCinema_SelectedIndexChanged(object sender,

System.EventArgs e)

{

 if (!bHandleChanges) return;

 bHandleChanges = false;

 btnAddOrder.Enabled = false;

 btnClearFields.Enabled = false;

 if (lbOrders.SelectedItem == null)

 {

 btnRemove.Enabled = true;

 btnEdit.Enabled = true;

 }

 if (lbOrders.SelectedItem != null)

 {

 btnRemove.Enabled = false;

 btnEdit.Enabled = false;

 }

 bHandleChanges = true;

}

private void lbOrders_SelectedIndexChanged(object sender,

System.EventArgs e)

{

 if (!bHandleChanges) return;

 btnAddOrder.Enabled = true;

 btnClearFields.Enabled = true;

}

private void btnAddOrder_Click(object sender, System.EventArgs

e)

{

 if (!bHandleChanges) return;

 if (nudTickets.Value < 1 || nudTickets.Value > 12) return;

 addActualValuesToOrderList();

 btnOrderTickets.Enabled = true;

 cleareFields();

 btnAddOrder.Enabled = false;

 btnClearFields.Enabled = false;

}

Figure 9. Generated event-handler source code

A part of the generated code is presented in Fig. 9.

These C# functions form the generated

lbOrders_SelectedIndexChanged,

cmbCinema_SelectedIndexChanged and

btnAddOrder_Click event handler methods based on

the discussed statechart diagram (Fig. 6).

4. CONCLUSIONS AND FURTHER

WORK
In this paper an OCL Compiler component of an n-

layer multipurpose modeling and metamodel-based

transformation system is presented. This work has

introduced the need of combining UML and OCL

during the modeling process, and discussed the steps

(lexical and syntactic analysis, semantic analysis and

code generation) of implementing a metamodel-based

OCL Compiler module.

Based on the OCL Compiler and the possibilities

provided by VMTS, a case study has been presented

to show the applicability and the practical relevance

of the presented tools. It has been shown that the

metamodel-based graph rewriting method can be

applied to transform statechart models to a syntax

tree, generate source code from it, and to validate the

rewriting rule constraints during the transformation

In statechart diagrams VMTS facilitates assigning

function names as actions to the events. The event

handler methods generated by the current version of

the transformation are not fully specified ones; the

user has to complete them on the source code level.

As the next step of this method we will implement the

feature to edit the event handler code at modeling

time, and the transformation will use the specified

event handler code snippets during the code

generation. Furthermore, future work includes the

design and implementation of branch conditions.

With the help of branch conditions VMTS will

support branch logic in the execution order of the

rules during the transformation process, using RHS

graphs containing constraints.

5. ACKNOWLEDGMENTS
The fund of „Mobile2004 Consortium” has

supported, in part, the activities described in this

paper.

6. REFERENCES

[Ake03a] David Akehurst, Octavian Patrascoiu: OCL 2.0 -

Implementing the Standard for Multiple Metamodels,

Workshop Proceedings, 6th International Conference

on the UML and its Applications,<<UML>>2003,

ENTCS, Oct. 2003

[Bis98a] Bison, Official Homepage,

http://www.gnu.org/software/bison/bison.html

[Ext96a] Extended Backus-Naur Form (EBNF) ISO/IEC

14977:1996(E) standard

[Fle99a] Flex, Official Homepage,

http://www.gnu.org/software/flex/

[Ham98a] Ali Hamie, John Howse, Stuart Kent:

Interpreting the Object Constraint Language,

Proceedings 5th Asia Pacific Software Engineering

Conference (APSEC '98), December 2-4, 1998, Taipei,

Taiwan, 1998

[Kar03a] Karsai G., Agrawal A., Shi F., Sprinkle J.: On the

Use of Graph Transformations for the Formal

Specification of Model Interpreters, Journal of

Universal Computer Science, Special issue on Formal

Specification of CBS, 2003

[Lev04a] Levendovszky T., Lengyel L., Mezei G., Charaf

H.: A Systematic Approach to Metamodeling

Environments and Model Transformation Systems in

VMTS, Electronic Notes in Theoretical Computer

Science, International Workshop on Graph-Based

Tools (GraBaTs) Rome, 2004

129

[Loe03a] Sten Loecher, Stefan Ocke: A Metamodel-Based

OCL-Compiler for UML and MOF. In OCL 2.0 -

Industry standard or scientific playground, Workshop

Proceedings, 6th International Conference on the UML

and its Applications,<<UML>>2003, ENTCS, Oct.

2003

[Mic03a] Microsoft .NET Framework

http://msdn.microsoft.com/netframework/

[OCL03a] Object Constraint Language Specification

(OCL), www.omg.org

[OMG03a] OMG Model Driven Architecture homepage,

www.omg.org/mda/

[UML03a] UML 2.0 Spec. http://www.omg.org/uml/

[Vis03a] VMTS Web Site

http://avalon.aut.bme.hu/~tihamer/research/vmt

130

An Approach for Cross-Model Semantic
Transformation on the .NET Framework

Artur Boronat, José Á. Carsí, Isidro Ramos, Julián Pedrós

Department of Information Systems and Computation
Technical University of Valencia

Camí de Vera s/n
46022 Valencia (Spain)

{aboronat | pcarsi | iramos | jpedros}@dsic.upv.es

ABSTRACT
Model-Driven Development is a suitable approach for improving productivity and quality in the software
development process by raising the level of abstraction of software artifacts from code to models. In this
context, code generation has traditionally been the star feature. Working on models also provides more reusable
solutions to problems that have to be solved in an ad-hoc manner using the .NET technology: interoperability
between applications, integration of applications, legacy system recovery, software evolution, maintainability,
etc. One mechanism for dealing with models is model transformation. Although several tools follow this
approach to generate code that targets the .NET platform, there are no tools based on .NET technology that
provide model manipulation such as transformations. In this paper, we present a platform that permits the formal
representation of models and an operator to transform models in a declarative way. This platform has been
implemented using the F# functional programming language, presenting its advantages over an implementation
using an imperative programming language such as C#. The platform has been integrated into the Visio
modeling environment by means of an add-in to deal with formal models through visual metaphors (visual
notation). To our knowledge, this solution is the first approach for dealing with cross-model semantic
interoperability on the .NET technology.

Keywords
Model-driven development, model transformation, graphical notation, MS Visio 2003, F#, Office managed
COM add-in, cross-language interoperability.

1. INTRODUCTION
Model-Driven Development (MDD for short)
[Sel03] is a suitable approach to combat the
complexity of software development by means of
principles such as abstraction and modularity, which
improve the quality, reuse, and scalability of
software artifacts. This discipline also improves the
productivity and quality in the software development
process to obtain automatically error-free code that is
easy to maintain. Following this approach, a software
artifact is modeled at a high level of abstraction

where technical details are not as important as
semantics. The structure and semantics of a software
artifact are modeled by using an ontology or
metamodel (a vocabulary that provides constructs to
specify a model in a determined manner). A
metamodel can be domain-independent such as
UML, or domain-specific, taking into account
specific types of software systems, such as banks,
electronical circuits, business modeling, etc.
In accordance with [Cza00], the MDD approach
based on UML-like metamodels is called Object-
Oriented Analysis and Design, while the MDD
approach based on domain-specific metamodels is
called Domain Engineering. Microsoft has shown a
growing interest in the MDD discipline by adding
designers to the Visual Studio environment in order
to build software artifacts by means of models. This
technology should be expanded to cover domains of
interest to their customers, such as code
visualization, business modeling, etc., thereby

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

131

applying Domain Engineering from a commercial
standpoint [Coo04].
In MDD, models defined by means of metamodels
are usually transformed into code, providing the final
application that can be directly compiled and
executed on a specific platform, such as .NET. There
are lots of tools that provide code generation based
on models in the .NET world, called model
compilers: from visual modeling environments (such
as Visio, Rational XDE [Rat] among others) to
development environments (such as the Visual
Studio .NET).
However, generating code from models forces the
programmer to work on code in order to face well-
known problems in the software engineering field:
round-trip, application integration, legacy system
recovery, refactorization, software evolution,
maintainability, etc. These problems can be solved at
a more abstract level by dealing with models directly,
obtaining the same advantages that the MDD
discipline obtains for the software development
process. This is the point where model
transformations come into play [Sen03]. To provide
support for model transformations, two main issues
have to be taken into account: model representation
to structure the information in some accessible
manner and a transformation mechanism to
manipulate such models. Although this issue is
becoming well-known in the research field [Cza03],
to our knowledge, there are no tools based on the
.NET technology to achieve transformations of this
kind. A solution of this nature would improve the
productivity and the quality in the integration of
.NET-based applications at a high level of
abstraction, rather than just benefiting from the
cross-language interoperability that the .NET
Framework provides at code level. Therefore, a
solution of this nature would achieve cross-model
interoperability.
In this paper, we provide a solution along these lines.
We present a mechanism that takes advantage of the
MS Visio modeling tool in order to describe the
structure of visual models in a formal manner. This
mechanism uses a platform to represent and store
software artifacts in four layers, where metamodels
and models are taken into account. Models defined
on the platform can be transformed in a declarative
fashion by using the platform operator generate,
which permits the translation of a model between
different metamodels.
This platform has been developed using the
functional language F# [Fsh]. Taking into account its
advantages over conventional OO languages such as
C#, models are formally described in an algebraic
fashion.

Our solution takes advantage of the .NET cross-
language interoperability and the Office extension
mechanism by means of managed COM add-ins. It
extends the Visio tool by using the most suitable
language in each context: F# to implement the
definition of formal models and their manipulation,
and C# to integrate this functionality into the Visio
tool.
The structure of the paper is as follows: in Section 2,
we discuss and compare the C# and F# programming
languages, evaluating their suitability in our solution;
Section 3 presents a platform that enables the
definition of models in an algebraic fashion; Section
4 presents the add-in that integrates this platform into
the Visio modeling environment, enabling the
manipulation of formal models by means of
graphical metaphors (graphical notation); Section 5
describes the F# definition of the model
transformation mechanism that is provided by the
platform; finally, Section 6 summarizes our
contributions.

2. F# versus C#
F# is a functional programming language that targets
the .NET platform. F# has been developed at MS
Research Cambridge and is a version of the Caml
programming language [Cah00], which belongs to
the ML languages family. F# is well integrated in the
Visual Studio environment1 and provides certain
features that are inherited from Caml, which make it
interesting for our purposes.

F# is based on the lambda-calculus model [Rea93]
by means of a strict (eager) evaluation strategy.
Therefore, it permits the definition of a program
independently from the evaluation strategy used, that
is without mixing functionality and control logic as is
necessary in C#.

F# provides richer constructs to declare types like
sum types, among others. A sum type permits the
definition of a type by means of constructor patterns,
each of which may have arguments. Sum types allow
us to describe the signature of an algebraic
specification [Ehr85], where the name of the type is
the sort, and the constructor patterns are the
constructors of a sort. This comparison allows us to
deal with models from an algebraic point of view,
where semantics of models can be described formally
by means of Abtract Data Types. This feature is not
feasible in C# intuitively, although it can be
simulated in the same way that such constructors are
invoked from C# code by means of static methods.

1 Although we used F# version 0.6.4.1 for this solution.

132

F# provides a conditional pattern matching
mechanism that enables the definition of functions
over sum types in an intuitive way by applying a
pattern to each constructor in order to perform a task.
This mechanism can be simulated in a more complex
way in C# by means of the switch statement and the
addition of if statements inside each case of the
switch statement.

The F# compiler infers the types of the declaration of
a function statically (the types of its arguments and
the type of its closure, i.e. the type of the returned
value), so that these types do not have to be indicated
in the definition of the function. This feature makes
the definition of F# programs easier.

As all values are functions in F#, we can use lists of
functions whenever we need them, rather than using
delegates, as it happens in C#. This also provides
parametric polymorphism that is used to provide
some parametric functions that deal with lists without
knowing the types of their elements: map to apply a
function to the elements of a list, find to search the
elements of a list that validate a condition, exists to
know if some elements of a list validate a condition,
etc. This feature, called generics, has not been added
to the current release of the .NET Framework,
although it will be added to the next release [Yu04].

Although F# is a functional language, it also
provides imperative features such as references
(pointer to a value), which allow us to manipulate the
memory state whenever necessary for the sake of
efficiency. Furthermore, the last and the most
important feature of F# is its full interoperability
with languages that target the .NET platform, such as
C#, by means of the ILX extensions [Sym01] to the
IL language.

All these considerations have encouraged us to use
F# for the implementation of our solution to deal
with models from a formal standpoint, on the
grounds that we can use C# to integrate our solution
to tools based on the .NET technology, such as the
Visio modeling environment.

3. ALGEBRAIC REPRESENTATION
OF MODELS BY MEANS OF F#
Our approach constitutes a platform that uses several
metadata layers to describe any kind of information.
In our work, we consider software artifacts in four
abstract layers (as shown in Figure 1):
− The M0-layer collects the examples of all the

models, i.e., it holds the information that is
described by a data model of the M1-layer.

− The M1-layer contains the metadata that describes
data in the M0-layer and aggregates it by means of

models. This layer provides services to collect
examples of a reality in the lowest layer.

− The M2-layer contains the descriptions
(metamodels) that define the structure and
semantics of the models located at the M1-layer.
A metamodel is an “abstract language” that
describes different kinds of data.

− The M3-layer is the platform core, containing
services to specify any metamodel with the same
common representation mechanism. It is the most
abstract layer in the platform. It contains the
description of the structure and the semantics for
metamodels. This layer provides the “abstract
language” to define different kinds of metadata.

The core of the prototype is an algebra that provides
a set of sorts and constructors to define models and a
set of operators to manipulate them. To implement
this algebra, we have used the F# programming
language for two main reasons: to bring a formal
model transformation approach closer to an industrial
programming environment, such as .NET, and to
benefit from the functional programming advantages
presented above.

Figure 1. Graphical representation of the four-
layered platform.

An Algebra for Representing Models
The algebra aims to represent models of any kind as
algebraic terms in order to automate model
transformation tasks in a precise, formal way.
Achieving this objective implies choosing a basic
specification language that permits us to describe any
piece of data.
We have developed a platform based on this algebra
that permits the representation of software artifacts in
the four meta-layers explained above. Four main
sorts permit the definition of a model as a term in the
algebra:
1. Concept

A concept represents an entity that can be
described by means of properties. The constructor
of this sort is defined in F# notation as follows:

 Concept = NilConcept
| Concept of (Concept * string)

M3 Schema

UML
metamodel

relational
metamodel

XSD
metamodel

Clase1

Clase2

1

*

DC1
Clase1

Clase2

1

*

DC1
-c odigo : int
-fecha : Date

Factura
-descripcion : string
-horas : float

LineaFactu ra
-codigo : int
-descriptor : string
-precio/hora : f loat

Tarea

-dni : string
-nombre : st ring

Propietario -codigo : int
-situacion : string
-desc ripcion : string
-tamaño : float

Propiedad
-codigo : int
-nom bre : str ing
-dni : st ring
-telefono : str ing

Trabajador

1 *
0. .* 1

0..*

1..*

0..*

1

1 0..*

DC2
-c odigo : int
-fecha : Date

Factura
-descripcion : string
-horas : float

LineaFactu ra
-codigo : int
-descriptor : string
-precio/hora : f loat

Tarea

-dni : string
-nombre : st ring

Propietario -codigo : int
-situacion : string
-desc ripcion : string
-tamaño : float

Propiedad
-codigo : int
-nom bre : str ing
-dni : st ring
-telefono : str ing

Trabajador

1 *
0. .* 1

0..*

1..*

0..*

1

1 0..*

DC2

Inv o ice

P K code

 da te

Invo iceLine

P K in vo ice_co de
P K n um ber

 p rice
 h ours
FK 1 c ode

relational
schema

XML
schema

cod igo : i nt = 0
fecha : D ate = 01/12 /2004

F1 : Factura
descripcion : string = ""
ho ras : floa t = 2

LF1 : L ineaFactu ra

descripcion : string
horas : float = 2,5

LF2 : L ineaFactura

cod igo : int = 002
descriptor : string = poda
precio /hora : floa t = 7

T1 : Tarea

Objects Tuples XML document

La
ye

r M
3

La
ye

r M
2

La
ye

r M
1

La
ye

r M
0

<document>
<item>
…
</item>

</document>

133

where NilConcept represents a null concept term;
the first argument of the constructor Concept is a
term of the sort Concept that represents its
metaconcept in the next upper abstraction layer,
and the second argument is its identifier.

2. Property
A property is a relationship that relates either a
concept or a property (subject of the property) to a
concept (the object of the property), following the
RDF philosophy to describe metadata [W3C].
Such relationships are specified by means of the
Property sort.

We express the constructor of this sort in F#
notation as follows:

where NilProperty represents the null property term
and the arguments of the constructor Property are the
following elements in order of appearance:

− Parent property indicating its type.
− Identifier of the property.
− Minimum cardinality of the property that

indicates the minimum amount of instances of
the range concept, which must be related to the
subject node.

− Maximum cardinality of the property that
indicates the maximum amount of instances of
the range concept that can be related to the
subject node.

− Subject element that receives the property. This
can be a concept or another property, because a
property may involve other properties.

− Object element that constitutes the value of the
property. A property cannot be the object of
another property on the grounds that it does not
provide additional information.

3. Schema
In our context, a schema term represents a
collection of concepts and properties that describe
such concepts.

4. Level
A level term represents a layer in the platform.
Four terms of this sort constitute the four-layer
structure of the platform. The term M3-layer
represents the most abstract layer in the platform
and contains a basic vocabulary to define
metamodels at the M2-layer, i.e. a simplified
meta-metamodel. This schema contains the term
Concept and the term Property; the latter relates
two concept terms, constituting the minimal
structure that we use to represent a model at a
lower layer. The four layers of the platform are
defined as values that can be accessed by means
of references (pointers to a value). This simplifies

the definition of transformation rules and
enhances efficiency.

For instance, the Relational Metamodel is a schema
term that contains the concepts and properties that
constitute the terminology to define a relational
schema, as shown in Figure 2. For instance, Table
and Column are represented by means of concept
terms, which are related to each other through a
property table/Column in the relational metamodel at
the M2-layer. This metamodel allows the definition
of the concept Invoice as a table. In an identical way,
the concept Code is defined as a column, which is
related to the table Invoice by means of an instance
of the property table/Column, i.e. by means of the
invoice/Code property.

Figure 2. Definition of metamodels and models on

the platform.

4. VISIO AS A VISUAL
ENVIRONMENT FOR DEALING
WITH ALGEBRAIC MODELS
Taking into account the four-layered platform based
on the functional implementation of the presented
algebra, we have developed an add-in for MS Visio
2003, called Platform Integrator. This add-in permits
the association of a graphic metaphor with a formal
metamodel in the Visio modelling environment and
the automatic definition of its models as algebraic
terms.
The customization of the Visio modeling visual
environment is performed by means of add-ons, i.e.
sets of stencils that provide the graphical information
needed to define the graphical notation for a
metamodel. To extend the tool, a type of module,
called an add-in, is used to add functionality. Given
the easy extension that such add-ins provide by
means of managed COM (Component Object
Model), Visio is the selected tool to embed our
model repository. The formal definition of models,
which our add-in provides, allows us to transform
models as we present in the following section, rather
than merely defining the models graphically.

Property = NilProperty
| Property of (Property * string * Cardinality *
Cardinality * Node * Concept)

Relational
Schema

Concept

Table Column

Invoice Code

table/Column

invoice/Code

Property

M2

M3

M1

Relational
Metamodel

is_instance_of

134

Outside the Add-in
The add-in architecture is divided into three layers:
the interface that graphically represents metamodels
and models; the middle layer that permits the
association of such graphics to algebraic
representation of models; and the persistence layer
that stores all the information.
In the middle layer, the module Platform Integrator
enables the definition of associations between the
graphical elements of the interface of Visio and the
algebraic terms that define software artifacts in the
four-layered platform. Such associations are stored in
the same platform as instances of UML classes at the
M0-layer by means of the UMLSupport library.
The persistence layer consists of two types of storage
units: the one provided by Visio and the one
provided by model repository of the platform.
In Visio, graphical models are stored by means of
two types of files: .vss files that store the model
defined in the shapesheet, and .vst files that provide
the templates with masters (stencils), which enable
the definition of shapes in the shapesheet. Visio
provides several templates with several kinds of
masters to define a large variety of models by
default. Nevertheless, a user can define new
templates to define other types of models.
The four-layered platform stores the information in a
RDF repository on the grounds that the concepts and
properties used in the platform are equivalent to RDF
resources and properties, respectively. The repository
used is Redland [Bec01], which we have embedded
in a visual studio project and compiled on the .NET
platform by means of the managed C++
programming language. In this repository, we store
schemas that belong to any layer of the platform, and
we store associations between graphical elements of
the modeling environment and algebra terms.

Inside the Add-in
The graphical elements of the Visio interface are
related to platform elements by means of the module
Platform Integrator. To present both the definition of
a graphical metaphor related to a metamodel and the
definition of formal models by means of this
association, we focus on the M2-layer and the M1-
layer of the platform. These layers store information
of metamodels and models, respectively. In this way,
a schema of the M2-layer is related to a Visio stencil,
while a schema of the M1-layer is related to a Visio
shapesheet. To graphically represent the concepts
and the properties that constitute a metamodel at the
M2-layer, we use the masters that define the chosen
stencil. In the case of the graphical representation of
elements that constitute a model at the M1-layer, we

use shapes that are defined by means of masters of a
stencil.
The association mechanism that relates a formal
model to a graphical representation has been
modelled in Figure 3 using UML notation. In this
model, the SchemaWrapper class contains the
information needed to relate a schema to its visual
representation, while the class NodeWrapper
contains the information that relates a concept or a
property to a specific image. Specializations of both
classes identify whether a schema is a metamodel
(GraphicViewWrapper) or a model
(GraphicModelWrapper), and whether either a
concept or a property is a metamodel element
(GraphicPrimitiveWrapper) or a model element
(PictureWrapper). In the case of a metamodel, an
instance of the GraphicViewWrapper class relates a
schema of the M2-layer to a stencil, and an instance
of GraphicPrimitiveWrapper class relates a node of
the schema to a master. In the case of a model, an
instance of the GraphicModelWrapper class relates a
schema of the M1-layer to a shapesheet, and an
instance of the PictureWrapper class relates a node
of the schema to a shape.

Storage of UML Software Artifacts
The association between Visio graphical elements
and platform elements (defined in the UML class
diagram in Figure 3) is stored in the same four-
layered platform. In this way, the platform is used as
an object-oriented repository on the grounds that it
enables both the definition of UML models at the
M1-layer and the definition of their instances at the
M0-layer.

Figure 3. UML Model of the association
mechanism between graphical elements and

algebraic terms.
To achieve this, we have specified part of the UML
metamodel as a schema at the M2-layer of the
platform, taking into account classes and
associations. The class diagram in Figure 3 has been
specified in a schema at the M1-layer of the platform
as an instance of this UML metamodel. Therefore, to

+Id : string
+GraphicSchemaId : string
+GraphicSchemaRepository : Repository
+MOMENTLayerId : URI
+MOMENTSchemaId : URI

SchemaWrapper

+Id : string
+GraphicNodeId : string
+MOMENTNodeId : URI

NodeWrapper

1 *

GraphicViewWrapper GraphicPrimitiveWrapper

GraphicModelWrapper PictureWrapper

1 *

1

*

1

*

135

define associations between elements of the platform
and Visio graphical elements, a schema can be
defined at the M0-layer of the platform by
instantiating the classes that constitute the model at
the M1-layer.

Definition of Graphic Metaphors for
Metamodels
To define a metamodel by means of Visio, we
associate a schema of the M2-layer of the platform to
a stencil. Then, each of its masters is related to a
node of the schema by means of the interface in
Figure 4, completing the graphical metaphor related
to the metamodel. The formal metamodel can be
directly defined on the platform by means of the
Visio interface; it can also be loaded from the
platform.
To define a master in the interface shown in the
Figure, an association between a metamodel of the
platform and a stencil must be selected. Then, a
master of the stencil and a node of the schema are
selected and related by means of a new association.
After this, the hidden properties of a node (i.e. the
properties that are not related to a master directly)
can be accessed. They are shown in the list that
appears at the bottom of the interface, and they can
also be navigated recursively by means of the tree,
placed on the left part of the interface.
Once a metamodel is graphically defined in Visio, it
can be used to define visual models by means of the
drag-and-drop mechanism, by dropping masters of
the stencil onto the shapesheet. We enrich this
mechanism so that the shape is not only graphically
defined in the shapesheet but also its contents are
defined in the platform. This functionality is
embedded in the Platform Integrator module,
providing this functionality automatically in a
transparent manner to the user. Thereby, we not only
define a graphical model but also provide the
semantic information related to a metamodel.

Therefore, we can define formal models in a visual
manner so that they can be manipulated by means of
transformations as we explain in Section 5.

5. TRANSFORMATIONS
The operator generate permits the translation of a
model of a specific metamodel into a model of a
different metamodel. The semantics of the operator is
defined denotationally by means of the pattern
matching mechanism of F#.
The operation generate defines an evaluation
strategy operationally (by means of the pattern
matching mechanism) in order to enable the
definition of transformation rules in a declarative
manner. In this way, transformation rules are defined
like axioms that do not take into account the rule
evaluation strategy embedded in the operator
generate. In this section, we introduce the likeness
relation2, which enables the definition of
transformation rules based on metamodels. Then, we
describe the structure of a transformation rule.
Finally, we define the operational semantics of the
operator generate.

Semantical Relationships between
Metamodels
In our approach, transformations are based on
metamodels. Applying a transformation to a source
model involves two metamodels: a source metamodel
that describes the structure and semantics of the
source model, and a target metamodel that provides
the structure and semantics for the new model to be
generated. Two types of transformations can be
distinguished taking into account the target
metamodel:

2 We have chosen the name likeness instead of

equivalence, on the grounds that the equivalence relation
is defined between elements of different metamodels,
which cannot be equal.

Figure 4. Interface to graphically define concepts and properties of a metamodel.

136

− Intra-metamodel: when both the target and the
source metamodels are the same. In this paper,
we do not discuss this type of transformation.

− Inter-metamodel: when both the target and the
source metamodels are different.

By basing our transformations on metamodels, we
can specify them from an abstract point of view
taking into account the metainformation that
constitutes both the source and the target
metamodels. This way, transformation rules can be
viewed as patterns that can apply to any model of the
source metamodel. To define such rules, we
introduce the likeness relation between elements of
two metamodels.
The likeness relation is based on mappings between
the elements of both the source and the target
metamodels. A mapping is a property that is an
instance of a property, called Likeness, defined at the
M3-layer. A mapping relates a concept of the source
metamodel to a concept of the target metamodel. For
example, indicating that a Table in the relational
metamodel is like a Class in the UML metamodel. A
set of mappings conforms a likeness relationship
indicating that the concepts, which participate in
these mappings, represent a similar semantic
meaning in their respective metamodels.
A likeness relationship between elements of two
metamodels may involve more than one element of
either the source or the target metamodels. Thus, we
distinguish between:
− Simple likeness relationships: specified by means

of only one mapping.
− Complex likeness relationships: specified by a set

of mappings involving several elements from
either the source or the target metamodels. For
example, to define an equivalence relationship
between a foreign key of the relational
metamodel and an aggregation of the UML
metamodel, we have to relate the foreign key, the
unique constraint and the not null value constraint
concepts to the aggregation concept. This is
because these three concepts of the relational
metamodel provide the necessary knowledge to
define an aggregation between two classes in the
UML metamodel, such as the cardinalities of the
aggregation.

A likeness relation between two metamodels is
defined as the union of all likeness relationships
established between the elements of both
metamodels. As a first approach to provide cross-
model semantic interoperability on the .NET
platform, we only focus on simple likeness
relationships.

Transformation Rules
The operator generate is applied to a schema of the
source metamodel and defines a new schema of the
target metamodel. To achieve the transformation, this
operator is based on a likeness relation defined
between both the source and the target metamodels.
By means of this relation, the operator knows what
should be generated from a set of concepts of a
source model.
To process the elements of the source schema, the
operator generate makes use of transformation rules
defined declaratively. Each one of them is divided
into two functions: a condition and a body. When a
group of elements of the source model is processed,
the condition checks their properties in order to
select which generation function should be applied.
These conditions take into account the order of
precedence that exists between the concepts of a
specific metamodel when this order is used to define
a model. For instance, when we define a relational
schema, we cannot define a column if the table that it
belongs to is not defined previously. On the other
hand, the body of the transformation rule involves
the definition of concepts and properties in the target
schema.
The operator generate automatically generates
models among different metamodels taking into
account a set of transformation rules, which are
applied following a specific evaluation strategy. The
set of transformation rules is defined independently
of the evaluation strategy chosen. To achieve this
issue, all the transformation rules must have the same
declaration so that the operator generate knows how
to apply them. By declaration, we mean the
declaration expression of a function in a F# interface
(.mli), which involves the symbol that identifies the
function value, the types of the arguments and the
type of the function value (i.e. the type of the
closure). Therefore, we denote the declaration
expression of a function as follows:

This is the value declaration inferred statically by the
compiler where val is a reserved construct that
indicates the declaration of a value; function_name is
the symbol that identifies the function; arg1_type ->
… -> argn_type are the types of the argument list of
the function; and closure_type is the type of the
closure (which is viewed as the type of the returned
value in imperative programming).
As a transformation rule is divided into a condition
function and a body function, we present their
declarations in the following subsections.

val function_name :
 arg1_type -> … -> argn_type
-> closure_type

137

5.1.1 Condition function
A condition function is the mechanism that indicates
when a transformation rule can be applied. There is
one, and only one, condition function for each
function body. This means that a condition can
indicate the suitability of only one transformation
rule in a specific context, although many
transformation rules can be applied to the same
group of elements of a source model. The declaration
expression for a condition function is as follows:

where condition_name is a symbol that identifies the
condition, the first argument is the source schema to
be translated, and the second argument is the current
node of the source schema to be translated.
The condition function checks wheter or not the
specified node validates a set of requirements in
order to determine if it can be translated into the
target schema by means of the body function of the
transformation rule. Finally, the closure of the
condition function is a Boolean value indicating the
suitability of the transformation rule that contains the
condition.

5.1.2 Body function
The body function of a transformation rule
materializes a likeness relationship, defined between
elements of both the source and the target
metamodels. This materialization involves both the
definition of new elements into the target schema and
specific mappings between the elements of the
source schema, which are involved in the
transformation rule. Such mappings provide support
for traceability. Given a transformation process
between two models, traceability [Got94] enables the
identification of elements that are related by means
of the application of a transformation rule and that
belong to different models. Traceability support
enhances mechanisms such as change propagation
and round-trip between models.
To explain the semantics of the operator generate,
we use the generation of a UML model from a
relational schema as an example. The materialization
of a likeness relationship at the M1-layer (between
models) is obtained by four steps, shown in Figure 5:
1. The concept is reified in its metaconcept; that is, if

the concept to be processed is the table Invoice,
we obtain the metaconcepts Table of the relational
metamodel.

2. Once we know the corresponding metaconcept of
the source metamodel, we navigate the likeness
relationship that relates it to a concept of the target
metamodel. In the case of a table of the Relational

Metamodel, we obtain the concept Class of the
OO Metamodel.

3. The operator generate instantiates the concept of
the target metamodel, which becomes a
metaconcept for its instance, i.e., the concept
Class of the OO metamodel becomes the
metaconcept for its instance OO-Invoice. The new
concept, which has been generated in the new
target schema at the M1-layer, is similar to the
original concept in step 1, through the likeness
relationship that we have defined before.

4. Finally, the operator instantiates the likeness
relationship defined at the M2-layer between the
Metaconcept of the source Concept and the
Metaconcept’ of the new generated Concept’. The
instantiation defines a new mapping in the
traceability schema at the M1-layer, which is a
property that has the source Concept as domain
and the target Concept’ as range.

Figure 5. Description of the transformation
process

The declaration of a body function is as follows:

where body_name is the symbol that identifies the
body function, the first argument is a schema that
contains the specific mappings between elements of
both the source and the target models, and a node is
the element of the source model to be translated. A
body function knows the source and the target
models by means of the mapping schema, which
contains this information.
The type of the closure of a body function applied to
a mapping schema and a node is the unit type3. A
body function carries out side effects by accessing
the layers of the platform (term of type Level) by
means of references to them. Although these side
effects decrease the level of abstraction of our
functional approach, they avoid having to pass a
whole layer as an argument for each transformation
rule in order to improve efficiency. Side effects

3 This type describes a set which possesses only a single

element, which is denoted by (). This means that this
function simulates the notion of procedure, just as the
type void does in the C language.

val condition_name : Schema -> Node
-> bool

val body_name : Schema -> Node
-> unit

Invoice

source model

Table

source metamodel

M2-layer

M1-layer

Class

target metamodel

likeness mapping

target model

OO-Invoice
likeness instance

mapping

traceability model

Likeness relation

generated models

➀

➁

➂

➃

138

produced by a body function involve the insertion of
new elements into the target schema and new
mappings into the mapping schema, both of which
are located at the M1-layer. To understand the
application of a transformation rule in more detail see
[Bor04].

The Operator generate
The operator generate carries out the evaluation of a
set of transformation rules on a source model, which
is defined at the M1-layer of the platform. This
obtains a new target model and a traceability model
between the elements of the source models and the
elements of the new generated model. The generated
models are also defined at the M1-layer, as shown in
Figure 5. The operator generate is a function whose
declaration is as follows:

where the first argument is a list of pairs of functions,
in which the first element is a condition function and
the second is a body function (i.e. each pair is a
transformation rule); the second argument is the
name of the source model placed at the M1-layer; the
third argument is the name of the schema that
contains the likeness relationship between the source
and the target metamodels (i.e. the schema that
provides the likeness relation); and the fourth is the
name of the new target schema to be generated. This
function returns a Boolean value indicating whether
or not the model transformation has been performed
correctly.
The evaluation process carried out by the operator
generate is split into three steps: initialization of new
schemas at the M1-layer, solution search, and
transformation.
First, the operator defines two empty schemas at the
M1-layer of the platform:
− Definition of the traceability model.
− Definition of an empty target schema as instance

of the target metamodel with the name specified
as the fourth argument. The target metamodel is
known by means of the model of likeness
mappings of the M2-layer, which is specified as
the third argument.

Second, the operator searches for a solution for the
source model transformation. This solution consists
of a list of ordered nodes of the source model. The
application of transformation rules to the ordered
nodes produces the target schema. This step is
needed because F# does not provide any mechanism
to support the evaluation of the nodes of a schema in
an automated and intuitive way. This inconvenience

is due to the definition of a schema as a list of nodes,
or even as a set. In other languages, this problem is
avoided by means of a backtracking mechanism,
such as in CLIPS [Cli], or by means of the
commutativity property, such as in the algebraic
language Maude [Cla02]. A solution is reached when
all the nodes of the source model, whose parent
participates in a likeness relationship in the specified
likeness relation, have been added to the solution list.
In the case that no solution is found, the
transformation process is stopped and the operator
returns a false value.

Figure 6. F# definition of the apply_axiom
function.

Last, the list of transformation rules given as first
argument is applied to the nodes of the solution list
provided by the second step. The application of
transformation rules is reached by means of the
apply_solution function, which uses the pattern
matching mechanism of the F# programming
language, as shown in the code in Figure 6. The
apply_solution function is recursive (indicated by the
construct rec) and applies the apply_rule function to
the first node h (head) of the list. This function
searches for a suitable transformation rule in the list
by means of its respective condition function, and
applies the body of the rule to the node h. It inserts a
set of nodes into the target schema and inserts the
corresponding mappings into the traceability schema.
To transform the entire list of nodes of the source
model, the apply_solution function is applied to the
rest of nodes of the solution list t (tail) recursively.
When no node is left, the transformation is
concluded.
The function generate produces side effects due to
the application of transformation rules to the
elements of the source model. These side effects are
changes to the state of the M1-layer, which involve
the addition of the generated target model and the
traceability model to the M1-layer.

6. CONCLUSION
In this paper, we have presented a solution for
transforming models by means of the Visio modeling

val generate :
 (bool * unit) list ->
 string -> string -> string
-> bool

let rec apply_solution list_solution_concepts
list_transformation_rules sch_m1_source
sch_m1_mappings =
 match list_solution_concepts with
 | [] -> true
 | h::t ->
 let _ = apply_axiom
 list_transformation_rules
 sch_m1_source sch_m1_mappings h
 in
 apply_solution t list_transforamtion_rules
 sch_m1_source sch_m1_mappings

139

environment following a MDD approach. To achieve
this, we built a platform that permits the definition of
software artifacts following a four-layered approach,
which involves metamodels and models, from an
algebraic point of view. The platform provides a
mechanism to transform models in a declarative way
between two metamodels. This mechanism is
embodied by the operator generate that receives a list
of transformation rules that are applied to a source
model in order to translate it into a model of a target
metamodel. The application of a transformation
provides support for traceability between the source
model and the generated one.
The platform has been implemented with the F#
programming language. We have also discussed its
advantages over other languages that target the .NET
platform, such as C#.
The platform has been integrated into the Visio
modeling environment by means of an Office
managed COM add-in. This allows us to deal with
formal models in a visual manner through graphical
metaphors. The platform also acts as a repository of
formal models. This feature has been used to store
the associations between the graphical elements of
the Visio interface with the formal definitions stored
in the platform, in a UML-based manner.
To our knowledge, this is the first approach to
support cross-model semantic interoperability from a
modeling environment based on .NET technology.

7. ACKNOWLEDGEMENTS
This work was supported by the Spanish
Government under the National Program for
Research, Development and Innovation,
DYNAMICA Project TIC 2003-07804-C05-01, and
the National Project PBC-03-00 “Methodologies of
dynamic user interfaces development”.

8. REFERENCES
[Bec01] Beckett, D. The Design and Implementation

of the Redland RDF Application Framework. 10th
WWW Conf. May 2-5, 2001, Hong Kong.

[Bor04] Boronat, A., Ramos, I., Carsí, J. Á.
Automatic Model Generation in Model
Management. Springer-Verlag GMBH.
Proceedings of CIT 2004. India, 2004.

[Cah00] Cahilloux, E., Manoury, P., Pagano, B.:
Developing Applications With Objective Caml,
Éditions O’Reilly, 2000.

[Cla02] Clavel, M., Durán, F., Eker, S., Lincoln, P.,
Martí-Oliet, N., Meseguer, J., Quesada, J.F.
Maude: specification and programming in

rewriting logic. Theoretical Computer Science,
285(2):187-243, 2002.

[Cli] Clips documentation. http://www.cis.ksu.edu/
VirtualHelp/Info/clips.html

[Coo04] Cook, S. Domain-Specific Modeling and
Model Driven Architecture, MDA Journal,
January 2004

[Cza00] Czarnecki, K. and Eisenecker, U.W.
Generative Programming: Methods, Tools, and
Applications. Addison Wesley, Boston, 2000.

[Cza03] Czarnecki, K., Helsen, S. Classification of
Model Transformation Approaches. In
Proceedings OOPSLA’03 Workshop on
Generative Techniques in the Context of Model-
Driven Architecture, 2003.

[Ehr85] Ehrig, H., Mahr, B.: Fundamentals of
Algebraic Specification 1. Springer-Verlag Berlin
Heidelberg New York Tokio (1985). ISBN: 3-
540-13718-1.

[Fsh] Fsharp home page. http://research.microsoft.
com/ projects/ilx/fsharp.aspx

[Got94] Gotel, O. C. Z., Finkelstein, A. C. W. An
Analysis of the Requirements Traceability
Problem. In Proceedings of First International
Conference on Requirements Engineering
(ICRE). Colorado, USA. 1994.

[Rat] Rational Rose XDE Developer. http://www-
306.ibm.com/software/awdtools/developer/rosexd
e/

[Rea93] Reade, C. Elements of Functional
Programming. Addison-Wesley, 1993.

[Sel03] Selic, B.: The Pragmatics of Model-Driven
Development. IEEE Software, ISSN 0740-7459.
September 2003, pp. 19-25.

[Sen03] Sendall, S., Kozaczynski, W. Model
Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software.
September/October 2003 (Vol. 20, No. 5), pp. 42-
45.

[Sym01] Syme, D. ILX: Extending the .NET
Common IL for Functional Language
Interoperability. In Proceedings of Workshop
Babel 01, Florence, Italy. September 2001.

[Wid04] Wideman G., Microsoft Visio 2003
Developer’s Survival Pack, 2004.

[W3C] W3C, Resource Description Framework
(RDF), http://www.w3.org/RDF/

[Yu04] Yu, D., Kennedy, A., Syme, D..
Formalization of Generics for the .NET Common
Language Runtime. In Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL),
Venice, Italy, January 2004.

140

Supported by the Hungarian Ministry of Education under Grant FKFP 0018/2002

Cross-language Program Slicing in the .NET
Framework

Krisztián Pócza

Eötvös Loránd University

Fac. of Informatics, Dept. of
Programming Languages and

Compilers
Pázmány Péter sétány 1/c.

 H-1117, Budapest, Hungary

kpocza@kpocza.net

Mihály Biczó
Eötvös Loránd University

Fac. of Informatics, Dept. of
Programming Languages and

Compilers
Pázmány Péter sétány 1/c.

 H-1117, Budapest, Hungary

mihaly.biczo@axelero.hu

Zoltán Porkoláb
Eötvös Loránd University

Fac. of Informatics, Dept. of
Programming Languages and

Compilers
Pázmány Péter sétány 1/c.

 H-1117, Budapest, Hungary

gsd@elte.hu

ABSTRACT

Dynamic program slicing methods are very attractive for debugging because many statements can be ignored in
the process of localizing a bug. Although language interoperability is a key concept in modern development
platforms, current slicing techniques are still restricted to a single language. In this paper a cross-language
dynamic program slicing technique is introduced for the .NET environment. The method is utilizing the CLR
Debugging Services API, hence it can be applied to large multi-language applications.

Keywords
Program slicing, dynamic slicing, cross-language slicing, .NET Framework

1. INTRODUCTION

At the end of the seventies, when programming
languages reached the level of maturity to directly
support the construction of large software systems, an
urging need for the extension of debugging, reverse
engineering and software maintenance capabilities
emerged. Science’s answer to this challenge was
program slicing [Tip95a]. The original goal of
program slicing was to map mental abstractions made
by programmers during debugging to a reduced set of
statements in source code. As a consequence, it has
always been highly desirable to integrate ‘program
slicers’ with existing debugging environments.

A program slice contains all statements that might
directly or indirectly affect the values of variables in
a set V at a program location p. The pair C=(p,V) is
usually referred to as a slicing criterion, and the

contributing statements as the program slice with
respect to slicing criterion C.

Since the original article of Weiser [Wei84a], many
slightly different notions and algorithms have been
developed to calculate program slices. As
programming languages and existing technologies
evolved, new features such as procedures, pointers,
polymorphism, inter-process communication
capabilities were also introduced, invalidating earlier
definitions.

Weiser’s original method is based on calculating
consecutive sets of indirectly relevant statements
based on control flow and data dependency analysis
[Kri03a, Wei84a, Tip95a]. Later more advanced
methods have been introduced by Ottenstein et al.
calculating slices based on solving a reachability
problem in the program dependency graph (PDG)
[Ott84a]. A PDG is a directed graph with statements
and control predicates in its vertices and edges
corresponding to data and control dependences. A
slicing criterion can be represented as a vertex in the
PDG, and a slice with respect to this criterion
contains all those vertices from which the vertex of
interest can be reached.

What Weiser’s and the PDG approach have in
common is that they completely rely on statically
available information to calculate program slices,
therefore this method is called static slicing. Static
slices have been specifically proposed for

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 7/,75832,/0,0
Copyright UNION Agency – Science Press, Plzen, Czech Republic

141

maintenance and program understanding: one is able
to use static slices to observe only parts of the
program that may be relevant from one specific point
of view [Bes01a]. However, making no assumptions
about the program’s input has a degrading effect on
the precision of the obtained slice. Besides statements
that actually affected the value of the variable under
consideration, those that potentially did are also
included in the slice. Although obtained with
relatively small effort, the main disadvantage of
slicing statically is usually the size of the slice.
While static slicing neglects actual program input,
dynamic slicing [Agr91a, Bes01a, Tip95a, Zha03a]
takes it into consideration. Static slicing can be
simply thought of as a method which calculates
statements possibly affecting the value of a variable
of interest. The notion of dynamic slicing is much
closer to running the program against a specific test
case in a unit test: only dependences along a specific
execution path are regarded. This approach implies
that different occurrences of the same statement have
to be considered. As a consequence, unlike a static
(or classical) slicing criterion, a dynamic slicing
criterion consists of a triple (I, o, V), where I
stands for program input, o is the occurrence of a
statement and V is the set of variables under
consideration.

As previously mentioned, a wide range of
applications of program slicing have already been
studied. But the highest potential is probably in
debugging applications, where dynamic slicing is of
great importance. One of the emerging concepts of
modern real-world software systems is that they are
built of a set of modules not necessarily written in the
same programming language. During the whole
lifecycle of such a system new features are added
regularly as new modules, and existing legacy parts
can also be refactored or integrated in such a way.
Therefore, given a framework that directly supports
cross-language programming, one has the capability
to effectively slice real-world programs.

Introduced in 2001, designed with language
interoperability as the key concept in mind, the .NET
Framework is a platform where not only the widely
studied inter-procedural but also ‘cross-module’ and
‘cross-language’ dynamic slicing techniques can be
established. A module can be thought of as the
equivalent of a .NET assembly. The term ‘cross-
language’ means that each assembly might be
composed of source code written in a different
language. One of the most promising candidates for
implementing a tool with this kind of capability is the
.NET Debugging Services API.

Until now, the dynamic slicing community used the
Java platform as its primary environment. Many
interesting approaches have already been proposed,

including slicing at bytecode level [Ume03a],
bytecode transformation and JVM hacking.

However, there was no standard way to implement a
debugger until Java Platform Debugger Architecture
(JPDA) introduced in JDK 1.3. Besides having all
primitives necessary to implement a debugger, JPDA
also supports a number of debugging modes
including in-process and out-of-process debugging.
JPDA is an advanced API with many features similar
to ones present in .NET. Since .NET was released
more than five years after Java, we can rightly assume
the presence of an additional set of features that could
possibly support dynamic slicing.

In this paper we propose a pilot solution for cross-
language dynamic slicing in the .NET Framework.
Our main goal was to develop a dynamic slicing
algorithm that takes advantage of the sophisticated
debugging capabilities of the .NET platform. We also
managed to implement a test application that is
capable of dynamically slicing multi-module
programs written in a C#-Visual Basic .NET mixed
language environment.

2. OVERVIEW OF THE .NET
ARCHITECTURE FROM THE
POINT OF PROGRAM SLICING

In this section we give a brief overview of
Microsoft’s .NET architecture and explain why it is a
perfect candidate for cross-language dynamic
program slicing. We introduce the key concepts
necessary to thoroughly understand the debugging
capabilities of the framework.

.NET was originally designed to replace the classical
Windows Programming Interface (WIN32 API),
Component Object Model (COM) technology and its
Distributed version (DCOM) and also to compete
with the Java platform in the enterprise sector. As
such, .NET offers all advantages of Java, along with
language neutrality. All .NET languages use the same
fully object-oriented runtime library. The philosophy
behind this idea is the observation that it is easy to
learn a new programming language; the hard part is
when programmers are forced to learn many different
class libraries and also legacy APIs. Using .NET, one
is given the freedom to choose any of the 20+
supported languages and can get on with only one
common library. This makes it easy to modify,
transform or even integrate legacy systems.

However, some sophisticated machinery is needed to
deliver these special features. To keep things simple,
we propose a bottom-up overview of the architecture.

142

The Common Language Runtime (CLR) is the
managed code lattice that everything else is built on.
.NET uses just-in-time (JIT) compiled bytecode
similar to HotSpot mechanism in Java.

Figure 1: An assembly before and after jitting

Being also a fundamental part of the runtime’s
support for multi-language features, the Common
Type System (CTS) provides basic value types,
reference types, type safety, objects, interfaces, and
delegates. It serves as a framework that helps the
establishment of cross-language interoperability and
type safety along with rapid execution capabilities.

The Common Language Specification (CLS) is the
smallest subset of the CTS that all languages
supported by the framework need to share. For
example, two .NET languages can share values of
non-CLS types but there will be languages which are
unable to understand them.

Figure 2: Overview of the .NET architecture

All .NET languages compile to an intermediate
language code called Common Intermediate
Language (CIL). The compiled code is organized into
assemblies. Assemblies are portable executables -
similar to dll’s - with the important difference that
assemblies are populated with .NET metadata and
CIL code instead of normal native code. Figure 1
illustrates the way in which assemblies are jitted.

Figure 2 shows the details of the technology we have
covered so far.

Companies tend to develop their specific solutions to
a given problem, build custom libraries and user
interfaces for their enterprise level applications.
Modules are written separately in time and space,
using different tools and compilers. In a later phase
they are integrated, ideally in a seamless way.
Unfortunately, in practice, this is rarely the case. A
multi-language development platform supporting a
large number of programming languages completed
with a cross language and dynamic slicing capable
debugger is a large step towards automatic – or at
least towards seamless system integration.

In addition, with the help of cross-language program
slicers programmers are able to identify bugs more
precisely and at a much earlier stage. With the help of
its sophisticated, carefully designed architecture and
outstanding debugging capabilities, .NET is the
platform that probably most closely matches the
needs. In the case of program slicing, there is a two
way symbiosis. Slicing improves software quality,
and improved features of platforms like .NET may
simplify slicing to a level where the power of its
practical application appears.

However, it is not only the technical side that might
benefit from such a framework. Microsoft is devoted
to satisfying scientific needs as well with Rotor. Our
approach focuses mainly on the possibilities of
debugging from the scientific aspect. Debuggers are
not toys, they are in fact serious tools in the hand of
programmers. With the advanced features of .NET, a
new generation of slicing capable debuggers is closer
than ever before.

3. TECHNICAL OUTLOOK

In this section we give a brief overview of the basic
architecture of JPDA widely used in the Java slicing
community. The advanced architecture and the
success of JPDA in slicing prompted us to introduce
a similar approach in the .NET environment. We
intend to show how .NET Debugging Services – the
.NET counterpart of JPDA - can be used to generate
call trace of the program being sliced.

JPDA is a multi-layer architecture dedicated to the
direct support of debugger application development.
Since JPDA fits in the philosophy of Java, debuggers
based on this architecture are intended to run on a
variety of physical platforms, virtual machines and
also JDKs.

BCL

CTS
(CLS)

CLR

Base Class Library

Common Type System
Common Language Spec.

Common Language Runtime

Before JIT After JIT

Stub
code

Object
code

CIL

143

The main three layer of JPDA are:

1. Java Virtual Machine Debug Interface
(JVMDI): all debugging services provided
by the VM

2. Java Debug Wire Protocol (JDWP):
specifies communication standards between
the debugger and the process being
debugged

3. Java Debug Interface (JDI): the top level
interface for debugger developers.

JVMDI is the lowest layer of JPDA. It exposes both
state inspection and controlling capabilities of
applications running in a virtual machine to debugger
developers. Basically, JVMDI is an event-driven
interface. However, it has also indirect controlling
capabilities totally independent of events. Default
JVMDI clients are in-process, that is they run in the
same virtual machine as the application that is being
debugged. On the other hand, the framework also
contains higher-level, out-of-process debugger
interfaces.

JDWP is a communication protocol between the
virtual machine being debugged and the debugger
process. This protocol ensures that a single debugger
is able to work either locally or (in a distributed way)
on a remote computer. A very important aspect of
JDWP is it independence of transport mechanisms.
Every different JDWP implementation might employ
different transport techniques through a simple API.

JDI is the highest level JPDA interface providing
information that is of great importance in case of
debuggers and also other tools that need access to the
running state of a virtual machine.

In the Microsoft world, with the release of .NET, a
new Debugging API and scripting strategy has also
been introduced. Script engines can now compile or
interpret code for the Microsoft Common Language
Runtime (CLR) instead of integrating debugging
capabilities directly into applications through Active
Scripting [Pell]. .NET Debugging Services is not
only able to debug every code compiled to IL written
in any high level language, but it also provides
debugging capabilities for all modern languages.

The CLR supports two types of debugging modes: in-
process and out-of-process. In-process debuggers are
used for inspecting the run-time state of an
application and for collecting profiling information.
These kinds of debuggers do not have the ability to
control the process or handle events like stepping,
breakpoints, etc.

Out-of-process debuggers run in a separately process
providing common debugger functionality.

The CLR Debugging Services are implemented as a
set of some 70+ COM interfaces, which include the
design-time application, the symbol manager, the
publisher and the profiler.

Figure 3: CLR Debugging architecture

The design-time interface is responsible for handling
debugging events. It is implemented separated from
the CLR while the host application must reside in a
different process. The application is interpreted by a
script and has a separate thread for receiving
debugger events that run in the context of the
debugged application. When a debug event occurs
(assembly loaded, thread started, breakpoint reached,
etc.) the application halts and the debugger thread
notifies the debugging service through callback
functions.

The symbol manager is responsible for interpreting
the program database (PDB) files that contain data
used to describe code for the modules being
executed. The debugger also uses assembly metadata
that also holds useful information from the point of
debugging. The PDB files contain debugging
information and are generated only when the
compiler is explicitly forced to do so. Besides
enabling the unique identification of program
elements like classes, functions, variables and
statements, the metadata and the program database
can also be used to retrieve their original position in
the source code.

The publisher is responsible for enumerating all
running managed processes in the system.

The profiler tracks application performance and
resources used by running managed processes.

The CLR Debugging Services API called ICorDebug
[Stall] is implemented by COM interfaces. It can be
directly reached from managed or unmanaged code
but there are also higher level managed wrapper
classes used by MDbg [Stall]. Using these interfaces
we can start a process for debugging and register our
managed or unmanaged callback functions. As

Symbol
Manager

Design time

CLR Publisher

Profiler

144

mentioned earlier, querying run-time information of
program elements is another important application.

We generated the call trace of our programs using the
CLR debugger. First we set a breakpoint to the entry
of our application and we stepped along until the end.
The step (or step in) debugging operation goes along
sequence points in the original source code. Sequence
points which can be identified using metadata and the
program database divide the statements in high-level
languages. We also used ICorDebug to query the
function call stack at every step.

ICorDebug has not been standardized yet and it is not
likely to be. According to Mike Stall [Stall] it makes
more sense to standardize the compiler’s output
(metadata, symbols, IL format). We have also studied
the other two significant .NET implementations
namely Microsoft’s SSCLI (Rotor) and Mono
sponsored by Novell. Rotor has the same debugging
architecture as the Microsoft .NET Framework so it
would be easy to compile and run our existing tracer
application on that platform. On the other hand,
Mono developers decided against implementing the
debugging API provided by the .NET CLR and Rotor
and have their own debugging mechanism.
Fortunately, the module generating call trace
accounts for only a very small part of our dynamic
slicing framework so it would take relatively small
effort to port it to Mono.

4. ARCHITECTURE & ALGORITHM

In this section we will review the architecture (Fig.
4) of our dynamic slicing framework. It consists of
two phases called Phase 1 and Phase 2. While Phase
1 executes mainly preprocessing steps, Phase 2 runs
the slicing algorithm. The whole framework was
developed and compiled using Microsoft Visual
Studio 2005 beta.

The current implementation of our dynamic slicing
algorithm, that is capable of processing source code
only line-by-line, makes the first step of Phase 1 -
‘beautification’ - necessary. Beautification is a
preprocessing step that enables the debugger to
generate a call trace that is the input of our dynamic
slicing algorithm. Beautification requires a language-
specific parser transforming the original code to an
equivalent version split along sequence points. As a
result of the beautification step the source code lines
can be directly mapped to sequence points that the
debugger is capable of stepping along. As a
consequence, the mapping between lines and
sequence points makes it possible to use the output of
the debugger as the direct input of the dynamic
slicing algorithm.

Since the CLR Debugger is language-independent
and parsers can be developed for any language, it is
possible to generate slices that span across multiple
assemblies compiled from different languages.

Figure 4: Architecture

In case of C#, we compile the beautified source files
by calling the C# compiler csc.exe with the /debug+
switch to generate debugging output. The last step of
Phase 1 is the building of the call trace which is
written to a plain text file. We trace information of
every single statement reached during the execution
of our program using .NET Debugging Services API.
As we have already mentioned, the
ICorDebugStepper interface is used to step along the
application. At each step a triple of data is stored,
namely:

1. The name of the source file name we are in
2. The exact line number in the source file where

the statement of interest resides
3. The state of the call stack at that point

Each element of the triple holds meaningful
information for our dynamic slicing algorithm. Since
the analyzed application can be built-up of multiple
assemblies (and multiple source files), therefore the
correct place including the source file name and exact
line number always have to be recorded. The call
stack is used for tracking function calls.

Source code
Beautification

Recompile in
Debug mode

Generate Call
Trace

Call trace

Dynamic slicing
algorithm

Cross-language

slice

Phase 1

Phase 2

145

Phase 2 first loads the call trace file produced in
Phase 1. A typical call trace can be seen in Listing 1.

Although in a real application we store fully qualified
names, for the sake of clarity we have used
abbreviations in Listing 1, so M stands for MainNameSpace.MainClass.Main, R for MainNameSpace.MainClass.RecursiveProdSum, A
for OtherModule.Functions.Add and P for Prod.

Listing 1: Call Trace

A screenshot of the framework with source code
corresponding to the call trace in Listing 1 can be
seen in Figure 6.

The next step is to parse traced source files for every
assembly in the program. We use here the same
parser as in the beautification step. Being similar to
existing dynamic slicing algorithms in this aspect
[Bes01a, Xu01a, Zha03a], our approach also
necessitates storing referenced and defined variables
at every statement. The main task of the parser is to
collect referenced and defined variables at every
statement. This is illustrated in the following code
fragment.

Listing 2: Simple C# code fragment

Line 2 defines variable i, line 5 references i and n,
line 7 defines sum and references sum and i, line 11
references sum.

While parsing source files, a Control Dependence
Graph (CDG) [Kri03a] is also created. Control
dependence describes the ability of a program
statement to affect the execution of another program

statement. If node m is control dependent on node n it
means that there is an edge from n to m. Figure 5
illustrates the CDG of the code fragment given in
Listing 2.

Listing 3: Intra-procedural version of our
dynamic slicing algorithm

For example, nodes 1, 2, 3, 4, 5, 11 and 7, 8, 9 are
neighbors; 7, 8, 9 are control dependent on 5.

The call trace for our example program is the
following in regular expression style:
"1,2,3,4(,5,7,8,9){n},5,11". The slicing criterion is
(<n=2>, 111, {sum}).

According to the definition given in Section 1, <n=2>
is the current program input, 111 denotes the first

idx01: MainClass.cs 10 M idx02: MainClass.cs 11 M idx03: MainClass.cs 12 M idx04: MainClass.cs 13 M idx05: MainClass.cs 14 M idx06: MainClass.cs 20 M,R idx07: MainClass.cs 22 M,R idx08: Functions.cs 10 M,R,A idx09: Functions.cs 11 M,R,A idx10: MainClass.cs 23 M,R idx11: Functions.cs 15 M,R,P idx12: Functions.cs 16 M,R,P idx13: MainClass.cs 24 M,R idx14: MainClass.cs 25 M,R idx15: MainClass.cs 20 M,R,R …

loopcond← ∅ varstore← ∅ foreach var∈{slicing_crit_vars} loop varstore←varstore∪ (var,Ref) end foreach foreach stmt in {backward call trace} do if stmt is Assignment then found:= false foreach var∈{stmt.definedvars} do if (var,Ref)∈varstore then varstore[(var,Ref)]←(var,Def) found:= true end if end foreach if found then slice:=slice∪ {stmt} addToVarStoreAndLoopCond(stmt) end if else if stmt is control statement then if stmt∈loopcond then slice←slice∪ {stmt} addToVarStoreAndLoopCond(stmt) end if end if end loop proc addToVarStoreAndLoopCond(stmt) foreach var∈{stmt.referencedvars} do varstore←varstore∪ (var,Ref) end foreach foreach parstmt in {stmt.parents} do loopcond←loopcond∪ parstmt end foreach end proc 1 int n = askUser(); 2 int i = 0; 3 int sum = 0; 4 int prod = 1; 5 while (i < n) 6 { 7 sum += i; 8 prod *= i; 9 i++; 10 } 11 Console.WriteLine(sum);

146

Figure 5: Control Dependence Graph

occurrence of the statement in source code line 11 in
the call trace and sum is the only variable of interest.
In other words, we are interested in statements that
affect the value of variable sum when we reach the
11th line for the first time with n=2 being the input of
the program.

At this point we have all information necessary to
develop our backward dynamic slicing algorithm.
First we will show it in an intra-procedural form then
extend it to the more interesting inter-procedural
version.

We have a set (called varstore) whose elements are
(Variable, Action) pairs where Action can be
either Def or Ref. Varstore is responsible for
storing the last Action for every variable of interest.
Def denotes variable definition; similarly Ref denotes
referencing that variable.

When the algorithm starts, varstore contains all
variables of interest with Ref Action. For the
previous example: (sum, Ref). When a variable with
Ref action is encountered on the left side of an
assignment, the line number is added to the dynamic
slice (if not already in) and the variable’s Ref Action is changed to Def. (We are not interested in
assignments defining a variable with Def action,
because the earlier definition would be killed
anyway.) The Action of referenced variables with
Def Action is changed to Ref. Referenced variables
not already in varstore are added with Ref Action. (For example, encountering i++ would first
change the Action of i to Def and then Ref).

After processing a statement we always add its parent
according to the CDG to another set called loopcond. Loopcond stores those control flow
statements (loop or condition) that have to be added
to the slice during the first visit. When a control flow
statement is encountered, we check whether it is in loopcond. In this case we process it similar to
assignments (set Ref variables, add parents to loopcond, increase dynamic slice).

The outcome of the algorithm run against code
fragment in Listing 2 is shown in Table 1.

The algorithm is linear in the number of lines in the
call trace; memory usage is also linear with respect to
the number of variables in varstore.

trace Varstore loop-
cond

Slice

11 (sum,Ref) - -
5 (sum,Ref) - -
9 (sum,Ref) 5 -
8 (sum,Ref) 5 -
7 (sum,Ref),(i,Ref) 5 7
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7
9 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9
8 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9
7 (sum,Ref),(i,Ref),(n,Ref) 5 5,7,9
5 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9
4 (sum,Ref),(i,Ref),(n,Ref) - 5,7,9
3 (sum,Def),(i,Ref),(n,Ref) - 3,5,7,9
2 (sum,Def),(i,Def),(n,Ref) - 2,3,5,7,9
1 (sum,Def),(i,Def),(n,Def) - 1,2,3,5,7,9

Table 1: Algorithm example

The algorithm starts exactly the same way in the
inter-procedural case as the previously introduced
intra-procedural version. However, when the last line
of a function (eg. in Listing 1 Functions.cs line 11) is
reached, the line from where the function was called
have to be identified even in the case of multiple or
recursive calls (eg. in Listing 1 MainClass.cs line 22).
Also, all local variables that are parameters of the
called function have to be localized.

The calling statement can be found in linear time in
the call trace so the algorithm would become
quadratic. However, some preprocessing can be done
to preserve the linearity of our algorithm. A unique
ID is given to every function call. Note that the
blocks of the same ID-runs do not have to be
continuous (eg. for Listing 1 this would be
1,1,1,1,1,2,2,3,3,2,4,4,2,2,5,…). At a given block of
IDs the ending index of the previous block of the
same IDs can be stored (eg. for statement at idx10
we store idx7, for idx13 store idx10 as shown in
Listing 1). So we can find the calling statement in one
step even for multiple or recursive calls.

In order to achieve constant-cost retrieval of the
index that marks the end of the previous block with
the same IDs, an indexing data structure should be
created and populated in a preprocessing step. At this
point we are aware of the statement that calls the
function and can further investigate the in/out (ref in
C#) and out (out in C#) actual parameters.

The algorithm selects parameter variables of the
caller function with Ref Action in varstore (we
call them formal parameters of interest). If there is
no variable satisfying this criterion, we can safely
disregard the whole function.

Start

1 2 3 4 5

7 8 9

11

147

Listing 4: Inter-procedural slicing algorithm

Since functions can be identified based on the
signature of the calling statement, formal parameters
can be identified according to their order. Now we
can recursively call our dynamic slicing algorithm by
setting up a new varstore with all formal
parameters of interest with Ref Action. When the
algorithm returns to the caller we can identify all
formal input parameters (nothing or ref in C#)
referenced from the generated slice by checking the varstore of the called function and determine their
actual parameter pairs. We consider them as
referenced variables from the caller’s point of view.
So they are added to the varstore with Ref Action
or their Action value is changed to Ref if already in varstore. We modify loopcond in the exactly
similar way as in the case of assignments and of
course also add the function call to the slice.

It can be seen that we store unique varstore and loopcond information for every function call.
Listing 6 shows the pseudo code of the inter-
procedural version of our dynamic slicing algorithm.
As its name suggests, variable callTrace stores
information generated with the help of .NET
Debugging Services. The algorithm walks from the
end to the beginning of the call trace. Index actLine
decreases at every step of the algorithm. Variable funcEnd stores the location where the currently
processed function is called. If this point is reached
we go back to the caller. The statements are identified
by source files (which can belong to different
modules) and the line number in the source file.
When the algorithm detects that the execution passed
the last line of a method, the source file and line
number (funcEnd) are identified where the
invocation of this method is performed. Actual output
parameters referenced according to varstore are
looked up and their formal output parameter pairs are
matched. Afterwards, the dynamic slicing algorithm
is called recursively.

Returning from the recursion, the referenced formal
input parameters and their actual counterparts are
also identified. They are added to varstore and the
algorithm continues.

Function addToVarStoreAndLoopCond is almost
the same presented in Listing 3 except for that loopcond and varStore are referenced by context.

5. IMPLEMENTATION

In the screen shot shown in Figure 6 we used slicing
criterion (<n=42>, 151, {sum}). The example
contains two files from different assemblies
(MainClass is in the main module and Functions class

Function: doSliceFunction(Context context, int funcend) context.CalculateStartingVarStore() funcID:= -1; while actLine > funcEnd do begin TraceLine trace = callTrace[actLine] if funcID = -1 then funcID:= trace.FuncID //when a new function reached if trace.FuncID <> funcID then begin callPos:= rle[actRLELine].PrevBlockEnd actRLELine:= actRLELine - 1 TraceLine traceMI:= callTrace[callPos] MethodInvoke mi:= source[traceMI.src].Statement[callPos] actualParamsOut:= mi.Outputs.SelectReferenceds(context.VarStore) formalParamsOut:= mi.Actual2Formal(actualParamsOut) Context newContext:= new Context(formalParamsOut) doSliceFunction(newContext, callPos) formalParamsIn:= newContext.SelectReferenceds(mi.Parameters) if formalParamsIn.Count > 0 then begin actualParamsIn:= mi.Formal2Actual(formalParamsIn) context.VarStore.InsertThemAsRef(actualParamsIn) slice←slice ∪ {mi} foreach parstmt in {stmt.parents} do context.loopcond←context.loopcond ∪ parstmt end foreach end if actRLELine:= actRLELine — 1 actLine:= actLine - 1 continue end if //normal statement Statement stmt:= source[trace.src].Statement[trace.line] if stmt is Assignment then found:=false foreach var∈{stmt.definedvars} do if (var,Ref)∈context.VarStore then context.VarStore[(var,Ref)]←(var,Def) found:=true end if end foreach if found then slice:=slice ∪ {stmt} addToVarStoreAndLoopCond(stmt) end if else if stmt is control statement then if stmt∈context.loopcond then slice←slice ∪ {stmt} addToVarStoreAndLoopCond(stmt) end if end if actLine—- end while
148

which is used in the main module is located in
another module).

In order to test the algorithm proposed earlier, we
have implemented a pilot application that is capable
of slicing programs that satisfy certain restrictions.
These restrictions imply that the source code might
contain only static functions with arbitrary program
constructions (assignment, condition, loop, method
invocation). The program can be built of multiple
modules (assemblies) each containing multiple source
files.

Since the CLR Debugger is language-independent
and parsers can be developed for any language, it is
possible to generate slices that cover multiple
assemblies compiled from different languages.
Unfortunately the only parser we have is for C#.

We used an earlier version of Marcel Debreuil’s C#
source code parser library which employs the
ANTLR parser generator. We compiled our

algorithm using Microsoft Visual Studio 2005 beta
codenamed Whidbey.

6. CONCLUSION AND FURTHER
WORK

In this paper we have shown how to utilize the .NET
Debugging Services API in dynamic program slicing.
Motivated by the Java Platform Debugger
Architecture, our pilot solution can be effectively
used to investigate dynamic dependences among
modules compiled from any CLS-compliant
language. We have also shown that by directly
supporting cross-language programming, the .NET
Framework offers significant surplus over Java.

.NET-languages, mainly C#, VB.NET and managed
C++ have some very noteworthy elements such as

Figure 6: Example run of our slicing framework

149

delegates, the foreach loop, different kinds of
parameter passing methods and the lock statement
which justify further research related to both static
and dynamic program analysis.

C# language and .NET Framework are evolving
quickly. In Microsoft .NET Framework version 2.0
we intend to investigate generics, anonymous
methods, partial types, yield keyword, nullable types
and also some functional language implementations
like Scheme [Bre04a] and Clean [Her04a].

REFERENCES

[Agr91a] H. Agrawal and J. R. Horgan. Dynamic
program slicing. In SIGPLAN Notices No. 6,
pages 246-256, 1990.

[Bes01a] Á. Beszédes, T. Gergely, Zs. M. Szabó, J.
Csirik, T. Gyimóthy. Dynamic slicing method for
maintenance of large C programs, CSMR 2001,
pages 105-113.

[Bre04a] Bres,Y., Serpette,P., Serrano,M. et al. -
Compiling Scheme programs to the .NET
Common Intermediate Language, 2nd
International Workshop on .NET Technologies,
May 2004

[Her04a] Z. Hernyák, Z. Horváth, V. Zsók. Design of
Language Elements for Dynamic Distributed
Computation of Clean Expressions on Clusters.
Submitted to TFP 2004 Fifth Symposium on
Trends in Functional Programming, Ludwig-
Maximilians University, Munich, Germany,
2004.

[Hor90a] S. B. Horwitz, T. W Reps, D. Binkley.
Inter-procedural slicing using dependence
graphs. ACM Transactions on Programming
Languages and Systems, 12(1): 26-60, January
1990.

[Kri03a] J. Krinke, Advanced Slicing of Sequential
and Concurrent Programs, PhD Thesis,
Universität Passau, April 2003

[Mar03a] K. Maruyama, M. Terada, Timestamp
Based Execution Control for C and Java
Programs, AADEBUG, 2003

 [Oha01a] F. Ohata, K. Hirose, M. Fujii, K. Inouse. A
slicing method for object-oriented programs
using lightweight dynamic information. In Proc.
of the 8th Asia-Pacific Software Engineering
Conference, 2001.

[Ott84a] K. J. Ottenstein, L. M. Ottenstein. The
program dependence graph in software
development environment. ACM SIGPLAN
Notices volume 19(5), pages 177-184, 1984.

[Pel02a] M. Pellegrino. Improve Your Understanding
of .NET Internals by Building a Debugger for
Managed Code. MSDN Magazine, issue
November 2002.
http://msdn.microsoft.com/msdnmag/issues/02/1
1/clrdebugging/

[Rep94a] T. Reps, S. Horwiz, M. Sagiv, G. Rosay.
Speeding up slicing. ACM SIGSOFT Software
Engineering Notices 19, pages 11-20.

[Stall] Mike Stall’s .NET Debugging Blog,
http://blogs.msdn.com/jmstall/, 2004-2005

[Tip95a] F. Tip, A survey of program slicing
techniques. Journal of Programming Languages,
3(3):121-189, Sept. 1995.

[Ume03a] F. Umemori, K. Konda, R. Yokomori, K.
Inoue, Design and Implementation of Bytecode-
based Java Slicing System, SCAM 2003

[Wei84a] M. Weiser. Program Slicing. IEEE
Transactions on Software Engineering. SE-
10(4):352-357, 1984.

[Xu01a] B. Xu, Z. Chen. Dependence Analysis for
Recursive Java Programs. In SIGPLAN Notices
No. 12, Pages 70-76.

[Zha03a] X. Zhang, R. Gupta, Y. Zhang. Precise
dynamic slicing algorithms. Proc. International
Conference on Software Engineering, pages 319-
329, 2003.

150

Adding Structural Reflection to the SSCLI

Francisco Ortin Jose M. Redondo Luis Vinuesa Juan M. Cueva
Computer Science Department, University of Oviedo

C/Calvo Sotelo s/n, 33007, Oviedo Spain
ortin@uniovi.es redondojose@uniovi.es vinuesa@uniovi.es cueva@uniovi.es

ABSTRACT

Although dynamic languages are becoming widely used due to the flexibility needs of specific software prod-
ucts, their major drawback is their runtime performance. Compiling the source program to an abstract machine’s
intermediate language is the current technique used to obtain the best performance results. This intermediate
code is then executed by a virtual machine developed as an interpreter. Although JIT adaptive optimizing com-
pilation is currently used to speed up Java and .net intermediate code execution, this practice has not been em-
ployed successfully in the implementation of dynamically adaptive platforms yet.
We present an approach to improve the runtime performance of a specific set of structural reflective primitives,
extensively used in adaptive software development. Looking for a better performance, as well as interaction with
other languages, we have employed the Microsoft Shared Source CLI platform, making use of its JIT compiler.
The SSCLI computational model has been enhanced with semantics of the prototype-based object-oriented com-
putational model. This model is much more suitable for reflective environments. The initial assessment of per-
formance results reveals that augmenting the semantics of the SSCLI model, together with JIT generation of
native code, produces better runtime performance than the existing implementations.

Keywords
Dynamic languages, structural reflection, prototype-based object-oriented computational model, Shared Source
CLI, JIT code generation.

1. INTRODUCTION
Since the appearance of the first abstract machine
(UNCOL, 1961 [Ste61]), the notion of using the
specification of a computational processor without
intending to implement it (abstract machine) has
been used in many different contexts [Die00]. The
main objective of the UNiversal Computer Oriented
Language (UNCOL) was simplifying compilers de-
velopment by employing a unique universal interme-
diate code.

A virtual machine involves a specific abstract ma-
chine implementation. The employment of specific
abstract machines implemented by different virtual
machines has brought many benefits to different
computing systems. The most relevant are platform
neutrality (USCD P-machine [Cla82] or Forth
[Moo74]), application distribution (ANDF, Architec-

ture Neutral Distribution Format [OSF91]), direct
support of high-level paradigms (Smalltalk-80 [Gol-
83], SECD [Lan64] or Warren Abstract Machine
[War83]) and application interoperability (PVM,
Parallel Virtual Machine [Sun90]).1

Despite of the many benefits obtained from using
virtual machines, its main drawback has always been
execution performance. Consequently, there has been
considerable research aimed at improving the per-
formance of virtual machine’s application execution
compared to its native counterparts. Techniques like
adaptive Just In Time (JIT) compilation or efficient
and complex garbage collection algorithms have
reached such a point that Microsoft and Sun Micro-
systems identify this kind of platforms as appropriate
to implement commercial applications. Nowadays,
there are a lot of commercial languages and plat-
forms that employ the concept of virtual machine to
develop software products.

In parallel with the dominant virtual platforms (Sun’s
Java Virtual Machine and Microsoft .net) and its
type-safe programming languages (Java and C#), a

1 The development of is project is funded by Microsoft

Research as the second Rotor Request for Proposals,
awarded in 2004.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

151

new approach of so called “dynamic languages” is
emerging (examples are Python [Ros03], Ruby
[Tho04] or Dylan [Sha96]). The main objective of
these languages is to model the dynamicity that is
commonly required in building software that is
highly context-dependent due to the mobility of both
the software itself and its users [ECO04]. Features
such as meta-programming, reflection, mobility, dy-
namic reconfiguration and distribution are the do-
main of dynamic languages. Because of the benefits
they offer, dynamic languages are employed in dif-
ferent scenarios such as adaptive programming
[Mer03], dynamic aspect-oriented programming
[Ort04] or high-level parallel software development
[Hin03].

Dynamic languages, which also use abstract machine
platforms, offer a much more relaxed type system at
compile time that Java, C#, or any other type-safe
language, in order to support their flexibility features
–most part of the type system is dynamic. The un-
questionable benefits of type-safe languages could
still be obtained with unit testing suites that are cur-
rently widely used –as an example PyUnit is the Py-
thon version of the well-known JUnit testing frame-
work. Using dynamic languages together with unit
testing suites, the programmer can benefit both from
the robustness of any type-safe language and from
the flexibility of its dynamic features when needed
[Mar03].

Dynamic Languages Performance
Looking for code mobility, portability and distribu-
tion facilities, dynamic languages usually employ the
concept of abstract machine. Since their computa-
tional model offers dynamic modification of its struc-
ture and code generation at runtime, the existing vir-
tual machine implementations are commonly devel-
oped by means of interpreters. Their flexibility and
dynamicity capabilities make JIT native code genera-
tion (and its dynamic optimization) a complex task.

The existing implementations of Python for the Mi-
crosoft .net platform (Python for .Net from the Zope
Community, IronPython, and the Python for .Net
research project from ActiveState) have been devel-
oped as compilers that generate virtual machine’s
intermediate code which simulates Python features
over the .net platform. The implementations that
have used the Java Virtual Machine (Jython or JPy-
thon) have also employed the same approach. Micro-
soft and Sun platforms were created to support static
languages that do not offer structural reflective fea-
tures such as adding attributes (fields) and methods
at runtime. As these virtual machines do not support
those primitives, additional code must be generated
to support these features.

ActiveState tried to modify different free implemen-
tations of the .net platform in order to compile Py-
thon Programming Language to .net native code, but
they abandoned the project because the abstract ma-
chine design “was not friendly to dynamic lan-
guages” [Ude03]. As Java and .net virtual machines
have been designed taking into account their static
features in order to obtain the highest runtime per-
formance, it is difficult to add dynamic features to
their existing implementations.

The main disadvantage of dynamic languages is run-
time performance. The process of adapting an appli-
cation at runtime, as well as the use of reflection,
induces a certain overhead at the execution of an
application [Pop01]. However, as it happened with
the implementation of Java Virtual Machine, speed-
ing up the application execution of dynamic lan-
guages might facilitate their inclusion in commercial
development environments. Since the research done
by Hölzle and Ungar in dynamic JIT optimizing
compilers applied to the Self programming language,
virtual machine implementations have become faster
by generating binary code at runtime [Höl94].
Nowadays, dynamic adaptive HotSpot optimizer
compilers combine fast compilation and runtime op-
timizations of those parts of the code that are exe-
cuted a higher number of times. These techniques
have made virtual machines a real alternative to de-
velop many types of software products.

The work presented in this paper employs these tech-
niques to natively support dynamic languages over a
virtual machine. We will show how we are incorpo-
rating reflective features to the Shared Source CLI
implementation of the Microsoft .net platform. Add-
ing dynamic reflective primitives to the platform
internals will make it possible to compile dynamic
languages directly to .net, obtaining performance
benefits of using JIT native code generation. At the
same time, applications developed in dynamic lan-
guages would be able to interoperate with any .net
application or component, regardless of its program-
ming language.

The rest of this paper is structured as follows. In the
next section, we present the Microsoft Shared Source
CLI and Section 4 introduces the set of reflective
primitives to be added. Section 4 briefly describes
the prototype-based object-oriented model as well as
an analysis of how it can be incorporated to the
SSCLI model. The specification of our new BCL
reflective namespace is described in section 5 and
section 6 summarizes the implementation issues. Fi-
nally, we analyze runtime performance (section 7)
and section 8 presents the ending conclusions.

152

2. SHARED SOURCE CLI
The Microsoft SSCLI, Shared Source Common Lan-
guage Infrastructure (also known as Rotor), is a
source code distribution that includes fully functional
implementations of both the ECMA-334 C# lan-
guage standard and the ECMA-335 Common Lan-
guage Infrastructure standard, various tools, and a set
of libraries suitable for research purposes [Stu03].
The source code can be built and run under Windows
XP, FreeBSD 4.5 or Mac OS X.

Rotor consists on 3.6 million lines of code that can
be divided into 4 groups:

• The Execution Environment. This is the virtual
machine of the .net platform that includes the
JIT compiler, the garbage collector, the class
loaders and the common type system.

• The Libraries. The SSCLI distribution includes
the source code of its Base Class Library (BCL),
runtime infrastructure and reflection (introspec-
tion) classes, networking and XML classes, and
floating point and extended array libraries.

• Compilers and Tools. Rotor includes a C# com-
piler (ECMA-334) and a Jscript compiler written
entirely in C#.

• Platform Abstraction Layer (PAL). This code
implies the abstraction layer between the runtime
environment and the operating system.

Excluding the PAL section, we have performed
modifications and enhancements in every part of the
Rotor structure to develop our project.

3. EXTENDING THE REFLECTIVE
CAPABILITIES OF ROTOR
Reflection has been recognized as a suitable tool to
aid the dynamic evolution of running systems, being
the primary technique to obtain the meta-
programming, adaptiveness, and dynamic reconfigu-
ration features of dynamic languages [Caz04]. Re-
flection is the capability of a computational system to
reason about and act upon itself, adjusting itself to
changing conditions [Mae87]. In a reflective system,
its computational domain is enhanced by its own
representation, offering at runtime its structure and
semantics as computable data.

The main criterion to categorize runtime reflective
systems is taking into account what can be reflected.
Following this classification, we can distinguish:

• Introspection: The system’s structure can be
consulted but not modified. Both Java and .net
platforms offer this level of reflection. By means
of the java.lang.reflect package (Java) and
System.Reflection namespace (.net), the pro-

grammer can get information about classes, ob-
jects, methods and fields at runtime.

• Structural Reflection: The system’s structure can
be modified and the changes should be reflected
at runtime. An example of this kind of reflection
is the Python feature of adding fields –
attributes– or methods to both objects and
classes.

• Computational (Behavioral) Reflection: The
system semantics can be modified, changing the
runtime behavior of the system. For instance,
metaXa –formerly called MetaJava [Gol97]– is a
Java extension that offers the programmer the
ability to dynamically modify the method dis-
patching mechanism. The mechanism most
commonly employed in this level of reflection is
Meta-Object Protocols (MOPs) [Kic91].

As mentioned above, the runtime reflective features
of Rotor are restricted to the introspection level.
However, the .net platform offers the facility to dy-
namically generate CIL code at runtime in a limited
way (it only permits to create new types, not adding
new methods to the existing classes) by means of its
System.Reflection.Emit namespace.
Dynamic languages offer the structural level of re-
flection in their computational model. This level of
reflection is the one employed by dynamic languages
to develop adaptive software. Much research on
MOPs has revealed that computational reflection
suppose a huge performance penalty in comparison
with the benefits it provides [Tan03]. At the same
time, many behavioral features could be simulated
with structural reflection (e.g., adapting method in-
vocation semantics could be substituted by a method
wrapping service developed with structural reflec-
tion).

Reflective Facilities
We have extended the .net CLI with a set of struc-
tural reflective primitives extensively used in dy-
namic languages, at the abstract machine level. A
new namespace has been added to the Base Class
Library (BCL): System.Reflection.Structural.
We will show in Section 5 which are its specific
primitives, but its functionality can be grouped into:

• Attributes manipulation. It can be modified not
only the structure of a class (altering the struc-
ture of all of its instances), but the composition
of a single object. Attributes may be added, de-
leted or replaced.

• Methods manipulation. Methods of classes can
be added and erased dynamically. Therefore, the
set of messages accepted by an object could
change at runtime depending on their dynamic

153

context. At the same time, a new method could
be placed in a sole object. The body of these
new methods can be obtained as copies of the
existing ones, or it dynamically generated by
means of the System.Reflection.Emit name-
space.

The programmer could combine these facilities with
the introspective services already offered by the .net
platform, making the CLI an ideal system to develop
language neutral adaptive software.

Conceptual Problems
There exist conceptual inconsistencies between the
class-based object-oriented computational model and
structural reflective facilities. These inconsistencies
were detected and partially solved in the field of ob-
ject-oriented database management systems. In this
area, objects are stored but their structure or even
their types (classes) could be altered afterwards, as a
result of software evolution [Ska87].

The first scenario of modifying class’s structure (at-
tributes) implies updating the composition of every
object that is an instance of this class. This mecha-
nism was defined as schema evolution in the data-
base field. The modification of class’s instances
could be performed when the class is modified (ea-
ger) or when the object is up to be used (lazy)
[Tan89]; it is only necessary to know at runtime the
class an object is instance of. The dynamic evolution
of class’s methods and attributes can produce situa-
tions where code access to attributes or methods that
do not exist in a specific execution point; these situa-
tions should be checked by a dynamic type checking
mechanism, employing exception handling.

Another possibility that a reflective model supports is
much more difficult to be modeled in a class-based
language. How can an object's structure be modified
without altering the rest of its class's instances? This
problem was detected in the development of MetaXa,
a reflective Java platform implementation [Gol97].
The approach they chose was the same as the

adopted by some object-oriented database manage-
ment systems: schema versioning [Rod95]. A new
version of the class (called “shadow” class in
MetaXa) is created when one of its instances is re-
flectively modified. This new class is the type of the
recently customized object.

This model causes different problems such as main-
taining the class data consistency, class identity, us-
ing class objects in the code, garbage collection, in-
heritance or memory consumption, involving a really
complex implementation difficult to manage [Gol97].
One of the conclusions of their research was that the
class-based object-oriented model does not fit well to
structural reflective environments. They finally stated
that the prototype-based model would express reflec-
tive features better than class-based ones [Gol97].

4. PROTYPE-BASED OO MODEL
In the prototype-based object-oriented computational
model the main abstraction is the object, suppressing
the existence of classes [Bor86]. Although this com-
putational model is simpler than the one based on
classes, there is no loss of expressiveness; i.e. any
class-based program can be translated into the proto-
type-based model [Ung91]. A common translation
from the class-based object-oriented model is by fol-
lowing the next scheme (Figure 1):

• Similar object's behavior (methods of each class)
can be represented by trait objects. Their only
members are methods. Thus, their derived ob-
jects share the behavior they define.

• Similar object's structure (attributes of each
class) can be represented by prototype objects.
This object has a set of initialized attributes that
represent a common structure.

• Copying prototype objects (constructor invoca-
tion) is the same as creating instances of a class.
A new object with a specific structure and be-
havior is created.

In class-based languages where classes are first class

Point

x,y:Integer

draw()
move(x,y:Integer)

point:Point

x=245
y=-23

a) Class-based model b) Prototype-based model

inheritance

Prototype Cloning

Point

pointPrototype

Method implementationmove

Method implementationdraw

0y

0x

-23y

245x

point

Trait
object

Prototype
object

Figure 1. Translation between the class and prototype based computational model.

154

objects (Java, Smalltalk or C#), classes are repre-
sented by objects at runtime (e.g., in the .net platform
instances of System.Type are objects that represent
classes or another type). This demonstrates that, be-
sides not existing loss of expressiveness, the transla-
tion of the model is intuitive and facilitates applica-
tion interoperability, no matter whether the pro-
gramming language uses classes or not. This is the
reason why this model has been previously consid-
ered as a universal substrate for object-oriented lan-
guages [Wol96].

Finally, this object-oriented computational model
does model structural reflective primitives in a con-
sistent way –structural reflective languages such as
Moostrap [Mul93] or Self [Ung87] have employed
this model in a successful way [Ort05]. The proto-
type-based object model overcomes the schema ver-
sioning problem stated in Section 3.2. Modifying the
structure (attributes as well as methods) of a single
object is performed directly, because any object
maintains its own structure and even its specialized
behavior. As shared behavior is placed in trait ob-
jects, its customization implies the adaptation of
types (schema versioning).

p2

Point

point
Prototype

0y

0x

point

Method Implementationdistance

Method implementationmove

Method implementationdraw

3z

-23y

245x

methodrotate

2y

1x

Figure 2. Structural reflective modification of

objects.
Figure 2 shows an example scenario. The initial
point and p2 objects are clones of the pointProto-
type and their shared behavior is placed in the Point
trait object. A new coordinate attribute has been
added only to the point object. Employing the same
approach, only the p2 object is capable to rotate its
coordinates. Finally, all the derived objects from the
Point trait object will be able to use the new dis-
tance method.

Adapting Rotor’s Computational Model
We have seen how the prototype-based object-
oriented model is capable of modeling structural re-
flection in a coherent way. However, the .net plat-
form employs a class-based model all over the CLI.
Moreover, if we want to interoperate with any exist-
ing .net language or application, we must follow the
class-based model. Therefore, our approach consists

on continue using classes but the reflective primitives
will offer a semantic of a prototype-based object
model:

• As classes are first class objects in the .net plat-
form, their structure is customized by means
their System.Type instances. Altering their
methods produces adaptation of shared behavior
as if we were modifying a trait object in the pro-
totype-based object model. In case we adapt at-
tributes of System.Type objects, what we obtain
is the customization of all the existing instances
of the class adapted (schema evolution). Look-
ing for a good runtime performance, we have
developed a lazy schema evolution mechanism
[Tan89].

• Objects are treated as prototypes. Although in
the class-based object model it is not possible to
add specific behavior to a single object, neither
to modify its attributes without adjusting its class
structure, we permit to apply these structural re-
flective services to a specific class instance. Em-
ploying this model, we can dynamically add or
erase both methods and attributes to a specific
object, overcoming the abovementioned schema
versioning problem. Of course, any compiler of
a statically type-checked .net language (e.g., C#)
needs to be modified to make the most of these
reflective features; dynamic languages will em-
ploy them directly.

As an example, we show in Figure 3 a Python syn-
tactic approach of a program that uses this combina-
tion of the class-based and prototype-based object
model, when employing the structural reflective
primitives (last feature shown in the example code is
not really supported by the Python programming
language).

We first create a Point class with its constructor and
the move and draw methods. An instance is then cre-
ated (point) and a draw message passed. Then we
modify the structure of a single object adding a new
z attribute and its respective draw3D method. Finally,
we add a new behavior to the Point class (the getX
method) and a new isShowing field to every Point
instance, obtaining the schema evolution mechanism
previously described.

5. EXTENDING THE BCL
The structural reflective features mentioned above
require the enhancement of the .net platform seman-
tics. We have first implemented all of them in a new
namespace called System.Reflection.Structural.
The primitives were initially developed in C#, mak-
ing extensive use of the .net’s introspection facilities.
This first implementation has empirically demon-

155

strated the viability of the proposed computational
model, giving us a first assessment of performance.

class Point:
"Constructor"
def __init__(self, x, y):

self.x=x
self.y=y

"Move Method"
def move(self, relx, rely):

self.x=self.x+relx
self.y=self.y+rely

"Draw Method"
def draw(self):

print "("+str(self.x)+
","+str(self.y)+")"

point=Point(1,2)
point.draw() # (1,2)
Modify attributes of a single object
point.z=3
print point.z # 3
Modify methods of a single object
def draw3D(self):
print "("+str(self.x)+

","+str(self.y)+
","+str(self.z)+")"

point.draw3D=draw3D
point.draw3D() # (1,2,3)
Modify methods of a class
def getX(self):
return self.x

Point.getX=getX
print point.getX() # 1
Modify attributes of
every Point instance
Point.isShowing=0

Figure 3. Example Python code using structural

reflection services.
This is a resume of the most significant elements we
have added to the BCL (all of them, static methods of
the Structural utility class):

• addMethod and removeMethod methods receive
an object or class (System.Type) as a first pa-
rameter indicating whether we want to modify a
single object or a shared behavior. The second
parameter is a MethodInfo object of the Sys-
tem.Reflection namespace. This object
uniquely describes the identifier, parameters, re-
turn type, attributes and modifiers of a method.
The user could create a new method employing
the System.Reflection.Emit namespace, and
add it to an object or class by means of its Meth-
odInfo.

• The invoke primitive executes the method of an
object or class specifying its name, return type
and parameters. When the programmer uses the

invoke method to pass a message to an object, it
is checked if the object has a suitable method. In
case it exists, it is executed; otherwise the mes-
sage is passed to its class (its trait object). A
MissingMethodException is thrown if the mes-
sage has not been implemented.

• The addField, getField and removeField
methods are used to modify the runtime structure
of single objects or their common schema
(classes). If the first parameter is an object, the
rest of instances of its class will not be modified.
Adding a field to a class ensures that all of the
existing instances contain the specified attribute;
removing it guarantees that none have that at-
tribute.

Employing these primitives, the code in Figure 4
shows the C# version of the Python reflective pro-
gram of Figure 3.
RuntimeStructuralFieldInfo rsfi = new Run-

timeStructuralFieldInfo("z",
typeof(int),3, FieldAttributes.Public);

Structural.addField(point,rsfi);
// Draw3D is the MethodInfo a new method
// created with System.Reflection.Emit
Structural.addMethod(point,draw3D);
Object[] pars={};
Structural.invoke(point,draw3D.ReturnType,

"draw3D",pars);
// getX is another MethodInfo object
Structural.addMethod(typeof(Point),getX);
Console.WriteLine(Structural.invoke(

point,getX.ReturnType,"getX",params));
rsfi = new RuntimeStructuralFieldInfo(

"isShowing", typeof(bool),false, FieldAt-
tributes.Public);

Structural.addField(typeof(Punto), rsfi);

Figure 4. C# structural reflective program.
We have implemented other useful primitives such as
{field, method}Exists, getFieldValue, al-

ter{Method, Field} or getMethod, as well as addi-
tional classes such as RuntimeStructucturalField-
Info or {Member, Method, Field}Collection. Now
that we have confirmed that this set of primitives are
suitable to offer the adaptable computational model
presented, we are implementing part of them as an
enhancement of the semantics of specific CIL in-
structions. As an example, the invoke primitive
should not be only part of the BCL interface; its se-
mantics must also be included in the call and call-
virt CIL statements. In order to achieve this func-
tionality we are also modifying the semantic analysis
module of the SSCLI C# compiler –it should be al-
lowed to invoke non-existing methods at compile
time.

6. IMPLEMENTATION
The complexity of Rotor implementation prevented
us from directly implementing the operations inside
the runtime environment. A set of steps were defined
to gradually incorporate structural reflection in Ro-

156

tor. Modifying different parts of the system one by
one –from BCL to the binary code generated at run-
time– has allowed us to refine the model using the
experience gained.

We have divided the development process into three
steps:

• Step 1: BCL-level implementation. In this step
we have implemented all the reflective primi-
tives in C#, making use of .net introspective ca-
pabilities. The runtime environment was not
modified in this step. The programmer should
use all the reflective features explicitly by means
of the BCL.

• Step 2: VM-level implementation. In this second
step we have moved the implementation of the
BCL primitives developed in the previous step
to an equivalent C implementation, included into
the execution environment. The BCL interface
was not modified, but the implementation was
included inside the virtual machine getting sig-
nificantly better runtime performance. We used
Rotor internal structures, data types and routines
to our advantage.

• Step 3: JIT-level implementation. The final step
in our development has been modifying the Ro-
tor JIT code generation mechanism. We have ex-
tended some CIL instruction semantics modify-
ing the code generated by the JIT, in order to
support structural reflection of existing .net ap-
plications.

The Step 1 implementation employs a central data
structure that uses four C# hash-tables to store rela-
tionships between added members and their owners
(either classes or instances). When accessing mem-
bers, these hash-tables are consulted first and, if the
member has not been reflectively added, the rest of
the process continues searching in the class hierarchy
using introspection. If the top of the hierarchy is
reached without finding the appropriate member, a
MissingMemberException is thrown. This implemen-
tation is much easier than developing this code inside
the runtime environment, but its execution perform-
ance is significantly slower.

Once the first step was developed and tested, we pro-
ceeded to include the implementation of these reflec-
tive services inside the execution environment. The
most important decision to be done was finding the
suitable place to put the data structure that stored the
reflective information. Since direct object structure
manipulation turns to be much more difficult than we
expected, due to its fixed-size object design, we de-
cided to use each object’s Syncblock to store reflec-
tive data. Thus, we assigned each object (and class) a
specific structure to store its reflective information.

Although the VM-level implementation improved
runtime performance considerably, reflective behav-
ior must still be explicitly stated by the programmer.
That is to say, it is not possible to reflectively adapt
legacy .net binary code, because structural reflection
must be explicitly used. We are currently working on
overcoming this lack, implementing the third step of
the development process.

Project Status
Structural reflective primitives are being included
into the CIL instruction semantics (3rd step). We have
already included the attribute-manipulation ones. The
new semantics has already been added to the ldfld
and stfld CIL statements of the platform.

The main idea to achieve the new behavior is to
modify the native code generated by the JIT com-
piler. Instead of the original code that uses statically
calculated member offsets, we generate a call to a
helper function. This function explores the object
structure in order to calculate member addresses us-
ing the reflective data included in the object’s
Syncblock.

Finally, we are working on modifying the JIT com-
piler to support reflective manipulation of methods.
Our planned implementation will generate code to a
new helper function, which will return the method
address (depending on the stored reflective informa-
tion), performing the invocation of the returned ad-
dress.

7. PRIMARY PERFORMANCE AS-
SESSMENT
The use of a JIT compiler in a reflectively adaptive
environment could introduce performance benefits in
comparison with existing interpreted-based imple-
mentations. We have measured the performance of
our second step implementation in comparison with
four well-know Python platforms. This assessment
will give us an idea of the benefits that could be ob-
tained in the future.

We have measured execution time of all the primi-
tives described above in loops of 10,000 iterations,
removing any I/O and graphical routines [Bul00]. All
tests were carried out on a lightly loaded 3.2 GHz
iPIV hyper-threading system with 1 Gb of RAM run-
ning WindowsXP.

The specific well-known Python implementations
used in our tests were:

• CPython 2.4 (commonly referred as simply Py-
thon): This is probably the most widely used Py-
thon interpreted implementation; it is called
CPython because it has been developed in C.

157

• ActivePython 2.4.0. Another interpreted distri-
bution of Python (from ActiveState) available
for Linux, Solaris and Windows.

• Jython 2.1 (formerly called JPython): A 100%
pure Java implementation of the Python pro-
gramming language. It is seamlessly integrated
with the Java 2 Platform.

• IronPython 0.6: is a new promising implementa-
tion of the Python language targeting the Com-
mon Language Runtime (CLR). It compiles py-
thon programs into CIL bytecodes that run on ei-
ther Microsoft's .net or the Open Source Mono
platform. Its current release is a pre-alpha 0.6
version.
We have not used Zope’s Python for .net be-
cause it is not really the same approach as Jython
in Java; it provides an implementation of the Py-
thon language and runtime engine in pure Java.
Python for .net is not a re-implementation of Py-
thon, just an integration of the existing CPython
runtime with .NET. Neither have we employed
ActiveState Python for .net because they have
quit this research project caused by the poor per-
formance results obtained [Ude03].

Table 1 shows the measurement of each primitive
execution called 10,000 times, expressed in millisec-
onds. As we can appreciate in this table, Jython and
IronPython obtain the worst performance results in
all of the tests –IronPython do not implement dele-
tion of members, neither class manipulation. The
requirement to implement Jython as a 100% pure
Java offers a great interoperability with any Java
program, but it causes a significant performance pen-
alty. The same happens to IronPython: generating
CIL code that simulates the Python reflective model

over a platform that does not support it produces low
performance at runtime. Probably, this performance
penalty is caused by the amount of extra code that
must be generated to support the reflective model.

Figure 5 and Table 1 show how our BCL implemen-
tation of structural reflective primitives is faster than
the two systems that generate intermediate code:
Jython and IronPython. Note than, since the range of
values of Jython and IronPython are considerably
different from the rest of implementations, we have
separated both scales in Figure 5. Therefore, the val-
ues of these two implementations are shown on the
right of the figure, whereas the rest appear on the
left. Our BCL implementation is more than 30 times
faster than Jython.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1 3 5 7 9 11 13 15 17 19

Jython

IronPython

BCL

ActivePython

CPython

JIT

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Figure 5. Execution time (milliseconds) of each

primitive over different implementations.

Primitive Jython IronPython BCL ActivePython CPython
1. Add int attributes to an object 20,679 36,032 1,632 590 541
2. Add Object attributes to an object 20,290 32,013 1,762 611 580
3. Add int attributes to a class 20,063 440 551 591
4. Add Object attributes to a class 20,320 460 661 610
5. Delete int attributes from an object 18,406 971 561 591
6. Delete Object attributes from an object 19,028 961 611 601
7. Delete int attributes from a class 18,536 200 540 561
8. Delete Object attributes from a class 18,896 210 581 560
9. Access attributes from an object 18,607 23,000 530 521 530
10. Access non-existing attributes from an object 20,019 21,017 1,191 641 601
11. Access attributes from a class 18,577 150 511 481
12. Access non-existing attributes from a class 20,028 370 611 571
13. Add methods to an object 22,592 30,230 3,364 640 480
14. Add methods to a class 23,192 2,000 720 560
15. Invoke methods added to an object 20,624 24,010 3,564 760 600
16. Invoke non-existing methods to an object 25,276 25,567 1,840 720 804
17. Invoke methods added to a class 21,064 2,680 720 680
18. Delete methods added to an object 18,504 1,240 520 520
19. Delete methods added to a class 18,464 280 520 520

Table 1. Measurement of 10,000 calls to each reflective primitives.

158

Figure 5 also illustrates how our system performance
is not as good as the native interpreter implementa-
tion (CPython and ActiveState). However, the BCL
implementation is the fastest when modifying class’s
structure. This is due to the laziness of the schema-
evolution mechanism we have implemented.

Best results are obtained by the two platforms that
interpret the Python code by means of a C implemen-
tation: ActiveState and CPython. Both obtain quite
similar results, which are significantly better than the
BCL version when using objects –the most typical
scenario– but worse when employing classes.

As we have mentioned above, we are currently in-
cluding the structural reflective primitives into the
JIT compiler. Although the project is still in an im-
mature point to release definitive performance re-
sults, we have enough information to get a first inter-
esting estimation. Executing the same test suite with
the new attribute semantics added to the SSCLI run-
time environment, employs the 15.76% average time
in comparison with the BCL version (the new im-
plementation is 10.88 times better that the first one).
Furthermore, the execution of JITted structural re-
flective primitives requires an average of 11.58 %
time in comparison with the time required in CPy-
thon. Figure 5 shows these values graphically (JIT).

Although we have not developed the addition and
deletion of methods in objects and classes, these first
results give us an initial estimation of how the use of
a JIT compiler can be employed to obtain good per-
formance of runtime adaptive applications. Certainly,
since we have only developed part of the reflective
computational model of Python –e.g. we have not
implemented the Python feature of modifying the
class an object is instance of–, the results obtained
could not be directly compared with execution per-
formance of complete implementations of the Python
programming language. What our work has revealed
is that JIT compilation techniques are really appro-
priate to improve the performance of adaptive sys-
tems and languages. The key point is to modify the
semantics of the abstract machine instead of generat-
ing intermediate code that simulates this adaptive
behavior. Adding this semantics at the JIT compiler
level is complex task, but appears to be worth the
effort.

8. CONCLUSIONS
Abstract machines have been widely employed to
design programming languages because of the many
advantages they offer. Although performance was
the main drawback in the past, modern techniques
like adaptive (hotspot) Just In Time compilation have
overcome this weakness. That is one of the reasons

why virtual machine platforms are nowadays com-
mercially used.

Currently, due to the special flexibility and adap-
tively needs of specific systems, the so called “dy-
namic languages” are becoming more and more used.
These languages also make use of the process of
compilation to an abstract-machine’s intermediate
code. However, due to the complexity of its flexible
semantics, the virtual machine is commonly devel-
oped as an interpreter.

Looking for better performance results, there have
been different attempts to implement Python and
other highly dynamic languages for.net and Java
platforms. They have resulted in systems with really
poor performance, so bad that they were considered
unusable. Some of them have abandoned this idea.
We have evaluated two, Jython and IronPython, in
comparison with other two interpreted versions –
CPython and ActivePython. The interpreted versions
were much faster than the JIT compiled ones, when
measuring their reflective features. Despite these
results, we think that the use of a JIT compiler in
reflective adaptive environments could obtain better
performance than interpreting the intermediate lan-
guage. Since Java and .net platforms have not been
designed with that purpose, modifying the semantics
of the abstract machine (and, therefore, the imple-
mentation of the virtual machine) might produce the
expected benefits.

In order to obtain a first performance assessment, we
have developed a set of structural reflective primi-
tives as part of the BCL .net platform. These primi-
tives implement the semantics of the prototype-based
object-oriented model over the SSCLI class-based
platform. This first implementation obtains better
performance results that generating CIL code, be-
cause implies quite less code to execute at runtime.

Finally, we have performed an initial assessment of
performance results obtained with the inclusion of
part of the structural reflective primitives into the
SSCLI runtime environment. This initial evaluation
gives us an estimation of the performance benefits
that will be obtained in the future, when the whole
reflective semantics will be included in the code gen-
erated by the JIT compiler. Although we have only
added part of the reflective features of the Python
programming language, the assessment presented
reveals that using an adaptive-designed platform in
conjunction with a JIT compiler involves important
performance benefits to implement dynamic lan-
guages.

9. REFERENCES
[Bor86] Borning, A.H. Classes versus Prototypes in

Object-Oriented Languages. In Proceedings of

159

the ACM/IEEE Fall Joint Computer Conference,
pp. 36-40, 1986.

[Bul00] Bull, J. M., Smith, L.A., Westhead, M.D.,
Henty, D.S., and Davey, R.A. A Benchmark Suite
for High Performance Java. Concurrency: Prac-
tice and Experience 12, pp. 375-388, 2000.

[Caz04] Cazzola, W., Chiba, S., and Saake, G. In
ECOOP Workshop on Reflection, AOP, and
Meta-Data for Software Evolution. Research Re-
ports on Mathematical and Computing Sciences.
Department of Mathematical and Computing Sci-
ences, Tokyo Institute of Technology, 2004.

[Cla82] Clark, R., and Koehler, S. The UCSD Pascal
Handbook. Prentice-Hall, Englewood Cliffs,
1982.

[Die00] Diehl, S., Hartel, P., and Sestoft, P. Abstract
Machines for Programming Language Implemen-
tation. Elsevier Future Generation Computer Sys-
tems, Vol. 16(7), 2000.

[ECO04] ECOOP’04 Workshop on Object-Oriented
Language Engineering for the Post-Java Era:
Back to Dynamicity. ECOOP 2004 Workshop
Reader, Lecture Notes in Computer Science, Vol.
3344, Oslo, Norway, 2004.

[Gol83] Goldberg, A., and Robson, D. Smalltalk-80,
The Language and Its Implementation. Addison-
Wesley, Reading, MA, 1983.

[Gol97] Golm, M., and Kleinöder, J. MetaJava - A
Platform for Adaptable Operating- System
Mechanisms. Lecture Notes in Computer Science
1357, Springer-Verlag, pp.507-507, 1997.

[Hin03] Hinsen, K. High-Level Parallel Software
Development with Python and BSP. Parallel
Processing Letters, Vol. 13, No. 3, pp. 473-484,
2003.

[Höl94] Hölzle, U., and Ungar, D. A Third-
Generation Self Implementation: Reconciling Re-
sponsiveness with Performance. In Proceedings
of the ACM OOPSLA Conference, Portland, OR,
1994.

[Kic91] Kiczales, G. The Art of the Metaobject Pro-
tocol. The MIT Press, 1991.

[Lan64] Landin, P.J. The mechanical evaluation of
expressions. Computer Journal 6 (4), pp. 308-
320, 1964.

[Mae87] Maes, P. Computational Reflection. PhD.
Thesis, Laboratory for Artificial Intelligence,
Vrije Universiteit Brussel, Belgium, 1987.

[Mar03] Martin, R.C. Are Dynamic Languages Go-
ing to Replace Static Languages? Artima Devel-
oper, April, 2003.

[Mer03] Mertz, D., and Simionato, M. Metaclass
Programming in Python – Pushing Object-
Oriented Programming to the next level. IBM de-
peloperWorks. February 2003.

[Mor74] Moore, C. Forth: A new way to program a
mini-computer, Astronomy & Astrophysics Sup-
plement: 15, pp. 497-511, 1974.

[Mul93] Mulet, P., and Cointe, P. Definition of a
Reflective Kernel for a Prototype-Based Lan-
guage. In the International Symposium on Object
Technologies for Advanced Software, Kanazawa
(Japan), 1993.

[Ort04] Ortin, F., and Cueva, J.M. Dynamic Adapta-
tion of Application Aspects. Journal of Systems
and Software 71(3), pp. 229-243,2004.

[Ort05] Ortin, F., and Diez, D. Designing an Adapt-
able Heterogeneous Abstract Machine by means
of Reflection. Information and Software Tech-
nologies 47(2), pp. 81-94, 2005.

[OSF91] Open Systems Foundation. OSF Architec-
ture-Neutral Distribution Format Rationale, 1991.

[Pop01] Popovici, A., Gross, Th., and Alonso, G.
Dynamic Homogenous AOP with PROSE, Tech-
nical Report, Department of Computer Science,
ETH Zurich, Switzerland, 2001.

[Rod95] Roddick, J. A Survey of Schema Versioning
Issues for Database Systems. Information and
Software Technology 37 (7), 383-393, 1995.

[Ros03] Rossum, G.V., Fred, L., and Drake, Jr. The
Python Language Reference Manual. Network
Theory, 2003.

[Sha96] Shalit, A., Moon, D., and Starbuck, O. The
Dylan Reference Manual. Addison-Wesley, 1996.

[Ska87] Skarra, A.H., and Zdonik, S.B. Type Evolu-
tion in an Object-Oriented Database. Research
Directions in Object-Oriented Programming,
MIT-press, pp. 393-415, 1987.

[Ste61] T.B. Steel Jr. A first version of UNCOL. In
Western Joint Computing Conference, pp. 371–
378. New York, 1961.

[Stu03] Stutz, D., Neward, T., and Shilling, G.
Shared Source CLI Essentials. O’Reilly, 2003.

[Sun90] Sunderam, V. S. PVM: A Framework for
Parallel Distributed Computing. Concurrency:
Practice and Experience 2(4), pp 315-339, 1990.

[Tan89] Tan, L., and Katayama, T. Meta operations
for type management in object-oriented databases
- a lazy mechanism for schema evolution. In Pro-
ceedings of First International Conference on
Deductive and Object-Oriented Databases,
DOOD, pp. 241-258. 1989.

[Tan03] Tanter, E., Noyé, J., Caromel, D., and
Cointe, P. Partial behavioral reflection: spatial
and temporal selection of reification. In Proceed-
ings of the 18th annual ACM SIGPLAN confer-
ence on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). Cali-
fornia, USA, 2003.

[Tho04] Thomas, D., Fowler, C, and Hunt, A. Pro-
gramming Ruby. 2nd Edition. Addison-Wesley
Professional, 2004.

160

[Ude03] Udell, J. Dynamic languages and virtual
machines. InfoWorld, August, 2003.

[Ung87] Ungar, D., and Smith, R. B. SELF: The
Power of Simplicity. In OOPSLA Conference
Proceedings. SIGPLAN Notices, 22 (12), pp.
227-241, 1987.

[Ung91] Ungar, D., Chambers, D., Chang, B.W., and
U. Hölzl. Organizing Programs without Classes.

Lisp and Symbolic Computation, Kluwer Aca-
demic Publishers, pp. 223-242, 1991.

[War83] Warren, D.H.D. An abstract Prolog instruc-
tion set. Technical Note 309, SRI International,
Menlo Park, CA, 1983.

[Wol96] Wolczko, M., Agesen, O., and Ungar, D.
Towards a Universal Implementation Substrate
for Object-Oriented Languages, Sun Microsys-
tems Laboratories, 1996.

161

162

To JIT or not to JIT: The Effect of Code Pitching on the
Performance of .NET Framework

David Anthony, Michael Leung and Witawas Srisa-an
Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588

{danthony, mleung, witty}@cse.unl.edu

ABSTRACT
The .NET Compact Framework is designed to be a high-
performance virtual machine for mobile and embedded de-
vices that operate on Windows CE (version 4.1 and later).
It achieves fast execution time by compiling methods dy-
namically instead of using interpretation. Once compiled,
these methods are stored in a portion of the heap called
code-cache and can be reused quickly to satisfy future method
calls. While code-cache provides a high-level of reusability,
it can also use a large amount of memory. As a result,
the Compact Framework provides a “code pitching” mech-
anism that can be used to discard the previously compiled
methods as needed.

In this paper, we study the effect of code pitching on the
overall performance and memory utilization of .NET ap-
plications. We conduct our experiments using Microsoft’s
Shared-Source Common Language Infrastructure (SSCLI).
We profile the access behavior of the compiled methods.
We also experiment with various code-cache configurations
to perform pitching. We find that programs can operate
efficiently with a small code-cache without incurring sub-
stantial recompilation and execution overheads.

Keywords: Just-in-time compilation, Java virtual ma-
chines, .NET CLR, code-cache management

1. INTRODUCTION
In both .NET and Java execution systems, Just-In-Time
(JIT) compilers have been used to speed up the execution
time by compiling methods into native code for the un-
derlying hardware [7, 14, 10]. JIT compilation has proved
to be much more efficient than interpretation especially in
execution intensive applications [6, 7, 14, 16]. In the Mi-
crosoft .NET Framework, a method is compiled prior to
its first use. Afterward, the compiled methods are stored
in the code-cache for future reuse [9]. This code-cache is
located in the heap region .

The size of code-cache can be increased or decreased de-
pending on the program’s behavior. For example, in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

.NET Technologies’ 2005 Conference Proceedings
ISBN 80-86943-01-1
Copyright UNION Agency — Science Press, Plzen, Czech Republic

default configuration of the Shared-Source Common Lan-
guage Infrastructure (SSCLI) or frequently referred to as
Rotor, the initial code-cache size is set to 64 MB. Once
the accumulation of compiled method reaches this size, the
system can choose to either increase the code-cache size
or keep the same size and free all the compiled methods
not currently in scope (referred to as pitching) [10]. There
are two possible overheads of the “code pitching” mecha-
nism [10, 9]— the overhead of traversing through all the
compiled methods and the overhead of recompiling meth-
ods after pitching. However, pitching provides a means
to maintain a small code-cache as memory is periodically
reclaimed.

Currently, code pitching is employed in the .NET Compact
Framework (CF), which is used to develop applications for
smart devices with limited memory resources [9]. Such de-
vices include smart phones, Pocket PC, and embedded sys-
tems running Windows CE. In these devices, a pitching
policy can play a very important role since it can deter-
mine the amount of memory footprint for the code-cache.
If pitching occurs infrequently, the code-cache would oc-
cupy a large amount of memory. If pitching occurs too
frequently, a large number of methods would have to be
recompiled. The goal of this paper is to take a preliminary
step to study the effect of pitching on the overall perfor-
mance and memory utilization of .NET applications. To
date, there have been a few projects that investigate the
recompiling decision and method unloading in Java [16,
15, 3]. However, they are implemented into a virtual ma-
chine that does not support pitching. With the SSCLI, we
have an opportunity to study the mechanism that has been
built by a major software maker as a standard feature. Our
work attempts to study two important research questions.
They are:

RQ1: What are the basic behaviors of the compiled meth-
ods?—We investigate the access behaviors, compila-
tion frequency, and commonly used metrics such as
size and the number of methods.

RQ2: Can we improve the overall performance and mem-
ory utilization by manipulating the code-cache config-
uration?—We experiment with multiple code-cache
sizes and investigate the impacts of utilizing different
cache size enlargement policies.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related background information. Sec-
tion 3 describes our challenges and research questions in
detail. It also describes the methodology and constraints

163

used to perform the experiments. Section 4 discusses the
experiments and results conducted in regards to the re-
search questions. It also contains the detailed analysis of
our findings. Section 5 presents the future work. Section 7
discusses prior research work in this area. The last section
concludes this paper.

2. BACKGROUND
This section discusses background information related to
this work.

2.1 Shared-Source Common Language Infras-
tructure (SSCLI)

The main objective of the CLI is to allow programmers
to develop component-based applications where the com-
ponents can be constructed using multiple languages (e.g.
C#, C++, Python, etc.). ECMA-3351 (CLI) standard de-
scribes “a language-agnostic runtime engine that is capable
of converting lifeless blobs of metadata into self-assembling,
robust, and type-safe software systems” [10]. There are
several implementations of this standard that include Mi-
crosoft’s Common Language Runtime (CLR), Microsoft’s
Shared Source Common Language Infrastructure (SSCLI),
Microsoft’s .NET Compact Framework, Ximian’s Mono project,
and GNU’s dotnet project. For this research, we use the
SSCLI due to the availability of the source code. More-
over, it seems to be the most mature implementation when
compared to Mono or GNU’s DotNet projects.

SSCLI is a public implementation of ECMA-335 standard.
It is released under Microsoft’s shared source license. The
code base is very similar to the commercial CLR with a few
exceptions. First, the SSCLI does not support ADO.NET
and ASP.NET which are available in the commercial CLR.
ADO.NET is a database connectivity API and ASP.NET
is a web API that is used to create Web services. Second,
the SSCLI uses a different Just-In-Time (JIT) compiler
from the CLR. The latter provides a more sophisticated
JIT compiler with the ability to pre-compile code. How-
ever, the commercial CLR does not support code pitching.
Notice that both implementations of the CLI adopt JIT
compilation and not interpretation mode as in some earlier
Java Virtual Machine implementations [11]. Third, it is de-
signed to provide maximum portability. Thus, a software
layer called Portable Adaptation Layer (PAL) is used to
provide Win32 API for the SSCLI. Currently, the SSCLI
has been successfully ported to Windows, FreeBSD, and
MacOS-X operating systems.

One of the major runtime components related to this work
is the Just-In-Time (JIT) compiler. It is used to compile
methods within components into the native code for the
underlying hardware [14]. JIT compiler also ensures that
every instruction conforms to the specification by ECMA
standard. Once compiled, these methods reside in the code-
cache which is located in the heap memory. Instead of
recompiling a method each time it is called, the native code
is retrieved from the code-cache [9]. When more memory is
needed by the system or when a long running application
is moved to the background, the methods in the code-cache
are“pitched” to free up memory [9, 10].

2.2 Code Pitching Mechanism
The execution engine initializes the code-cache by allocat-
ing 8KB. The reserve code-cache size is set to the target

1European Computer Manufacturers Association

code-cache size which is defined by a variable. By default,
this variable is set at 64MB by the SSCLI designers. As
program execution continues, additional heap space is al-
located to the code-cache in 8KB increments as needed to
store the compiled methods. The total size of the allo-
cated heap space is called the committed code-cache size.
As the committed code-cache size approaches the target
code-cache size, the allocator will decide whether to allo-
cate more heap space beyond the target cache size or pitch
all unused methods. The allocator will not consider code
pitching until the target code-cache size, maximum cache
size or pitch trigger is reached. The default target cache
size is 64 MB whereas the maximum cache size is 2GB.

Once the target code-cache size is reached, the allocator
chooses between increasing the cache size or pitching un-
used code. If the reserved size is less than the target code-
cache size or the existing pitch overhead is over the accept-
able maximum (default 5ms), the allocator will attempt to
increase the code-cache size. During this attempt, if the
total needed memory is greater than the reserved size, less
than the hard limit, not at the pitch trigger point, and
pitch overhead is too high, it will expand the committed
code-cache size and the reserved size. Otherwise, it will
pitch all unused code. If there is still insufficient memory
after pitching, the code-cache size and the reserved size will
be increased until enough memory is available. If at any
point during the execution, the number of compiled meth-
ods reach the pitch trigger, pitching occurs regardless of
other cache conditions.

Currently, code pitching is used in the .NET Compact
Framework which is built for embedded devices. Obviously,
it is very important to strike a good balance of memory us-
age and performance overhead since such devices have a
very limited amount of memory. In addition, the Compact
Framework is often used in Windows CE which has the
maximum virtual process space of only 32 MB. Thus, the
amount of code-cache has to be small enough to work in
this computing environment but yet big enough to provide
efficient compilation of methods.

2.3 The DNProfiler
Rotor comes packaged with a sample profiler called the
DNProfiler. The DNProfiler provides callbacks to the CLR
allowing a user to see what is going on without having
to hard-code debug statements into the source or develop
complicated hooks. The profiler provides callbacks for shut-
down and initialization, JIT events, garbage collection, thread-
ing, etc... All the user has to do is provide handler code
in the DNProfiler to process information during callback
events. Once the DNProfiler is coded and compiled, the
user has to activate it by turning profiling on and setting
the profiling mask to what they want to monitor.

To gather data, the DNProfiler was modified to handle the
JIT events. Specifically, the beginning and end of method
compilation was monitored along with program initializa-
tion and shutdown and pitch events. A high performance
counter was used to provide the most accurate time results
possible.

The DNProfiler by itself cannot provide enough informa-
tion to conduct our work. In order to track code-cache
usage, we also modify the JIT compiler in the section of
code that is responsible for allocating space for compiled
code, garbage collection of unused methods, and maintain-
ing the data structures representing the code-cache.

164

3. EMPIRICAL STUDY
As stated earlier, the behavior of compiled methods in
.NET framework has yet to be studied. In order to de-
sign an efficient pitching policy, a thorough understanding
of the behavior is needed. The current lack of this knowl-
edge has led us to the first research question.

RQ1: What are the basic behaviors of compiled

methods?

If a large number of methods is frequently used, then it may
not be suitable to pitch the code-cache frequently. Our
contribution is to profile the access behavior of compiled
method so that an efficient pitching decision can be made.
We conjecture that a significant performance gain or reduc-
tion in memory usage can be obtained by utilizing different
pitching policies. Thus, our second research question is:

RQ2: Can we improve the overall performance and

memory utilization by manipulating the code-

cache configuration?

In the default configuration of the SSCLI, the policy is to
perform pitching as the last resort. This may not be the
most optimal approach especially in the Compact Frame-
work where the amount of memory available on a system
may be limited. Our contribution is to identify a cache
size and suggest pitching policies that would result in small
cache footprint and minimal compilation overhead.

3.1 Variables and Measures
The JIT compiler relies on several variables to control cache
size and pitching. These variables are used to control the
compiler when to pitch, maximum and minimum cache size,
and cache growth characteristics. As will be described in
the next subsection, we utilize existing experimental ob-
jects written in C# to perform our experiment.

Throughout the experiment, we monitor the following vari-
ables. They provided useful insight into the operation of
the JIT compiler, specifically, its caching mechanism.

• Number of Pitch Events
When the compiler removes compiled code from the
cache it is called a pitch event. Pitching will preserve
methods that are currently in use, but will remove
the rest.

• Number of Recompilations
After a method has been pitched, each time it has
to be complied again is called a recompilation. A
method could be pitched and recompiled multiple times.

• Number of Different Methods
This is the number of unique methods compiled. The
number of unique methods does not include recom-
pilations and does not consider whether the method
has been pitched or not.

• Committed Code-Cache Size
The amount of heap space requested from the system
to store code is called the committed code-cache size.
The compiler asks for heap in increments of 8k.

• Code-Cache Usage
Code-Cache usage is the actual amount of memory
used to store compiled methods at a given time.

To address RQ1, we monitor the basic behavior of compiled
methods. Our goal is to derive at two important perfor-
mance metrics based on the results of variables above:

1. compilation frequency—we monitor how often meth-
ods are compiled and recompiled.

2. concentration of compiled methods—we monitor which
part in the execution methods are compiled the most.

We also observe the average size of compiled method and
compared them to the sizes of typical objects. In order
to do our experiments, we need to create an environment
where the amount of memory is similar to a typical Java
embedded device. To do so, we set the initial code-cache
size to 256KB. However, we would allow the SSCLI to en-
large the code-cache as necessary.

To address RQ2, we go a step further and prevent the SS-
CLI from enlarging the code-cache. The goal of our experi-
ment is to observe the behavior of compiled methods under
hard-limit and explore different code-cache configurations
to improve the overall performance. We also compare the
execution time among different configurations that result
in different number of pitch events.

3.2 Experimental Objects
To address our research questions, we need a set of pro-
grams that compiled a large number of methods. In addi-
tion, we must be able to manipulate the way these programs
are operated. As of now, there are very few benchmark pro-
grams available for the .NET platform. We have gathered
3 different programs that compiled a reasonable amount
of methods (over 1000). We also want to observe how the
code-cache would perform during the execution of smaller
applications. Therefore, we also experiment with using the
classic HelloWorld and Adaptive Huffman Compression to
get some insights on how many methods are needed to exe-
cute such as simple programs. To our surprise, HelloWorld
still requires over 300 compiled methods. This section de-
scribes the experimental objects:

• LCSC
This benchmark is based on the front end of a C#
compiler. The program parses a given C# input file
with a generalized LR algorithm. The benchmark is
available from Microsoft’s research web site [8], along
with the inputs that were used in performing the anal-
ysis.

• AHC
This program uses an adaptive Huffman compression
algorithm to process files. For this program there
were three separate inputs for use as test cases. This
benchmark is also available from Microsoft’s research
web site [8].

• Hello World
This is the classic ”Hello World” program written in
C#. It simply prints ”Hello World” to the console
and exits. Using such a simple program provided in-
sight into how many methods were needed just to
start and stop program execution. The specific file
used is available in the sscli/samples/hello directory.

• CodeToHTML
CodeToHTML is an example program found in the ss-
cli/samples/utilities/codetohtml directory. This pro-
gram parses a given C# or Jscript file and converts

165

Application Minimum (bytes) Maximum (bytes) Average (bytes) Standard Deviation Number of Methods
LCSC 52 27024 1044.93 2587.04 1351
AHC 52 6320 317.04 474.21 514

Hello World 52 6320 299.95 472.37 327
CLisp 52 44008 425.66 1424.96 1168

CodeToHTML 52 44008 460.67 1543.39 1665

Table 1: Basic characteristic of the compiled methods in our benchmarks

% of space needed in the code-cache
Application 15% 30% 45% 60% 75%

LCSC 0.65% 1.08% 1.41% 1.77% 2.16%
AHC 0.03% 0.05% 0.07% 99.95% 99.96%

Hello World 19.81% 35.54% 49.28% 55.03% 79.38%
CLisp 6.27% 11.58% 16.66% 40.12% 94.85%

CodeToHTML 0.08% 0.18% 0.24% 0.28% 0.33%

Table 2: Code-cache usage based on percentage of execution

it to an HTML file. The generated HTML file dis-
plays formatted C# in a clearly organized manner.
The test cases used were the C# files from the LCSC
benchmark and are available for download from the
Microsoft web site.

• CLisp Compiler
This is a small compiler that converts a Lisp source
file to an executable. The compiler was used to com-
pile two sample source files, a Fibonacci series genera-
tor and a numerical sorting algorithm. This compiler
is found in the sscli/compilers/clisp directory.

4. RESULTS
In the following subsections, we present the results of our
experiments that answer two research questions proposed
in Section 3.

4.1 RQ1: Access Behavior
In this section, we discuss the basic behavior of these com-
piled methods. The issues that will be discussed in this
section include the number of compiled methods in each
application, the number of methods that are recompiled,
and the size of the compiled methods. Table 1 depicts the
size information of compiled methods in our benchmark
programs.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Number of times compiled

LCSC AHC Hello World CLisp CodeToHTML

Figure 1: Distribution of compiled methods based
on the number of compilations

It is worth noticing that typical objects in Object-Oriented
Languages such as Java and C# only have the average
object size of less than 100 bytes [4, 13]. However, the
average size of the compiled methods in each application
range from 300 bytes to 1000 bytes. It is also worth noting
that the smallest size for a compiled method is 52 bytes.
This is true across all applications. For the largest size,
a method can be as large as 44K bytes. Since the SSCLI
commits memory in increments of 8K bytes, five requests to
increment must be made just to hold the largest compiled
method in our applications. If no pitching is used, 1.5 MB
of memory is needed to stored the compiled methods in
LCSC (LCSC needs the largest amount of memory at 1.4
MB).

It is also worth noticing that even small applications such
as HelloWorld, a significant number of methods is still
needed to complete the execution (i.e. 327 methods in
this case). However, we also find that complex applica-
tions such as compilers or HTML generator only require
about 1500 methods. We suspect that both compilers and
HTML generator perform repetitive routines, many of the
methods can be reused over the length of execution.

In our experiment, we first study the code-cache usage of
every application. We set the cache size to be large enough
so that pitching does not occur. With the proposed set
of benchmarks, the size is set to 2 MB. We then monitor
the percentage of execution and the percentage of the con-
sumption of the code-cache. For example, LCSC requires
1.4 MB of space to store all compiled methods. When the
program consumes 15% of all the needed cache space or
212 KB, we observe the percentage of execution. In this
case, the program has only completed 0.65% of the total
execution time (see Table 2). It is worth noting that in
three out of five applications, about 50% of all the space
needed for the code-cache are consumed with in the first
few percents of execution.

We also monitor the distribution of methods based on the
number of compilations. We set the code-cache size to
256KB to emulate embedded devices environment and in-
duce some pitch events. We find that in two applica-
tions AHC and HelloWorld, all methods are compiled only
once. However, in larger applications, such as compilers

166

and HTML converter, about 40% of methods are compiled
multiple times. Notice that CLisp and CodeToHTML re-
quire at most 3 and 4 compilations, respectively. How-
ever, LCSC requires methods to be compiled as many as
8 times. As stated earlier, most of these applications ex-
ecute repetitive tasks. Thus, many compiled methods are
reused. If pitch events are forced to occur more often, these
programs may need to have methods recompiled more fre-
quently. Figure 1 illustrates our findings.

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60 70 80 90 100

Percent execution

Figure 2: Distribution of recompiled methods over
the execution time

In terms of access behavior, we find that in all applica-
tions, methods are heavily accessed within the first 6% of
execution time. Then they are accessed moderately from
6% to about 30% of execution time. Afterward, they are
infrequently accessed. To investigate the number of recom-
piled methods, we set the code-cache size to 256KB to force
pitching. We find that about 70% of recompilation occur
during the first 6% of execution time (depicted in Figure
2) in all benchmark programs that perform recompilation
(excluding AHC and HelloWorld). The remaining 30% of
compilation occur during the remaining 94% of execution
time. Thus, many of these methods are short-lived but
during their lifetimes seem to have many accesses. This
is similar to typical objects where the majority are short-
lived [5, 12]. This behavior may provide an opportunity
for optimization by dynamically adjusting the heap size as
needed. For example, the heap size can initially be set to
be larger and then reduced after the first 6% of execution.
We are currently experimenting with this approach and will
report the result in the subsequent publication.

In summary, we find that compiled methods have the fol-
lowing behavior:

• The average size of a method is much larger than the
average size of a typical object.

• Even the simplest applications still require at least
300 methods to execute.

• In larger programs, a large number of methods is
reused. This conclusion is based on the fact that large
programs recompile a large amount of methods when
the cache size is small and pitching occurs frequently.

• The reuse often occurs toward the beginning of the
program execution.

4.2 RQ2: Optimizing Code-Cache Configu-
ration and Pitching Policy

In this section, we will apply different pitching policies to
LCSC and monitor the differences in the runtime behavior.
We choose LCSC because it accesses a large number of
methods and requires the largest number of pitch events.
In the SSCLI, there are two ways to set the size of the code-
cache. The first method (shall be referred to as Approach
1) is to set the initial code-cache to a certain size (e.g.
256KB). This however, is not the highest possible value.
When the amount of compiled methods reach 256KB for
the first time, the system will pitch all methods that are
not in scope but it will also consider whether to increase
the cache size. Thus, if the cache size is doubled, the next
pitch event will occur when the accumulation of methods
in the code-cache approaches 512KB. Figure 3 depicts the
pitch events using Approach 1. The initial code-cache is
set to 256KB.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

Pitch Events

C
o

d
e
-C

a
c
h

e
 S

iz
e

Figure 3: Monitoring pitch events using Approach
1

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6

Pitch event

N
u

m
b

er
 o

f
m

et
h

o
d

s

Methods reJITedUnique Methods Compiled

Figure 4: Ratios between new methods and recom-
piled methods based on pitch events

Figure 3 illustrates the basic behavior of code-cache expan-
sion in Approach 1. The diamonds in the figure represent
the all the pitch events that occur in the system. In this ex-
ample, we have 6 pitch events throughout the execution of
LCSC. Table 3 depicts the number of pitch events in all ap-
plications with different target cache sizes (256KB, 512KB,
1MB, and 2MB). It is worth noting that the benefit gained
through this approach is in the reduction of the number of
pitch events during the initial execution period. For exam-
ple, by increasing the initial cache size from 256 KB to 512
KB, the number of pitch events decrease by two in LCSC.

167

These two events occur during the first five percent of the
execution.

Figure 4 depicts the number of methods that are recom-
piled by applying Approach 1 in which the cache size can
be increased as needed. Notice that there are more meth-
ods rejitted after the later pitch events (4 to 6). This is
corresponding to Table 2 as methods are compiled during
the early part of the execution. As we continue to pitch
late into the execution, the methods that were compiled
and have recently been pitched are still being accessed and
must be recompiled.

It is worth noting that the initial target size can greatly
affect the number of pitch events in the system. This is
because the first pitch event will take longer to occur with
larger cache size. As shown in Figure 2, a majority of re-
peated invocations occurs within the first 10% of execution.
Thus, a larger initial heap size be advantageous by facili-
tating more reuse at the beginning.

Figure 4 initially appears to be contradicting Figure 2 as
the amount of recompiled (reJITed) methods do not be-
come significant until the fourth pitch event. However, we
find that 4 out of 6 pitch events occur in the first 3% of
execution. The fifth event occurs around the 33rd percent
and the last event occur at the 80th percent. Thus, most
of the recompilation events occur during the initialization
of the system.

The second method (shall be referred to as Approach 2)
is to set the initial code-cache size to be the limit. Notice
that the limit must be big enough to contain the initial
method working set that can initialize the application. If
the cache size is too small to contain all methods during
initialization, the program may crash. Table 4 provides the
information about the pitch events and the total execution
time in LCSC when the Approach 2 is applied. Again,
we monitor the number of pitch events with respect to the
different cache sizes.

Notice that excessive pitching (as in the cases of 256K and
512K cache size using Approach 2) can result in significant
runtime overheads (864 seconds with 6700 pitch events ver-
sus 66 seconds with no pitching). We also find that a small
amount of pitching does not significantly affect the overall
performance; however, it can lead to a very significant re-
duction in memory usage. For example, if the cache size
is set to 2MB, there is no pitching in the system. The ex-
ecution time of this scenario is about 67 seconds. On the
other hand, if we set the heap size to 1MB (50% saving in
memory usage), there are 4 - 5 pitch events (depending on
whether Approach 1 or 2 is used), but the execution times
only increase by about 1 second or 1.5%. Thus, in the mem-
ory constrained systems pitching can be used to reduce the
memory footprint without incurring a substantial amount
of overhead.

Figure 5 depicts the usage of code-cache as LCSC is exe-
cuted. The x-axis represents the percentage of execution
completion and the y-axis represents the amount of mem-
ory in the code-cache used by the program. It is worth
noting that with 256KB initial heap size using Approach
1, the size of the code-cache increases to 1024KB within the
first 3% of execution. However, it will take another 30% of
execution to accumulate the compiled methods that would
result in another pitching. In this situation, it may not be
necessary to increase the cache size from 768K to 1024K.

0

200

400

600

800

1000

1200

0

1
.0

8

2
.0

2

2
.9

1

3
3

.2 8
1

9
4

.1

1
0

0

Percentage of Execution

M
e

m
o

ry
 U

s
a

g
e

 (
K

B
)

Figure 5: Code cache usage (256KB)

In addition, after the pitch event at the 33rd percent of the
execution time, the next pitch events does not occur until
the 81st percent. One possible improvement to the pitch-
ing policy is to reduce the cache size after the programs
are fully initialized. This may result in a few more pitch
events but a significant reduction in memory usage can also
be obtained.

0

200

400

600

800

1000

1200

0

1
.0

4

2
.2

5

5
.9

8

8
0
.9 9
4

1
0
0

Percentage of Execution

M
e
m

o
ry

 U
s
a
g

e
 (

K
B

)

3
2

.3

Figure 6: Code cache usage (1024KB)

Figure 6 depicts the usage of code-cache for LCSC with
1024KB cache size applying approach 2. It is worth noting
that there are no pitch events at all until after 2.25% of
execution. The figure also shows that after the first pitch
event, there are only two more pitch events at the 33rd and
81st percents. As a reminder, this is similar to the number
of pitch events in Figure 5 after 4% of the program have
been executed. Thus, a larger cache size clearly reduces
the number of pitching activities during the initial state of
execution.

In summary, we conclude that the following policies can be
used to improve the pitching performance.

• Moderate pitching activities have very little effect on
the overall performance of the system. However, ex-
cessive pitching can incur a large amount of over-
heads. Thus, the policy should favor reducing mem-
ory usage over a moderate increase in pitching activ-
ities.

• Larger initial cache size can significantly reduce the
number of pitch events during the program initializa-
tion. Thus, the policy should allocate a large enough
cache at the beginning.

• Once stabilized, the system compiled fewer methods
which means that we can potentially reduce the cache
size at the expense of more pitching activities. How-
ever, the number of pitch events should be moderate

168

Applications 256k 512k 1024k 2048k 4096k 8192k 16384k 65536k
LCSC 6 4 3 0 0 0 0 0
AHC 0 0 0 0 0 0 0 0

CodeToHTML 3 2 0 0 0 0 0 0
Hello World 0 0 0 0 0 0 0 0

CLisp 2 1 0 0 0 0 0 0

Table 3: The number of pitch events with different code-cache sizes

Cache Approach 2 Approach 1
Size Execution Time (sec) Pitches Execution Time (sec) Pitches
256k 864.32 6774 68.81 6
512k 412.17 1470 68.64 5
1024k 69.45 5 69.44 3
2048k 66.88 0 68.38 0
4096k 66.78 0 68.16 0
8192k 67.52 0 68.38 0
16384 67.59 0 67.98 0
65536 67.58 0 68.19 0

Table 4: The number of pitch events and execution times with Approach 2

and not result in a substantial run-time overhead.
Thus, the policy should include reducing the cache
size after the initialization phase.

5. FUTURE WORK
Better benchmarks are needed that utilize more methods
that force the execution engine to pitch more frequently
especially for larger cache sizes. Ideally, pitching should
occur with heap sizes that are close to the default target
size. In addition, the benchmarks used in this experiment
do not demonstrate the diversity of applications the typ-
ical end user runs. More practical benchmarks are defi-
nitely needed to better simulate a real world system. On
the other hand, some of the chosen experimental objects
compile reasonable amounts of methods.

With that said, many of our results derive from experiment-
ing with these few benchmark programs. Thus, our con-
clusions or suggestions should not be viewed as generalized
ones. Instead, they should be viewed as potential solutions
to improve the performance of the code-pitching mecha-
nism in the SSCLI and .NET Compact Framework. Ob-
viously, experiments with more benchmark programs are
needed.

Future work will be focused on two primary goals. The
first goal is to develop better benchmarks in order to bet-
ter simulate real world uses of the SSCLI. These bench-
marks should focus on what a more average user would be
expected to run. New benchmarks should have network-
ing and other communication methods that are inherent to
their proper execution.

The second major goal is to develop a better code pitching
mechanism that selectively removes code from the cache,
as opposed to the all or nothing approach taken in the
current Rotor implementation. This improved collection
mechanism will likely correlate method usage and size to
enable the pitching mechanism to make a better decision
as to its usefulness in the future. In addition, the current
Rotor implementation does not decrease the size once the

code-cache has been expanded. We plan to investigate the
performance gain of decreasing the cache size after the ini-
tial phase of execution.

6. RELATED WORK
In [2], multi-level recompilation technique was introduced
as part of the Jalap̃eno Virtual Machine. The basic idea
is to use non-optimized compiler to compile a method the
first time it is called. During the execution, the virtual ma-
chine would keep track of all the ”hot” methods (frequently
accesses) and recompile them with higher optimization lev-
els.

Currently, the code pitching mechanism in .NET compact
framework as well as the SSCLI discards all compiled meth-
ods that are not in scope. The code-cache itself is sepa-
rately compartmentalized from the main heap memory re-
gion. This is different than work conducted by Zhang [16,
15]. In their work, the IBM’s Research Virtual Machine
(RVM) [1] was modified to incorporate code pitching. Un-
like the .NET CF and the SSCLI, the RVM intermixed
objects with compiled methods and therefore, the regu-
lar garbage collector is used to unload compiled methods.
Their framework attempted to adaptively balance the com-
pilation overhead and memory usage in the environment
where objects and compiled code are stored together. Their
main strategy is to identify what to unload and when to un-
load compiled methods. They reported that their strategy
can reduce the code size by 43% without incurring sub-
stantial overhead in memory unconstrained system. If the
memory is constrained, they can reduce the code size by as
much as 61%. They also claimed that a significant reduc-
tion in execution time (22%) can be obtained due to less
time spent in garbage collection.

It is worth noticing that they reported in their earlier work
that native IA32 code tends to be 6 to 8 times larger than
the bytecode written in Java. They also reported that on
average 61% of compiled methods are no longer accessed
after the first 10% of execution [16].

169

7. CONCLUSIONS
We have performed experiments to demonstrate the effects
of code-pitching on the overall performance of .NET ap-
plications. We find that the compiled methods have the
following properties. First, they are much larger than typ-
ical objects with averages ranging from 300 bytes to 1000
bytes. Second, a large number of methods are repeatedly
accessed. Third, these accesses often occur within the first
6% of execution time. Fourth, methods are compiled pro-
lifically. Even the simplest programs such as HelloWorld
still require as many as 300 methods to execute.

Based on the above finding, we conduct multiple experi-
ments using different code-cache configurations. First, we
set the initial cache size to different values ranging from
256KB to 64MB. We allow the system to expand the cache
as needed. By setting a larger initial cache size (e.g. 512KB
versus 256KB), we can reduce the number of pitch events by
33% (from 6 events to 4 events). Having a large initial cache
size can be advantageous since most of the method reuse oc-
cur within the first few percents of execution. Larger cache
size may defer pitching and promote more reuse. Second,
we also find that excessive pitching can cause significant
overhead. However, a moderate amount of pitching barely
incur overhead. In our experiment we find that when the
cache size is set at 2MB, no pitching occur. However, if
we reduce the cache size by half, 4 to 5 pitch events would
occur but the overall execution time only increase by 1.5%.
Thus, we conclude that a well designed pitching policy can
greatly reduce the amount of code-cache footprint without
incurring substantial overheads. In addition, a policy to
reduce the code-cache size after the initial state can also
be employed to further reduce the code-cache footprint.

8. ACKNOWLEDGEMENT
We would like to acknowledge Tyson Stewart for helping
during the initial phase of this project. This project is par-
tially supported by the National Science Foundation under
grant CNS-0411043, University of Nebraska UCARE pro-
gram, and University of Nebraska Layman’s Award.

9. REFERENCES
[1] B. Alpern, M. Butrico, T. Cocchi, J. Dolby, S. Fink,

D. Grove, and T. Ngo. Experiences porting the jikes
rvm to linux/ia32. In Proceedings of 2nd Java(TM)
Virtual Machine Research and Technology
Symposium (JVM’02), San Francisco, California,
August 1-2, 2002.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F.
Sweeney. Adaptive optimization in the Jalapeño
JVM. In Proceedings of the 15th ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 47–65,
New York, NY, USA, 2000. ACM Press.

[3] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In
CGO ’03: Proceedings of the international
symposium on Code generation and optimization,
pages 265–275, Washington, DC, USA, 2003. IEEE
Computer Society.

[4] S. Dieckmann and U. Hölzle. A study of the
allocation behavior of the SPECjvm98 Java
benchmarks. In Proceedings of the European
Conference on Object-Oriented Programming, June
1999.

[5] R. Jones and R. Lins. Garbage Collection:
Algorithms for automatic Dynamic Memory
Management. John Wiley and Sons, 1998.

[6] A. Krall. Efficient JavaVM just-in-time compilation.
In J.-L. Gaudiot, editor, International Conference on
Parallel Architectures and Compilation Techniques,
pages 205–212, Paris, 1998. North-Holland.

[7] A. Krall and R. Grafl. CACAO — A 64-bit JavaVM
just-in-time compiler. Concurrency: Practice and
Experience, 9(11):1017–1030, 1997.

[8] Microsoft. Ben’s CLI benchmark.
http://research.microsoft.com/

[9] S. Pratschner. information available from
http://weblogs.asp.net/stevenpr/archive/2004/07/26.aspx.

[10] D. Stutz, T. Neward, and G. Shilling. Shared Source
CLI Essentials. O’Reilly and Associates, 2003.

[11] Transvirtual. Kaffe virtual machine.
http://www.kaffe.org.

[12] D. Ungar. The design and evaluation of a high
performance Smalltalk system. ACM Distinguished
Dissertations, 1987.

[13] Q. Yang, W. Srisa-an, T. Skotiniotis, and J. M.
Chang. Java virtual machine timing probes: A study
of object lifespan and garbage collection. In
Proceedings of 21st IEEE International Performance
Computing and Communication Conference
(IPCCC-2002), pages 73–80, Phoenix Arizona, April
3-5, 2001.

[14] F. Yellin. Just-in-time compiler interface
specification.
ftp://ftp.javasoft.com/docs/jit interface.pdf, 1999.

[15] L. Zhang and C. Krintz. Adaptive code unloading for
resource-constrained JVMs. In LCTES ’04:
Proceedings of the 2004 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools, pages
155–164, New York, NY, USA, 2004. ACM Press.

[16] L. Zhang and C. Krintz. Profile-driven code
unloading for resource-constrained JVMs. In
International Conference on the Principles and
Practice of Programming in Java, Las Vegas, NV,
June 2004.

170

Type-safe data binding on modern object-oriented
platforms

István Albert

Budapest University of Technology and Economics
Department of Automation and Applied Informatics
H-1111 Budapest, Goldmann György tér 3, Hungary

E-mail: ialbert@aut.bme.hu

ABSTRACT
Most object-oriented platforms support run-time type information to provide access to class members like fields
and methods. These solutions are often based on strings, textual names of types and members. Such approach
makes the systems very fragile and sensitive to modification of names and to other changes. This paper illustrates
an elegant and highly efficient solution for this problem which is also type-safe thanks to compile-time type
checking. The introduced new language construct supports access to class members through multiple
parameterized one-to-many associations. It can also be used in many languages and platforms which makes it an
ideal candidate to be used in real world systems.

Keywords
Programming Tools and Languages, reflection, association, data binding, C#.

1. INTRODUCTION
Today’s most wide-spread and most heavily used
programming paradigm is object-oriented paradigm
with imperative languages, like C++, Java or C# [8,
9, 10]. While the core concepts are quite solid, there
are numerous possible ways to improve the quality of
software. There are several current techniques to
customize this approach. In C++ language,
environment macros and templates [12] are heavily
used constructs. Java and .NET are introducing
generics [11, 18, 1, 16, 14, 7] (a kind of template
implementation for parameterized types) and we are
well aware of Design by Contract [4], as well as
aspect-oriented approach and other extremely useful
concepts. Many of these, although still under
research, are leaking into the world of applied
software technology [19].
One of the main goals of these enhancements is to

make the language and environment more type-safe
which would result in more stable applications with
less run-time errors.
This paper introduces an elegant and efficient way to
use typed reflection and so type-safe data binding.
The next two sections introduce reflection and data-
binding. After getting familiar with the problem, a
new language construct called navigation expression
is introduced. Its features are discussed in detail,
including multiple associations. The next section
compares navigation expressions with a similar
concept of delegates. Finally, an implementation plan
is suggested and a formal definition of C# language
changes is also proposed in the appendix.

2. RELATED WORK
There are reflection scenarios where programs use
strings to identify type members like methods and
fields. In some cases a more type-safe method can be
used. One of these is data binding on the CLI
platform.

Reflection: Accessing Type Information
at Run-time
Reflection mechanism provides objects that
encapsulate modules, types, methods, fields, etc [6].
With these constructs a program can examine the
structure of types, create instance of types, and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

171

mailto:ialbert@aut.bme.hu

invoke methods, access fields and properties. Similar
language and virtual machine support exists in the
Java platform [5] (reflection API); it is called RTTI
(Run-Time Type Information) in C++ [12].
According to the current C++ Standard [12], RTTI
has far less features than the Java or .NET
implementations: only type names, type equality and
inheritance hierarchy can be determined at run-time,
but no method list, method invocation, object
creation, field access, etc. are allowed. But there are
some currently researched theories and proof-of-
concept implementations of a full-fledged reflection
mechanism API in C++ [20, 21].
These solutions are based on string literals to refer to
member variables or methods. This highly flexible
approach is necessary but makes the systems very
fragile and sensitive to modification of names.
This paper illustrates an extension to the current
reflection models which could be very useful in
certain scenarios. We are using the "data binding"
scenario throughout this paper to analyze the problem
and the way the new language construct solves it.

Introduction to Data Binding
Consider the following example: we have a generic
component that displays data, and a program that uses
this component. The configuration of the component
determines which data is to be displayed; it also
defines its format. The data to be displayed is called
data source and is provided by the application. After
configuring the component and binding it to a data
source the application uses it to show the data to the
user.
This concept is called data binding in .NET and it is
very flexible and frequently used. Here is an
example:

public class DataVisualizer {
public object DataSource;
public string DataMember;
public void Render() {

Console.WriteLine(DataSource.GetType().
GetField(DataMember).GetValue(DataSource));

} }
public class Person { public string Name; }

public class MyApp {
public static void Main() {

DataVisualizer vis = new DataVisualizer();
Person p = new Person();
p.Name = “Stephen Albert”;
vis.DataSource = p;
vis.DataMember = “Name”;
vis.Render();

} }

Figure 1
The Render method uses reflection to extract data
from the data source object (an instance of the Person

class) which is based on DataMember holding a
textual reference to the Name field of the Person
class.
Although it may not be a good idea to use strings to
identify members, there are many examples where
this flexibility is quite useful. Reflection is often used
by generic frameworks and algorithms where type
information is not known or cannot be expressed at
compile-time. The most well-known platform feature
which uses reflection is serialization [6, 17]. During
this process an entire graph of objects is written to a
stream or created from a stream. Other typical
frameworks using this technology are object
persistency layers (both in J2EE and .NET [7, 13, 2]),
workflow engines, data access layers or data binding
components. This paper uses the data binding as an
illustration but the idea can be used in many other
frameworks as well. The samples are in C# on the
.NET platform but the main concept can be easily
transferred to another language or platform.

Open Problems
The problem with string based member access is
twofold. Since it uses strings, it is very easy to make a
typographic error (1), which is mostly discovered
only at run-time when Render() method is called (2).
The reason for the errors also seems to be twofold.
Firstly, the programmer could misspell the string and
give a wrong identifier, hence the reflection
mechanism cannot find the appropriate member by
name. This causes a run-time error.
Secondly, there can be a type mismatch between
DataSource and DataMember: the first one is the
object which is being read, the second one is the
expression which refers to a member. If the
DataSource is an object without a "Name" field, it
also causes a run-time error. This paper addresses
both issues.
With a suitable language construct the programmer
can get a compile-time error which is preferred to
run-time error [15, 22].

1. NAVIGATION EXPRESSIONS
The main purpose of DataMember is to traverse the
object hierarchy graph along associations and to
provide access to member variables (which can be
fields or properties). DataSource is the root of the
object graph. The example in Figure 1 shows only
one hop, but certainly it can take more hops to get to
the target member. A new language construct called
navigation is defined in the next sample as follows
(Figure 2):

public sealed class DataVisualizer {
public Navigation DataSource;
public void Render() {

172

Console.WriteLine(DataSource.ToString()); } }
public class MyApp { public static void Main() {

DataVisualizer vis = new DataVisualizer();
Person p = new Person();
p.Name = “Steve Albert”;
vis.DataSource = new Navigation(p.Name);
vis.Render(); } }

Figure 2
Navigation construct aggregates data source and data
member in one object and provides a run-time
evaluation of the expression with type safety.
Navigation instance has a strict root type at which the
traversal begins – in this case class Person. It contains
a dot-separated list of association names – type
members. The object graph is traversed through these
associations.
The navigation expression can be not only in the right
side of an equation, but in left side as well – it can be
an lvalue – which makes it possible to use bi-
directional data binding. In this case the expression is
used to set field and property values.

Fields, Properties, Indexers
A referenced type member can be a field, a property
or an indexer. Properties are named groups of
accessor method definitions that implement the
named property [6,23]. Indexers are parameterized
properties. The properties enable field-like access,
whereas indexers enable array-like access [3].

Multiple Associations
In many cases an association refers to multiple
objects and navigation expression must support it. To
be able to navigate through one-to-many associations,
parameters should be passed to the navigation object
at all those points where collections of objects are
referenced.
A one-to-many association must be an array or an
indexer (parameterized property), a technique widely
used in the CLI platform [6].
Each association may have zero or more parameters,
depending on its type. Field and property accessors
have no parameter at all, arrays have as many signed
integer parameters as the rank of the array, and also
indexers can have any number of parameters of any
type.
The parameter list of the navigation expression is the
concatenation of those parameters and can be derived
by examining a particular navigation expression and
the referenced members. Since indexers can be
overloaded with different parameter lists [6, 23], one
expression can actually refer to more than one
parameter list. Expressions must also contain named
parameters with types for unambiguous member
traversal.

A short sample for using navigations with one-to-
many associations (Figure 3):

... string [] myStrings = new string [] { “a”, “ab”, “abc” };
NavigationArray nav1 = new NavigationArray(

myStrings[int].Length);
for(int i = 0; i < myStrings.Length; i++)
Console.WriteLine(myStrings[i]+’:’+nav1[i].ToString());

Figure 3
In the above sample (Figure 3) a navigation object is
constructed with a string array being the root object.
This refers to multiple strings and, for usability, an
additional parameter should be supplied to choose
from the collection of referenced strings. In this
particular case only one parameter is
necessary: a signed integer. In a more complex case
more parameters could be used.

Cast operators
This version of navigation construct does not support
casting members. This will be discussed in a separate
paper. Navigation expression must be in pure format
of member names separated by dots, with optional
parameter lists like in Figure 4.

// compiles, no parameters
root.Member1.Member2
// compiles, with parameters
list[int].Column[string, State].Member
// does not compile with cast operator
((DataColumn) root.Member1).Member2

Figure 4

Root object ambiguity
The root of navigation expressions could be
ambiguous for object member access. Examining the
first code expression in Figure 4, the root object (the
root of the path) could be a reference to “root” or
“root.Member1” (both are references). To avoid this
situation, navigation expressions always use the first
object reference as root reference.
These syntax rules ensure that navigation is not an
expression evaluated at run-time but rather a compile-
time appearance of the object hierarchy path.

2. NAVIGATION TYPE DEFINERS
Reflection is most often used when type information
of parameters and objects is not known at compile-
time but can be acquired at run-time. In this way the
component and the application development can be
totally separated, which is crucial for generic
frameworks and scenarios like data binding.
Although strict type information is not known, the
way an object is handled is very often hardcoded in
the component.

173

For example a component that displays matrix data
uses data source as a two-dimensional array. A
component which displays a table uses data source as
a list and each column refers to a specific data
member. In these scenarios the data source must
satisfy the demands of the component, preferably
checked at compile-time.
To support this requirement, navigation expressions
are strictly typed.
The component that uses the navigation as a data
source determines the parameters and also the return
type of the expression. The type declarations for
Navigation and NavigationArray with respect to the
above samples (Figure 2 and Figure 3) are as follows:

navigation object Navigation;
navigation int NavigationArray(int i);

Figure 5
Navigation declaration and instantiation with
navigation expression are depicted in Figure 6.
However, a more formal definition can be found in
Appendix A: Formal C# language definition:

navigation type TypeName(formal-parameter-list);
TypeName var = new TypeName(

navigation-expression);

Figure 6
These types are generated automatically by the
compiler from the navigation declaration. Variables
of these types can only hold a reference to navigation
instances which have the same number of parameters
and the type of each parameter is the same or
inherited from the appropriate type in the navigation
declaration. The return type expression must also
match the type in the declaration with equality or
inheritance.
In this way the component can safely use data source
which conforms to its requirements and forms a
matrix, a list, etc. A client application is verified at
compile-time to check whether it supports the
appropriate data source with type safe member
references.
All this results in a type-safe data binding.

Inheritance and Access Modifiers
The type where the navigation object is created must
have access to the referenced members. Private
fields, properties, indexes can be used only when the
class itself declares a navigation to its own members.
Protected members can be used in derived classes,
internal members [6] in the same compilation unit
(assembly) accordingly. Public members can be used
anywhere.

A navigation type declaration can be public, internal,
protected or private just like a class declaration.
These modifiers define the visibility of the navigation
type just like class visibility does. Once a navigation
type is instantiated, it can be used by any class. If a
method of class A receives a navigation object as a
parameter, the method can use it to access the
referenced member independently of whether class A
has access to the member referenced by the
expression or not.
The compiler checks, for all but the last of properties
and fields and indexers in the association list, whether
they are readable and all are accessible by the
declaring class which creates the navigation object.
No write-only members are allowed through the
association path except the last one. An expression is
read-only if the last member is a read-only member
for the instantiating class, write-only if it is write-
only, and normal otherwise.

Comparison to Delegates
In CLI delegates are used as “object-oriented type-
safe function pointers” [6, 3]. They share common
ideas with navigation expressions. In both cases a
special language element is used for type definer
which allows type-safety by identifying methods to
invoke or members to be accessed later. The syntax is
quite similar, too [23, 3] (Figure 7):

void PrintInt(int i) { Console.WriteLine(i); }
delegate void MethodDelegate(int a);
MethodDelegate del =

new MethodDelegate(this.PrintInt);
del(42);
navigation int myNavigation(int);
string [] myStrings = new string [] { “a”, “ab”, “abc” };
myNavigation nav1 = new myNavigation(

myStrings[int].Length);
Console.WriteLine(nav1[2]);

Figure 7
The difference between the language constructs is
that the delegates are applicable to methods but not to
fields or properties (even though properties are
implemented as methods in CIL). Moreover,
delegates do not support navigation in the object
hierarchy; they only have a reference to a class
instance and a handle referencing a method of that
type. Navigations hold an entire reference path to
navigate through the object hierarchy and reach the
addressed field or property through multiple
associations. Data binding on .NET platform uses
properties and not methods for member access.
Hence in that case delegates are not applicable and
cannot be used for data binding.

174

3. COMPILER IMPLEMENTATION
A "compiler only" solution can be provided if only
one language is taken into consideration. After
checking syntax (see Section 5) and type consistency
the compiler generates extra code in place of
declaration, instantiation and usage (see Appendix
B).
Each navigation declaration is a type creator syntax
element (similar to class, interface, delegate and
array sign (‘[]’) [6, 23, 3]). The abstract type (class
A) is constructed by the compiler and is unique for
each navigation declaration. For each object
hierarchy path, a unique class (class B : A) is
generated by the compiler which finally derives from
type created for navigation declaration. Class A
contains two abstract methods for reading and writing
members (GetValue and SetValue methods).
Parameter lists are generated according to the
navigation declaration. Derived Class B provides
implementation for these abstract methods, using
strict type information.
Using reflection, dynamic navigation creation can
also be supported but it is not recommended, since it
ensures no type safety at all. In this scenario a
program can create navigation expression instances at
runtime, based on strings.
To measure performance impact we have modified
the Mono C# compiler. The compiler-generated type
safe navigation expressions are 10 to 50 times faster
than a reference solution with reflection.
The advantage of this “compiler only” approach is
that the runtime environment remains unchanged.
Only language compilers should be extended to
provide the new functionality. Similarly to delegates,
a navigation declaration is also a type declaration and
this type could be a basis for language
interoperability which is essential on the CLI
platform.

4. CONCLUSION
In this paper we have introduced a new C# language
construct that provides more type-safe solution with
compile-time errors rather than run-time errors. The
new language construct called navigation supports
access to class members through multiple
parameterized one-to-many associations and similarly
to delegates, a navigation declaration is also a type
declaration.
This solution is not only more type-safe but can also
provide a huge gain of performance in many
application scenarios.

5. APPENDIX A : FORMAL C#
LANGUAGE DEFINITION
The following list is the extension to C# language
grammar [23, Appendix A].

A.1.7 Keywords, Keyword: navigation

A.2.2 Types
Reference type: navigation-type
Navigation-type: type-name

A.2.4 Expressions
Primary-no-array-creation-expression:

navigation-creation-expression

Expression: navigation-creation-expression:
 new navigation-type (navigation-expression)
Navigation-expression:

expression
 navigation-expression . identifier

navigation-expression . identifier [type-list]
Type-list: type | type-list , type

A.2.5. Statements
Type-declaration: navigation-declaration

A.2.13. Navigations, navigation-declaration:
 attributesopt navigation-modifiersopt
navigation type identifier(fixed-parametersot)

navigation-modifiers:
navigation-modifier

 navigation-modifiers navigation-modifier
navigation-modifier:
new | public | protected |

internal | private

6. APPENDIX B : ILLUSTRATION OF
THE COMPILER GENERATED CODE
Navigation declaration:

public navigation string gridNavigation(
int row, int column);

Generated code:

public abstract class gridNavigation
:BaseNavigation
{

public abstract void SetValue(
int row, int column, string value);

public abstract string GetValue(
int row, int column);

}

175

Navigation instantiation:
string [][] birthData = new string [][] { new string [] {

“Blaise Pascal”, “1623-1662”, “Clermont” },
new string [] {
“Sir Isaac Newton”, “1642-1727”, “Woolsthorpe” },…

}; …
gridNavigation nav1 = new gridNavigation(

birthData [int][int]);

Generated code:
… public sealed class gridNavigation_nav1 :

gridNavigation {
String [][] rootObj;
public myNavigation_1(string [][] root)
{

rootObj = root; }
public override string GetValue(

int row, int column) {
return rootObj[row][column]; }

public override void SetValue(
int row, int column, string value) {

rootObj[row][column] = value;
} }
…gridNavigation nav1 =

new gridNavigation_nav1(birthData);

Navigation usage:
public class DataGrid {

public gridNavigation DataSource;
public int RowNumber, ColumnNumber;
public void Render() {

for(int r = 0; r < RowNumber; r++) {
for(int c = 0; c < ColumnNumber; c++) {

Console.Write(DataSource[r, c]);
if(c < ColumnNumber – 1)

Console.Write(“, “); }
Console.WriteLine(); } } }

Generated code:
… for(int c = 0; c < ColumnNumber; c++) {

Console.Write(DataSource.GetValue(r, c));
if(c < ColumnNumber – 1)Console.Write(“, “);

} …

7. REFERENCES
[1] A. Kennedy and D. Syme.: Design and
implementation of generics for the .NET Common
Language Runtime. ACM SIGPLAN, PLDI, pages 1–
12, Snowbird, Utah, June 2001.
[2] A. Homer, D. Sussman, M. Fussell: First Look at
ADO.NET and System.Xml v.2.0 (Addison Wesley,
2003)
[3] A. Hejlsberg, S. Wiltamuth, P. Golde, The C#
Programming Language (Addison Wesley, 2003)
[4] B. Meyer, Eiffel: the language (Prentice Hall,
New York, NY, first edition, 1992)
[5] B. Joy, G. Steele, J. Gosling, G. Bracha, The
Java Language Specification, Second Edition (
Addison-Wesley, 2000)
[6] ECMA-335 Common Language Infrastructure
(CLI), ECMA, December 2001. http://www.ecma.ch/
[7] ECMA TC39-TG2/2004/14, C# Language
Specification, Working Draft 2.7, Jun, 2004

[8] Gartner Inc. (Michael J. Blechar): The Impact of
Web Services Architecture on Application
Development, 26 August 2002
[9] Gartner Inc.: J2EE and .NET Will Vie for E-
Business Development Efforts, 28 April 2003
[10] Gartner Inc. (Joseph Feiman): The Gartner
Programming Language Survey, 1 October 2001
[11] G. Bracha, M. Odersky, D. Stoutamire: Making
the future safe for the past: Adding genericity to the
programming language. OOPSLA, ACM, Oct. 1998.
[12] International Standard: Programming Languages
- C++. ISO/IEC. 2003. Number 14882:2003 (E) in
ASC X3, ANSI, New York, NY, USA.
[13] JSR 12: JavaTM Data Objects (JDO)
Specification. http://jcp.org/en/jsr/detail?id=12, 2003
[14] JSR-14, Add Generic Types To The Java
Programming Language. Available on line at
http://jcp.org/en/jsr/detail?id=014, 2004
[15] K. B. Bruce. Typing in object-oriented
languages: Achieving expressibility and safety.
Technical report, Williams College, 1996.
[16] M. Lucia Barron-Estrada, R. Stansifer: A
Comparison of Generics in Java and C#, 41st ACM
Southeast Regional Conference, March 2003
[17] M, Hericko, M, B. Juric, I. Rozman, S.
Beloglavec, A. Zivkovic, Object serialization analysis
and comparison in Java and .NET., SIGPLAN
Notices 38(8): 44-54 (2003)
[18] O. Agesen, S. Frølund, and J. C. Mitchell.:
Adding parameterized types to Java. In Object-
Oriented Programming: Systems, Languages,
Applications, pages 215-230. ACM, 1997.
[19] R. Bruce Findler, M. Latendresse, M. Felleisen,
Behavioral contracts and behavioral subtyping, ACM
SIGSOFT Software Engineering Notes, Volume 26 ,
Issue 5, September 2001
[20] S. Chiba, A Metaobject Protocol for C++, ACM
Conference on Object-Oriented Programming
Systems, Languages, and Applications, 1995
[21] S. Roiser, Reflection in C++, CERN, February
2004 (Available on-line at
http://doc.cern.ch//archive/electronic/cern/others/LH
B/internal/lhcb-2003-116.pdf)
[22] R. Finkel: Advanced Programming Language
Design (Addison Wesley, 1995)
[23] Standard ECMA-334 C# Language
Specification, ECMA, December 2001. Available on-
line at http://www.ecma.ch/

176

Adaptive Object Modelling
using the

.NET Framework

Theo Crous, Theo Danzfuss
Computer Science Department

University of Pretoria
Pretoria 0002
South Africa

{tcrous, tdanzfuss}@cs.up.ac.za

Andreas Liebenberg, Alwyn Moolman
E-Logics (Pty) Ltd

Unit L12 Enterprise Building
Innovation Hub
Pretoria 0002
South Africa

{andreas.liebenberg, alwyn.moolman}@elogics.co.za

ABSTRACT
In an ever-changing business environment, business models and rules have migrated from compiled source code
to external metadata. This paradigm better known as adaptive object modelling (AOM) empowers domain
experts to take control over application implementations, and allows them to change an application’s business
model as the business evolves. The problem with the adaptive object modelling approach is that it only caters for
an evolving business model and ignores the effects of expanding functional requirements. This paper presents
the Expandable Software Infrastructure (ESI), an amalgamation of adaptive object modelling and component-
based software development. Unlike other adaptive object modelling implementations where metadata have only
been used to describe the data and the executing domain, the ESI takes metadata further and utilizes it to
describe the data, domain, behaviour and components - providing us with a truly expandable AOM. We
highlight how the relatively complex task of adaptive object modelling can be executed simply and elegantly
using the Microsoft .NET Framework and further describe how core .NET technologies such as ADO.NET,
.NET Compact Framework, reflection and remoting sculpted the architecture of the ESI. We conclude with the
notion of moving towards a standardized, intelligent architecture that executes on multiple platforms.

Keywords
Adaptive Object-Model, Adaptive Systems, Dynamic Object-Model, Reflection, Reflective Systems Meta-
Modelling, Meta-Architectures, Metadata, Domain Specific Language, Generative Programming.

1. INTRODUCTION

Business needs have developed beyond the capacity
of statically structured systems that are unable or
unwilling to adapt to changing business
requirements.

These requirements for flexible systems can briefly
be described as:

- Runtime configurability

- Adaptability

- Extendibility

- Intuitive configuration

Existing approaches to flexible systems have all
excelled in at least one of the above mentioned
objectives, but none have successfully adhered to all
4 requirements.

We present the Expandable Software Infrastructure
(ESI) developed by E-Logics (Pty) Ltd: an adaptive
object modelling system that makes use of various
techniques found in configurable and/or flexible
systems and component-based software
development. The ESI’s goal is to realize all 4
requirements through the use of metadata and can be
briefly described as a metadata-driven component-
based framework.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

177

The main contribution of our work is to make an
effective use of the .NET Framework to successfully
design and develop a flexible system, the
Expandable Software Infrastructure (ESI) that
conforms to all four above mentioned requirements.
We also demonstrate how the ESI was influenced by
the .NET framework and focus on the role of .NET
Technologies such as ADO.NET, .NET Compact
Framework, reflection and remoting in the ESI.

This paper is structured as follows: Section 2
describes the ESI and gives an overview of the high
level architecture and metadata structure and a
layered view of the ESI. Section 3 presents an in-
depth look at the physical architecture of the ESI and
how .NET sculpted the architecture. Section 4
scrutinizes existing approaches to flexible systems
while Section 5 details some future work draws
conclusions.

2. THE ESI

The Expandable Software Infrastructure (ESI) is
both a software component infrastructure and an
adaptive object model interpreter. Development of
the ESI was driven by various business
requirements. These requirements are to:

- Develop changeable systems

- Reduce development time and cost

- Intuitively develop systems

- Develop flexible systems

- Develop vendor independent systems

- Reuse common software components

Essentially the ESI is an interpretive layer wrapped
around traditional relational database systems, which
allows domain experts to build, configure and deploy
systems without the need to rewrite or recompile
code. The ESI allows domain experts to concentrate
on domain modelling, system configuration and
maintenance while software developers concentrate
on technical issues.

The ESI owes its flexibility to the extensive use of
metadata. Metadata is used to describe the domain
model, software components, component variability
and behaviour. This implies that most changes in the
business environment can be catered for by making
changes to metadata. Should the need for new
functionalities arise, a component that sufficiently
fulfils the requirements must be purchased or
developed and then described in the metadata. The
component’s variability refers to those parameters of

the component that will be variable for different
domains. It is then the responsibility of a domain
expert to populate the variability for the executing
domain.

The ESI provides a range of tools to assist users with
the tedious task of populating metadata. The most
notable of these tools is the ESI management
console. The management console provides an UML
[13] modelling tool that users can use to describe the
domain. The management console also enables users
to extend the ESI by describing new components and
their variability.

ESI Metadata
The ESI metadata is a self-describing object model
that can be divided into three layers, as illustrated in
figure 1.

The Core is used to describe those entities that are
critical to the execution of any ESI implementation.
Extended metadata are those data that describe the
pluggable components while domain metadata is
specific for a given implementation.

The core ESI object model is loosely based on
design patterns found in classic AOM
implementations [2] namely:

- TypeObject Pattern

- Entity and EntityType Pattern

- Property Pattern

- Strategy Pattern

The main differences between the core ESI object
model and these classic AOM patterns are that the
ESI architecture is split into a functional and a
physical level and the ESI metadata is self-
describing.
The advantages gained by this architecture are:

- The physical relational database model can
differ from the functional object model.

Figure 1. ESI metadata

178

- Technical details stored in the physical
layer can be hidden from domain experts,
providing a more intuitive model.

- One functional model can easily be
migrated to a different physical
implementation.

- The core of the ESI can be extended.

Figure 2 presents a graphical representation of the
core ESI object model.

Changing core metadata results in a new ESI
assembly to be built. This assembly is generated by
interpreting the stored metadata and generating a
new dynamic link library (dll) using the reflection
and emit libraries found in .NET. The newly built
assembly now forms the base of all ESI systems.

3. ESI AND THE .NET FRAMEWORK

Before the acceptance of component-based
frameworks such as J2EE and .NET, implementing a
system such as the ESI was an extremely daunting
and often impractical task. The following advantages
of the .NET Framework [10, 14] made it the perfect
candidate for the ESI:

- Low learning curve

- Ease of application deployment and
maintenance

- Comprehensive class library
- Managed Code
- Framework support

The decision to choose the .NET framework was not
only based on technical merit, but also on non-

technical factors such as available resources and user
expectations.

The architecture of the ESI was sculpted by the
.NET Framework. ADO.NET, remoting, reflection
and the .NET Compact Framework were the defining
technologies in the structure of the ESI.

ADO.NET and especially datasets enabled the
implementation of a data abstraction layer that is
vendor-independent and can also treat text-based
data stores such as XML and CSV files similar to
relational databases. It also provided the ability to
create an efficient client-side data cache that reduces
network traffic and improves overall system
performance.

The .NET remoting infrastructure enables the ESI to
execute in a distributed environment over either TCP
or HTTP. This permits the ESI to provide rich client
interfaces that can retrieve data over the internet and
even through firewalls.

.NET Reflection is used to extend the ESI at run
time. New types and operations can be added to the
ESI by defining them in the metadata. The ESI then
uses reflection to load the type at runtime. The ESI
also makes use of the .NET emit library to allow for
the core ESI to be extended and recompiled by
simply altering the metadata.

The .NET Compact Framework allows the ESI to
execute on mobile devices such as PDA’s. This
extends the range of applications that can be
executed using the ESI.

The ESI allows multiple deployment scenarios of
which the most common is essentially a distributed
client-server architecture as highlighted in figure 3.

Figure 2. Core ESI Architecture

Figure 3. ESI deployment scenario

179

As seen in Figure 4 the ESI can be broken into nine
distinct components. Each of these components
leverages the .NET framework to reach its goal.

1. The Data Abstraction Layer: The data
abstraction layer is responsible for
performing basic Create, Read, Update and
Delete commands (CRUD) on all the
supported data sources.

2. Meta Interpretation Layer: The metadata
interpretation layer uses the data abstraction
layer to load and save the metadata.
Metadata are converted into runtime classes
through the reflection API, and all classes
built on top of the interpretation layer will
use these classes as if they were compiled at
design time.

3. Remote Server Interface: The remote server
interface is responsible for managing
remote client connections and executing all
server side operations such as data retrieval.
The Remote Server Interface uses the .NET
remoting infrastructure to provide basic
remoting functions such as object
serialization.

4. Client Data Cache: The client data cache
reduces network traffic and improves
response time, by caching results in a
disconnected data set.

5. Client Data Service: The client data service
is responsible for executing all client-side

operations and managing access to the local
data cache.

6. Client View: The client view is a thin
wrapper around a .NET dataset that presents
users (typically GUI components) with a
meta interpreted view on the data. Without
a client view user interface components
only see a dataset, with the client view user
interface components see a collection of
metadata objects.

7. Remote Data Service: The remote data
service is used by data services to
communicate remotely with each other.

8. UI Controls: User interface controls
provide users a view on the data and a
mechanism to interact with ESI clients.
Currently the ESI contains two sets of UI
controls; Windows Forms controls and
Mobile Controls. Windows Forms controls
are extensions to .NET provided controls
and allow for ESI-specific functionalities.
Mobile controls are UI controls that execute
on the .NET Compact Framework and often
implement a subset of the functionalities
provided by the Windows Forms version of
the controls.

9. Synchronization: Synchronization is used to
keep secondary and mobile servers in sync
with the primary ESI server.

4. COMPARISON WITH EXISTING
APROACHES

We categorize existing flexible system approaches
into the following categories:

- Configurable Systems
- Adaptive Object Modelling
- Component-based Software Development

Configurable Systems
A configurable system extends the traditional notion
of a system by introducing a fixed set of parameters
external to the system. These parameters can be
modified to alter some runtime attributes or
properties of a system. The Gandiva software
development system [11] can be seen as an example
of a configurable system.

Configurable systems are limited by a fixed set of
parameters which are defined at compile time.
Therefore the dimensions of configurability are fixed
and the scope for adapting is limited.

Figure 4. ESI layered architecture

180

The ESI relates to configurable systems in that it
allows users to configure the system using external
attributes. ESI differs from configurable systems by
allowing the definition of variability in metadata –
enabling the extension of configurable parameters.

Adaptive Object Modelling
An adaptive object model (AOM) [14] is an object
model where the domain representation is interpreted
at runtime and can be altered or changed with
immediate effect [1]. The adaptive model defines
mechanisms to describe entities, attributes and
relationships, as well as mechanisms to interpret the
domain model and execute business rules.
Browsersoft’s eQ! Foundation [15] is a good
example of an industry stable AOM implementation
written in Java.

The biggest shortfall of the AOM approach is its
internal structures are difficult to extend and
maintain. This results in the situation where business
requirements can easily be adapted although the
functional requirements of the system cannot change
easily. We can say AOM systems are adaptive
although not adaptable [4, 5].

In addition to using metadata to describe the domain,
the ESI also utilizes metadata to define software
components, their variability and behavior. This
provides the ESI with information that can be used to
expand the system on a functional level.

Component-based Software Development
In component-based software development, software
products are built on top of component
infrastructures [9]. The component infrastructure
provides a mechanism for business components to be
plugged in and configured to produce a final
software product or system. A software system can
be extended by plugging in new components or
replacing old components. The best known example
of a component infrastructure is probably Enterprise
Java Beans [16].

Although component infrastructures can be easily
extended to provide new functionality, they often
requires writing “glue” code to make the new
functionalities available.

The ESI provides a pluggable component
infrastructure that enables it to expand on a
functional level. Instead of having to write code to
plug the new components into the framework, the
ESI requires the component to be described in
metadata.

Table 1 summarizes which objectives are
successfully met by each flexible system approach.

The ESI is an ideal solution when implementing
systems in a constantly changing environment,
which requires flexible, configurable, intuitive and
adaptable systems.

These systems may span any number of domains,
including: asset management, data warehousing,
geographical information, decision support and
supply chain optimization systems.

5. CONCLUSION AND FUTURE
WORK
Developing an adaptive object modelling system is
not an easy task. Choosing the correct technology is
critical to simplifying this undertaking. The .NET
Framework enabled a small team of software
developers to conquer this mammoth task within
reasonable time. This success can be broadly
credited to .NET’s low learning curve, the
comprehensive class library, ease of deployment,
managed code and excellent support.
The ESI overcomes the shortcomings of classic
adaptive object modelling systems by introducing
aspects from component-based software
development. Although the infrastructure is currently
being used by a number of industry applications
there are a few shortcomings:

- It is limited to the Microsoft Windows and
Windows CE platform.

- No web or thin client interface exists.
- Does not conform to standards, therefore it

is difficult to extend the ESI with a
component that was not developed for the
ESI.

 Runtime
configurable

Adaptive Extendible Intuitive

Configurable
Systems

D

U

U

U

Adaptable
Object
Modelling

D

D

U

D

Component-
based Software
Development

U

D

D

U

Expandable
Software
Infrastructure

D

D

D

D

Table 1. ESI comparison

181

- The ESI currently lacks version control and
change management.

Apart from the shortcomings mentioned above we
would like to see the ESI move towards an
intelligent or adaptable architecture [9]. The simplest
example of resource adaptation is that of network
bandwidth. The system must detect low bandwidths
and modify caching settings and request processing
accordingly. Another goal for the ESI would be to
make it platform independent. With recent
developments in the ROTOR and MONO projects,
we would like to see the ESI execute on one of these
frameworks, thus enabling cross-platform execution.

6. ACKNOWLEDGMENTS

The authors would like to thanks E-Logics (Pty) Ltd
for allowing them to work on the ESI and for
funding the project. Also a word of thanks to Prof.
Judith Bishop, Department Computer Science,
University of Pretoria, for her guidance and support.

7. REFERENCES

[1] J.W. Yoder, B. Foote, Metadata and Active

Object-Models. 1998.

[2] J.W. Yoder et al. Architecture and Design of

Adaptive Object-Models. ACM SIG-PLAN
Notices 36, No.12, pp.50-60, 2001.

[3] R. Reza et al. Language support for Adaptive

Object-Models using Metaclasses. ESUG
Conference, 2004.

[4] A. Dantas et al. Using Aspects to Make Adaptive

Object-Models Adaptive. ECOOP ‘04 Workshop
on Reflection, AOP, and Meta-Data for software
evolution (RAM-SE), pp.9-20, 2004.

[5] K. Lieberherr, Workshop on Adaptable and

Adaptive Software. Addendum to the Proceedings
of the 10th annual OOPSLA, ACM Press, pp.149-
154, 1995.

[6] J. van Gurp, J. Bosch, M. Svahnberg. On the

Notion of Variability in Software Product Lines.
In Proceedings of the working IEEE/IFIP

conference on Software Architecture
(WICSA'01), 2001.

[7] L. Baum, M. Becker. Generic Components to

Foster Reuse. System Software Research Group,
University of Kaiserslautern, 2001.

[8] C.W. Young, M. Young, Deploying solutions

with .NET Enterprise Servers. ISBN: 0-471-
23594-6. Wiley Publishers, 2003.

[9] R. Allen , R. Douence, D. Garlan, Specifying and

Analyzing Dynamic Software Architectures.
Lecture Notes in Computer Science, Vol. 1382,
pp.21, 1998.

[10]G. Heineman, W. Councill, Component-Based

software engineering. Putting the pieces together.
ISBN: 0-201-70485-4. Addison Wesley, 2001.

[11] M. Stuart, C. Wheather, C. Mark, The Design

and Implementation of a Framework for
Configurable Software. Proceedings of the 3rd
International Conference on Configurable
Distributed Systems (ICCDS ‘96)

8. WEB REFERENCES

[12] S. Pratschner. Simplifying Deployment and

Solving DLL Hell with the .NET Framework.
http://msdn.microsoft.com, November 2001.

[13] Unified Modelling Language.

http://www.uml.org, January 2005.

[14] MetaData and Adaptive Object-Model Pages.

http://www.adaptiveobjectmodel.com, January
2005.

[15] The eQ! Foundation.
 http://www.browsersoft.com/, December 2004

[16] SunMicrosystems. J2EE 1.3 specification.

URL:http://java.sun.com/j2ee/download.html,
July 2001.

182

A Highly Available Replicated File System for
Resource-Constrained Windows CE .Net Devices1

João Barreto2 and Paulo Ferreira

INESC-ID/IST
Rua Alves Redol N.º 9

1000-029 Lisboa, Portugal

{joao.barreto, paulo.ferreira}@inesc-id.pt

ABSTRACT
The emergence of more powerful and resourceful mobile devices, as well as new wireless communication
technologies, is turning the concept of mobile ad-hoc networking into a viable and promising solution for
ubiquitous information sharing. However, the inherent characteristics of mobile ad-hoc networks bring up
important challenges for any embedded application developed with the goal of information sharing in the novel
usage scenarios enabled by mobile ad-hoc environments. This paper proposes transparent system-level support
for Windows CE.Net applications by means of a replicated file system, Haddock-FS. Haddock-FS is based on an
adaptable optimistic consistency protocol that provides a highly available access to a weakly consistent view of
file, while delivering a strongly consistent view to more demanding applications. In order to effectively cope
with the network bandwidth and device memory constraints of these environments, Haddock-FS employs a
cross-file, cross-version content similarity exploitation mechanism.

Keywords
Distributed file systems, optimistic replication, mobile ad-hoc networks, Windows CE.Net.

1. INTRODUCTION
The evolution of the computational power and

memory capacity of mobile devices, combined with
their increasing portability, is creating computers that
are more and more suited to support the concept of
ubiquitous computation [Wei91]. As a result, users
are progressively using mobile devices, such as
handheld or palmtop PCs, not only to perform many
of the tasks that, in the past, required a desktop PC,
but also to support innovative ways of working that
are now possible. At the same time, novel wireless
communication technologies have provided these
portable devices with the ability to easily interact
with other devices through wireless network links.
Inevitably, effective ubiquitous information access is
a highly desirable goal.

Many real life situations already suggest that
users could benefit substantially if allowed to

cooperatively interact using their mobile devices and
without the requirement of a pre-existing
infrastructure. A face-to-face work meeting is an
example of such a scenario. The meeting participants
usually co-exist within a limited space, possibly for a
short period of time and may not have access to any
pre-existing fixed infrastructure. 12

If each participant holds a mobile device with
wireless capabilities, a mobile ad-hoc network
[Cor99] may serve the purposes of the meeting. This
way, a report held at one participant’s handheld
device might be shared with the remaining meeting
participants’ devices, while its contents are analyzed
and discussed. Furthermore, each participant might
even update the shared report’s contents, thus
contributing to the ongoing collaborative activity.

One interesting solution for ubiquitous
information sharing is the use of a distributed file
system. This approach allows already existing
applications to access shared files in a transparent
manner, using the same programming interface as for
the local file system. However, the nature of the
scenarios we are addressing entails significant
challenges for an effective DFS solution to be
devised. The following lines introduce the main

1 This work was partially funded by Microsoft Research.
2 Funded by FCT Grant SFRH/BD/13859.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

183

requirements imposed by such challenges that
determined the architectural options of our
contribution.

High availability. The high topological
dynamism of mobile ad-hoc networks entails
frequent network partitions. Moreover, the possible
absence of a fixed infrastructure means that most
situations will require the services within the network
to be offered by mobile devices themselves. Such
devices are typically severely energy-constrained. As
a result, the services they offer are susceptible to
frequent suspension periods in order to save battery
life of the server's device. From the client's
viewpoint, such occurrences are similar to server
failures.

These aspects emphasize the need for high
availability replication services, so as to minimize the
effects of the expectable network partitions and
device suspension periods. Pessimistic replication
approaches, employed by conventional distributed
file systems, such as NFS [Now98] or AFS [Mor86],
are too restrictive to fulfill such a requirement.

Adaptability to different correctness criteria.
Optimistic replication strategies offer high
availability as a trade-off for consistency. While
certain applications are able to benefit from such
increased availability, some application semantics
demand stronger consistency guarantees. In order to
be adaptable to a wider set of applications, replicated
systems should offer multiple consistency levels:
from a relaxed consistency, highly-available to a
sequentially consistent mode of replica access.

Adaptation to resource-constrained devices.
Whichever strategy is taken, the memory and
bandwidth limitations of mobile devices and wireless
links, respectively, must be taken into account. For
optimistic strategies, the update log is the main
memory overhead, while network usage is typically
dominated by replica synchronization.

This paper describes Haddock-FS, a transparent
replicated file system for Windows CE.Net
collaborative applications, including .Net Compact
Framework applications. Haddock-FS is based on a
highly available optimistic consistency protocol. In
order to cope with the resource constraints of mobile
devices, Haddock-FS employs content similarity
exploitation mechanisms. The paper focuses on the
main implementation issues regarding Haddock-FS
and the Windows CE.Net development environment.
Furthermore, a thorough experimental evaluation
using actual embedded devices is presented.

The rest of the paper is organized as follows:
Section 2 introduces the main architectural aspects.
Section 3 addresses application programming
interface aspects, while Section 4 describes the
implementation of Haddock-FS. Section 5 presents

experimental results. Finally, Section 6 describes
related work and Section 7 draws some conclusions.

2. ARCHITECTURE
This section briefly introduces the architecture

of Haddock-FS, as originally proposed in [Bar04a].

File System Consistency
Haddock-FS is a transparent, peer-to-peer

replicated file system designed to support a broad set
of usage scenarios that are made possible by mobile
networks. It relies on a hybrid consistency
architecture, based on epidemic propagation of
replica updates, that accommodates for applications
with differing consistency demands: a tentative view,
supporting any-time, anywhere read and write access
to shared files, at the cost of weak consistency
guarantees; and stable view, offering sequentially
consistent [Lam79] access to shared files as a trade-
off for reduced write availability.

Each Haddock-FS mobile peer constitutes a
replica manager that is able to receive file system
requests and perform them upon its local replicas.
The underlying replication mechanisms are
transparent to applications, which may access
Haddock-FS's services by using the same API as the
one exported by the local file system. Provided the
accessed files are locally replicated at a given
Haddock-FS peer, the file system services will be
available, independently of the current network
connectivity.

Update propagation is achieved by pair-wise
reconciliation sessions between mutually accessible
replica managers, where replica updates are
epidemically propagated. Complementarily,
Haddock-FS uses a primary commit scheme [Ter95],
in which a single replica of each file, the primary
replica, is responsible for selecting new stable
updates and propagating such decision back to the
remaining replicas. Each file is initially assigned a
unique primary replica, at which it was originally
created. After creation, primary replica rights may be
transferred to other replicas, by exchanging a token
that identifies the current primary replica.

For each file replica, a replica manager
maintains: a stable value, which holds a version of
the file's stable contents and an update log, which
records the data specifications of most recent update
requests that have been accepted by the file replica.

Content storage and propagation
The inherent memory and bandwidth constraints

of mobile devices and wireless links are severe
limitations to the effectiveness of a distributed file
system for ad-hoc environments. For this reason,
Haddock-FS tries to reduce the size of update logs
stored at each device, as well as of update data to be
transferred during replica reconciliation.

184

This is achieved by exploiting the cross-file and
cross-version similarities that exist within the
replicated data held by Haddock-FS's mobile peers.
Such approach is based on that of the Low-
Bandwidth File System (LBFS) [Mut01].

The basic idea of the content storage and
transference scheme consists of applying the SHA-1
[NIS95] hash function to portions of each replica's
contents; each portion is called a chunk. The
obtained hash values can be used to univocally
identify their corresponding chunk contents. From
this assumption, if two chunks produce the same
output upon application of the SHA-1 hash function,
then they are considered to have the same contents.

A content-based approach is employed to divide
replica contents into a set of variable-size non-
overlapping chunks, in order to minimize the effect
of insert-and-shift operations in the global chunk
structure of a replica [Mut01].

Haddock-FS extends the use of LBFS's strategy
to both local storage and network transference of
replicated file data. Our solution considers the
existence, on each file system peer, of a common
chunk repository which stores all data chunks,
indexed by their hash value, that comprise the
contents of the files that are locally replicated at that
peer. The data structures associated with the content
of locally replicated files simply store references to
chunks in the chunk repository. This applies both to
the update log and the stable value of each replicated
file. Hence, the contents of an update or replica value
consist of a singly linked list of references to data
chunks, stored in the chunk repository (see Figure 1).
So, if different files or versions of the same file
contain data chunks with similar contents, then they
will share references to the same entry in the chunk
repository, thus reducing memory usage.

Read accesses to a file's contents can be served
by a single indirect memory access to the chunks
referenced by the chunk references stored in the file's
data structures. Serving a write request upon a local
replica is, in turn, a more expensive operation. In
order to optimize situations where already stored
contents are modified in a partial region, an
incremental chunk update algorithm [Bar04b] is
used. Such algorithm ensures that only a minimum

set of affected chunks, from the original contents
chunk list, is actually re-evaluated.

Update propagation between peers also makes
use of the chunk repositories of each peer. When a
chunk has to be sent across the network to another
peer, only its hash value is firstly sent. The receiving
peer then looks up its chunk repository to see if that
chunk is already stored locally. If so, it avoids the
transference of that chunk's content and simply stores
a reference to the already existing chunk. Otherwise,
the chunk contents are sent and a new chunk is added
to the repository.

3. Application Programming Interface
Haddock-FS exports the same application

programming interface (API) as the standard file
system API of Windows CE.Net. Examples of such
interfaces are the standard CreateFile, CloseFile,
ReadFile and WriteFile. Therefore, any existing
Windows CE.Net application that is originally built
to access the local file system may transparently use
Haddock-FS’s replicated file services.

In particular, if one considers application
programming using the .NET Compact Framework,
programmers may continue to use conventional class
libraries such as System.IO.FileStream or
System.IO.File to access and manipulate file system
objects of Haddock-FS. Since the implementation of
these classes relies on the standard file system API,
file system objects located within Haddock-FS’s
name space may be transparently accessed.

Nevertheless, some specific aspects of Haddock-
FS’s behavior are not controllable by the
conventional file system API; namely, the aspects
related to the replication protocol. This implies that
some extended control must be provided beyond the
conventional file system API. Such control should
allow users to perform replication operations while
running replication-blind applications that solely rely
on the conventional file system API to manipulate
Haddock-FS’s objects. Examples of such operations
are switching from a tentative to a stable view of an
opened file, and vice-versa, and to transfer primary
replica rights to another accessible replica.
Replication control should also be granted to
programmers that wish to develop replication-aware
applications for use with Haddock-FS.

Replication control is provided by means of
reserved control codes passed to the standard
DeviceIoControl interface, also exported by
Haddock-FS. The actual calls to DeviceIoControl are
performed by a replication control class library,
which replaces the interaction with DeviceIoControl
with a more programmer-friendly interface.
Currently, a replication control class library is
available for use by .Net Compact Framework
applications, which extends the standard

Figure 1. Example of replica content storage.

185

System.IO.FileStream class. Illustrative methods of
the class are shown in Table 1.
bool switchToTentativeView();
bool switchToStableView();
bool grantPrimaryRights(RepId destRep);
Table 1. Example of replica control class methods.

4. Implementation
Haddock-FS is an Installable File System Driver

[Mur98] for the MS Windows CE.Net embedded
operating system. The current version supports the
replica consistency protocol, as well as cross-file and
cross-version similarity storage and network usage
optimizations. All relevant file system functions are
implemented. Interaction between peers is achieved
using a remote procedure call library that was
developed along with Haddock-FS.

Installable File System Driver
Haddock-FS’s API is exported by an installable

file system driver (IFSD), in the form of a dynamic
link library. Such programming interface is
comprised of file system functions, which form the
client side of each Haddock-FS’s peer. Using the
LoadFSD function of the FSD Manager service of
Windows CE.Net, the file system can be mounted at
run time.

The server side of each peer resides in a thread
of the Device Manager process that is created when
the file system is mounted. The server thread is
continually waiting for remote procedure call
requests from other peers across the network. Such
requests are served upon access to the file system
data structures stored in the address space of Device
Manager process. On the other hand, the file system
functions that are exported by the dynamic link
library constitute the client side of each peer. Most of
such functions access the shared data structures of
the server thread.

4.1.1 Data structures
Haddock-FS maintains a collection of data

structures in the address space of the Device
Manager process, where the IFSD is loaded. Most of
the exported file system functions access and modify
such data structures when called. The most relevant
data structures are as follows.
 Chunk repository, as described in Section 2.
 Root directory, which contains a hierarchical

representation of the file system objects
(directories and files) that are currently known
by the local peer, including their relevant file
system attributes; their creation, modification
and access times and read-only, hidden or
archive flags. In the case of locally replicated
file objects, replication information is also
included.

 Open file table, holds entries for the files that are
currently opened by some process. Each entry
contains information about the current file
pointer position, as well as the share mode and
access type, specified when the file was opened.

4.1.2 Exported File System Interfaces
The file system interfaces that are exported and

implemented by Haddock-FS’s IFSD may be
grouped into the following categories [Mur98]:

1. Device event interfaces, which handle the
initialization and termination procedures of the file
system driver. These events correspond, respectively,
to the MountDisk and UnmountDisk functions. Such
functions are not available to applications through
the file system API. Instead, they are only called by
FSD Manager in order to mount or unmount the
IFSD. The MountDisk function is responsible for:
registering a volume where Haddock-FS’s shared file
system structure will be accessible to applications;
initializing the local file system data structures and
RPC services; and creating a server thread, which
will handle all remote requests from other Haddock-
FS peers. Inversely, the UnmountDisk function
handles deregistration of the file system volume and
termination of the server thread.

2. Path-based interfaces, which access or modify
file system objects that are identified by their
alphanumeric path names when the interface is called
by applications, such as CreateDirectoryW. Every
path-based function first decomposes and analyzes
each path name argument so as to locate the
corresponding element in the root directory structure.
The requested operation is then performed.

3. Handle-based interfaces, which access or
modify files that are identified by a previously
obtained file handle, such as ReadFile or WriteFile.
A file handle is obtained by a call to the CreateFileW
function, in which a path name is passed as an
argument to identify the desired file. Additionally,
other relevant arguments specify the intended share
mode and type of access. Similarly to any path-based
function, the supplied path name is used to obtain a
reference to the corresponding file element in the
root directory structure. If found, the open file table
is examined to verify that no sharing conflicts will
occur with the current entries in that table. Finally, if
such requirement is fulfilled, a new entry is then
inserted into an empty slot of the open file table and
its position within the table is returned. Such integer
value is a file handle that must be used by succeeding
calls to handle-based file system functions to the
same opened file.

4. Find interfaces, which allow applications to
iterate through the list of file system objects whose
path name matches a given search string. Namely,
FindFirstFileW, FindNextFileW and FindClose.

186

Remote Procedure Call Library
The developed RPC library is based on the

Winsock 2.0 network programming interface and
incorporates an interface description language (IDL)
and its respective compiler. The IDL allows
programmers to specify the remote procedures that
will constitute their distributed application (in this
case, the Haddock-FS driver itself). Accordingly, the
compiler automatically generates program code that
allows the distributed application to call and serve
the specified remote procedures.

It should be emphasized that no native RPC
services are available in Windows CE.Net. Although
the available DCOM services of Windows CE.Net
are based on an underlying RPC library, its interfaces
are not directly available to programmers.
Furthermore, the RPC components that support
DCOM are reduced to the subset of features that are
strictly required by DCOM.
5. Evaluation

Haddock-FS was evaluated through several
experiments. All measurements were obtained while
running one or more Haddock-FS peers on the
Arcom VIPER development board, which includes a
400MHz Intel Xscale-based PXA255 processor with
64MBytes of RAM and a 32MB of an Intel
StrataFlash drive. It is worthy to note that such
experimental platform provides testing conditions
very similar to the memory and processor
characteristics found in typical real world settings.

To evaluate Haddock-FS's performance with
practical workloads, we used an unmodified version
of the MS WordPad word processing application to
access replicated files. This application is typically
bundled with Windows CE.Net devices.

Chunk Repository Efficiency
The first experiment measured the effectiveness

of local replica content storage, based on the use of a
chunk repository. We simulated the composition of
an actual scientific paper [Bar04a] using 19 different
backup versions of its source text, ordered
chronologically. The set of backup versions
represents the real evolution of the paper, sampled
periodically for approximately six months, from an
initial version with a few paragraphs to a final
version with eleven pages occupying 33 Kbytes. The
size of the versions, as well as the character of
document is considered to be extremely
representative of the documents that are normally
accessed by mobile devices. Each version contents
were individually applied to a local file replica by
using the WordPad application to open, write and
close such contents to the replica. The measured
optimal expected chunk size for the used workload is
256 bytes, which achieved a substantial reduction of
47% in memory usage by use of the chunk

repository, in comparison to a non-optimized
approach (that is, without cross-file, cross-version
content similarity exploitation).

Finally, a more complete experiment was
conducted, in which two Haddock-FS peers
collaboratively issued updates to a shared replicated
file. The considered set of updates was the same as
the previous experiment, though distributed by both
peers. The obtained results showed that, from a total
amount of 460Kbytes that needed to be transmitted
during reconciliation sessions between peers upon
acquisition of the write token, only 237Kbytes (58%)
were effectively sent.

Local Access Times
One experiment measured the impact of

Haddock-FS replica storage architecture in the
performance of local file system calls. The
performance of Windows CE.Net native file system
was used as the primary evaluation reference.
Furthermore, the performance of a Transaction-Safe
File Allocation Table file system mounted on an
onboard flash drive was also measured.

The experiment was conducted by running a test
application that performed and measured the latency
of write and read file system calls to different
versions of the paper. In order to deal with
occasional deviations induced by external factors
such as the processor workload, the access time
measurements were repeated several times in the
same experimental conditions and the average value
was then considered.

Haddock-FS read accesses are, on average,
16,5% slower than the native file system, as shown in
Figure 2. However, if one considers only read
accesses to versions with more than 10KBytes,
Haddock-FS actually outperforms the latter by 1,7%.

The measured write performance of Haddock-FS
reflects the extended complexity that is imposed by
its content similarity exploitation architecture, as
shown in Figure 2. Write accesses are, on average,
92% slower than the native file system counterpart.
Still, the measured write performance of Haddock-FS
is, on average, 75% better than that of the FlashDisk
file system. Since most of today’s commercial
devices are equipped with secondary storage devices

Figure 2. Local access times.

187

with similar access performance, this evidence
suggests that typical mobile users will tolerate
Haddock-FS’s write access performance.
6. Related Work

The issue of optimistic data replication for
loosely coupled environments has been addressed by
a number of projects, most of which do not assume
that replicas will be held by resource-constrained
devices. Bayou [Ter95] is an optimistic database
replication system that relies on application-specific
conflict detection and resolution procedures to attain
adaptable consistency guarantees. The non-
transparent character of Bayou's approach prohibits
the use of already existing applications, in contrast to
Haddock-FS's solution.

The Roam [Rat99] optimistically replicated file
system does not require replica managers to store an
update log, which eliminates the significant memory
overhead that is typically imposed by such a data
structure. Nevertheless, Roam's consistency protocol
does not regard any notion of a stable replica value.
This limitation restricts Roam's applicability to
applications with sufficiently relaxed correctness
criteria that tolerate dealing only with tentative data.

AdHocFS [Bou03] exploits the high
connectivity of ad-hoc groups of replica managers by
enforcing a pessimistic strategy amongst the group
members. Nevertheless, AdHocFS's architecture is
still based on the existence of fixed server
infrastructures, where the stable values of files are
held. Therefore, should that infrastructure be
unavailable, users and applications are restricted to
accessing merely tentative data.

Finally, content similarity has already been
exploited for storage purposes by the Pastiche
backup system [Cox02], so as to minimize storage
overhead on backed-up contents. However,
Pastiche’s file system does not employ incremental
writes to chunked contents; instead, each write
operation causes the resulting contents to be re-
processed by the chunk division process. Though
acceptable for back-up operations, such solution may
not be adequate for partial content modifications.
7. Conclusions

Haddock-FS is a replicated file system designed
to meet the requirements imposed by mobile ad-hoc
scenarios, in order to provide a viable support for

collaborative activities. Namely, high availability,
adaptability to different correctness criteria and
adaptation to resource-constrained devices.

Haddock-FS has been successfully implemented
in Windows CE.Net and tested in Arcom VIPER
XScale-based development boards. Experimental
results show that Haddock-FS accomplishes
significant network and memory usage reductions
when compared to traditional solutions, while
attaining acceptable access times.

8. References
[Bar04a] Barreto, J. and Ferreira, P.. A Replicated File

System for Resource Constrained Mobile Devices.
Proceedings of IADIS Applied Computing, 2004.

[Bar04b] Barreto, J. Haddock-FS: A Distributed File
System for Mobile Ad-hoc Networks. M.Sc Thesis,
Instituto Superior Técnico, 2004.

[Bou03] Boulkenafed, M. and Issarny, V. Adhocfs:
Sharing files in wlans. Proceedings of the 2nd IEEE
International Symposium on Network Computing and
Applications, Cambridge, MA, USA, 2003.

[Cor99] Corson, S. and Macker, J. Mobile ad hoc
networking (MANET): Routing protocol performance
issues and evaluation considerations. Internet RFC
2501, IETF, 1999.

[Cox02] Cox, L., and Noble, B. Pastiche: Making backup
cheap and easy. Proceedings of 5th OSDI, 2002.

[Lam79] Lamport, L.. How to make a multiprocessor
computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, 1979.

[Mor86] Morris, J. et al. Andrew: a distributed personal
computing environment. Communications of the ACM,
29(3):184–201, 1986.

[Mur98] Murray, J. Inside Microsoft Windows CE.
Microsoft Press, 1998.

[Mut01] Muthitacharoen, A., Chen, B. and Mazieres, D. A
low-bandwidth network file system. SOSP, 2001.

[NIS95] National Institute of Standards and Technology.
FIPS PUB 180-1: Secure Hash Standard. National
Institute for Standards and Technology, USA, 1995.

[Now89] Nowicki, B. Nfs: Network file system protocol
specification. Internet RFC 1094, IETF, 1989.

 [Rat99] Ratner, D., Reiher, P. and Popek, G. Roam: A
scalable replication system for mobile computing.
Mobility in Databases and Distributed Systems,1999.

[Ter95] Terry, D. et al. Managing update conflicts in
bayou, a weakly connected replicated storage system.
Proceedings of the 5th ACM SOSP, 1995.

[Wei91] Weiser, M.. The computer for the twenty-first
century. Scientific American, 265:94–1, 1991.

188

The Zonnon Project:
A .NET Language and Compiler Experiment

Jürg Gutknecht
Swiss Fed Inst of Technology

(ETH)
Zürich, Switzerland

gutknecht@int.ethz.ch

Vladimir Romanov
Moscow State University

Computer Science Department
Moscow, Russia

romsrcc@rom.srcc.msu.su

Eugene Zueff
Swiss Fed Inst of Technology

(ETH)
Zürich, Switzerland

zueff@inf.ethz.ch

ABSTRACT

Zonnon is a new programming language that combines the style and the virtues of the Pascal family with a
number of novel programming concepts and constructs. It covers a wide range of programming models from
algorithms and data structures to interoperating active objects in a distributed system. In contrast to popular
object-oriented languages, Zonnon propagates a symmetric compositional inheritance model. In this paper, we
first give a brief overview of the language and then focus on the implementation of the compiler and builder on
top of .NET, with a particular emphasis on the use of the MS Common Compiler Infrastructure (CCI). The Zonnon
compiler is an interesting showcase for the .NET interoperability platform because it implements a non-trivial but
still “natural” mapping from the language’s intrinsic object model to the underlying CLR.

Keywords
Oberon, Zonnon, Compiler, Common Compiler Infrastructure (CCI), Integration.

1. INTRODUCTION: THE BRIEF
HISTORY OF THE PROJECT
This is a technical paper presenting and describing
the current state of the Zonnon project. Zonnon is an
evolution of the Pascal, Modula, Oberon language
line [Wir88]. Major language concepts and some
considerations concerning the system architecture
were presented in a number of papers during the last
two years [Gut02, Gut03].

The project emerged from our participation in Projects
7 and 7+, a collaboration initiative launched by
Microsoft Research in 1999 with the goal of
implementing an exemplary set of non-standard
programming languages for the .NET interoperability
platform. Our part was Oberon for .NET, an
interoperable descendant of Pascal and Modula-2.

The motivation for continuing the research was
twofold: a) to explore the potential of .NET and in
particular of the new compiler integration technology

CCI and b) to experiment with evolutionary language
concepts. The notion of active object was taken from
the Active Oberon language [Gut01]. In addition, two
new concurrency mechanisms have been added: an
accompanying communication mechanism based on
syntax-oriented protocols , borrowed from the Active
C# project [Gun04], and an experimental
“asynchronous” statement execution construct.

The new language was called Zonnon. It uses a
compositional inheritance model. Typically, an object
implements a specified set of definitions, each one
accompanied by a default implementation that is
aggregated into the object’s state space. The syntax
of Zonnon is presented in the [Zon05] document.

2. CURRENT STATE OF THE
PROJECT
The core language is defined and stable but there are
still ongoing experiments in the area of concurrency.
The current compiler is a well-tested beta version. A
specifically developed comprehensive Zonnon test
suite containing more than 1500 Zonnon test cases
and covering all language features is used for
systematic testing of the compiler.

There are three user environments for the Zonnon
compiler: command-line, Zonnon Builder and Visual
Studio .NET. We note that, to the best of our
knowledge, the Zonnon compiler is the first compiler

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech
Republic

189

developed outside of Microsoft that is fully
integrated into Visual Studio. It is currently used in an
experimental programming course for junior students
in Nizhny Novgorod University, Russia [Ger05].

3. BRIEF INTRODUCTION TO
ZONNON
Being a member of Pascal family of languages and
thanks to a high degree of compatibility, Zonnon is
immediately familiar to Modula/Oberon programmers.
Most Oberon programs from the domain of algorithms
and data structures are successfully compiled by the
Zonnon compiler after just a few minor modifications.

However, from the perspective of “programming-in-
the-large”, Zonnon is much more elaborate compared
to its predecessors. There are four different kinds of
program units in Zonnon: objects, modules,
definitions and implementations. The first two are
program units to be instantiated at runtime, the third
is a compile time unit of abstraction and the fourth is
a unit of composition. Here is a brief characterization:

Object is a self-contained run-time program entity. It
can be instantiated dynamically under program
control in arbitrary multiplicity. Compared to Oberon,
the notion of object is conceptually upgraded in
Zonnon by the option of adding one or more
encapsulated activities that control the intrinsic
behavior of the object.

Module can be considered as a singleton object
whose creation is controlled by the system. In
addition, a module may act as a container of logically
connected abstract data types and structural units of
the runtime environment. In combination with the
import relation, the module construct is a powerful
system structuring tool that is missing in most
modern object-oriented languages.

Definition is an abstract view on an object from a
certain perspective or, in other words, an abstract
presentation of one or more of its facets.

Implementation typically provides a possibly partial
default implementation of the corresponding
definition. It is a unit of reuse and composition that is
aggregated into the state space of an object or
module either at compile time or at runtime.

Zonnon also provides a novel object-oriented
concurrency model that follows the metaphor of
autonomous active objects interoperating with each
other. The model incorporates encapsulated threads
of activity serving two purposes: expressing intrinsic
behavior and carrying out formal dialogs. Active C#
provides a proof of concept for this concurrency
model.

4. ZONNON MAPPINGS TO CLR
As mentioned before, the Zonnon object model
differs from the virtual object model proposed by the
.NET CLR. However, most Zonnon concepts can be
mapped rather easily to corresponding CLR notions,
with the help of a few minor tricks. The general
approach taken was trying to make direct use of CLR
high-level constructs rather than to optimize the
Zonnon code image. In the following, we will consider
some important mapping examples.

Zonnon definitions are represented as public
interfaces, and their state variables are mapped to
virtual properties. For example, the following sample
definition

(* Common interface for the random
 numbers generator *)
definition Random;
 var { get } Next : integer; (* read-only *)
 procedure Flush; (* reset *)
end Random.

is mapped to the class:

public interface Random {
 System.Int32 Next { get; }
 void Flush(); }

Implementations are mapped to sealed classes with
the same visibility as corresponding definitions. For
example, a possible implementation of the random
generator will look like as follows:

implementation Random;
 var { private } z : integer;
 procedure { public, get } Next : integer;
 const a = 16807; m = 2147483647;
 q = m div a; r = m mod a;
 var g : integer;
 begin g := a*(z mod q) – r*(z div q);
 if g>0 then z := g else z := g+m end;
 return z*(1.0/m)
 end Next;
 procedure Flush;
 begin z := 3.1459 end Flush;
begin Flush;
end Random.

The compiler will generate code for this
implementation that corresponds to the C# class:

public sealed class Random_implem : Random
{
 private System.Int32 z;
 System.Int32 Random.Next { get { …; } }
 void Random.Flush () { z = 3.1459; }
 public Random_Implem() { Flush(); } }

If no implementation is specified for a definition then
the compiler generates a default implementation with

190

trivial properties. The example below illustrates this
for the Random definition:

(*automatically generated definition companion*)
public sealed class Random_default : Random {
 System.Int32 Next_default;
 System.Int32 Random.Next {
 get { return Next_default; } } }

Zonnon object types actually behave like CLR classes
and therefore are mapped to sealed classes with the
same scope of visibility as the object type. In case a
body is specified in an object type, it is mapped into
an instance constructor as shown here:

object { public } R; public sealed class R {
 var x : real; private System.Double x;
begin public R () {
 … x := 777.999; … x = 777.999; … }
end R. }

The relationship “object implements definition” is a
fundamental constituent in the Zonnon object model.
It represents an obligation for an object type to
provide the functionality promised by the definition.
However, notice that a corresponding implementation
(if it exists) is automatically imported by the compiler,
and the object type needs to merely implement the
missing parts and, if desired, to customize the default
implementation. For example:

object R1 implements Random;
 (*implicitly imports Random implementation*)
 (* Procedure Next is reused from
 default implementation *)
 (* Procedure Flush is customized *)
 procedure Flush implements
 Random.Flush;
 begin z := 2.7189; end Flush;
end R.

The “object implements definition” relationship is
represented as a usual interface implemented by the
class. To support the automatic reuse of the default
implementation, its “class” image is aggregated into
the class image of the object itself. Thus, the above
object type shown will be represented as follows:

class R1: Random {
 private Random_implem implem;
 public System.Int32 Random.Next()
 { return implem.Next(); }
 public void Flush() { z = 2.7189; } }

Finally, Zonnon modules are mapped to sealed
classes (either public or internal, depending on the
module’s modifier) with static members, public static
constructor (for the method body) and private
instance constructor (to prevent uncontrolled
creation of module instances) with empty body.

module Test;
 import Random;
 (* both definition and implementation
 are imported *)
 var x : object { Random };
 (* x’s actual type is any type implementing
 Random *)
 object R2 implements Random;
 (*alternative random number implementation*)
 end R2;
begin
 x := new R1; …
 x := new R2; …
end Test.

5. THE ZONNON COMPILER

Compiler overview
The Zonnon compiler is written in C#. It accepts
Zonnon program units and produces conventional
.NET assemblies containing MSIL code and metadata.
The Common Compiler Infrastructure (CCI) provided
by Microsoft is used as a code generation utility and
integration platform.

Technically the compiler is a single dll file that is
directly integrated into Visual Studio and the Zonnon
Builder environment, respectively. A small executable
wrapper is added to make the command-line version
of the compiler.

The Common Compiler Infrastructure
Conceptually, CCI provides three kinds of support for
developing compilers for .NET (see Fig 5.1): high-
level infrastructure (in particular, structures for
building attributed program trees and methods for
performing semantic checks on trees), low-level
support (generating IL code and metadata), and
programming service for integration.

From the programming perspective, the CCI is a set of
C# classes that provide comprehensive support for
implementing compilers and other language tools for
.NET. In reality, the support is not fully
comprehensive as, for example, lexical and syntactical
analyses are left to the user. However, the CCI
supports well the integration into Visual Studio (VS).
With the support of CCI a full integration of a
compiler with all VS components such as editor,
debugger, project manager, online help system etc.
becomes feasible.

The CCI framework should be considered as a part of
the .NET framework, with the namespace Compiler
containing the CCI resources included in the System
namespace. It consists of three major parts:

191

intermediate representation, a set of transformers, and
an integration service.

Integration

Service

Semantic
Represen-

tation

Assembly
Generation

Service

Visual Studio .NET

Compiler Front End Compiler Back End

Integration

Service

Semantic
Represen-

tation

Assembly
Generation

Service

Visual Studio .NET

Compiler Front End Compiler Back End

Figure 5.1 CCI Architecture

Intermediate Representation (IR) is a rich hierarchy
of C# classes that represent typical constructs of
modern programming languages. The IR hierarchy is
based on the C# language architecture. Its classes
reflect CLR constructs like class, method, statement,
expression etc. plus a number of important notions
not supported by CLR (e.g., nested and anonymous
functions, or closures). This allows compiler
developers to represent the corresponding concepts
of their language directly in terms of a CLR class. In
case a language feature is not presented by a CLR
class, it is possible to extend the original IR class
hierarchy. For each extension the corresponding
transformations must be provided – either as an
extension of a standard “visitor” (see below) or as a
completely new visitor.

Transformers (“Visitors”) is a set of base classes
performing consecutive transformations from an IR
class to a .NET assembly. There are five standard
visitors predefined in CCI: Looker, Declarer,
Resolver, Checker, and Normalizer. All visitors walk
an IR by performing various kinds of transformations.
The Looker visitor (together with its companion
Declarer) replaces Identifier nodes with the
members/locals they resolve into. The Resolver
visitor resolves overloads and deduces expression
result types. The Checker visitor checks for semantic
errors and tries to repair them. Finally, the Normalizer
visitor prepares the serialization into MSIL and
metadata.

All visitors are implemented as classes inheriting from
the CCI StandardVisitor class. It is possible to either
extend the functionality of a visitor by adding
methods for the processing of specific language
constructs , or create a totally new visitor.

Integration Service is a variety of classes and
methods providing integration into Visual Studio. The
classes encapsulate specific data structures and

functionality that are required for editing, debugging,
background compilation etc.

The Zonnon Compiler Architecture
Conceptually, the organization of the compiler is quite
traditional: the Scanner transforms the source text
into a sequence of lexical tokens that are accepted by
the Parser. The Parser performs syntax analysis and
builds an abstract syntax tree (AST) for the
compilation unit using CCI IR classes. Every AST
node is an instance of an IR class. The “semantic”
part of the compiler consists of a series of
consecutive transformations of the AST built by the
Parser. The result of such transformations is a .NET
assembly.

It is worth noting that the Zonnon compiler does not
make use of all CCI features. In particular, instead of
extending the CCI Intermediate Representation by
language-specific nodes, the compiler in fact creates
its own Zonnon-oriented program tree in its first pass
(see the data flow diagram in Fig. 5.2). The main
reason for the extra tree is a clearer separation of the
language-oriented and system-oriented compiler
parts.

Figure 5.2 Compilation data flow

Also, the presence of two trees in the compiler
reflects the conceptual gap between Zonnon and the
CLR. It seems to be principally advantageous to
represent information about Zonnon programs in a
separate data structure that is independent of the
target platform. Such a design leads to an optimal
factoring of the compiler, with key tasks like name
resolution and semantic control manipulating the
Zonnon tree being totally independent of the CLR
and .NET. Furthermore, the conversion from the
Zonnon tree to the CCI tree explicitly implements and
encapsulates the mapping from the Zonnon language
model to the CLR Notice that functions logically
related with both trees, the Zonnon tree and the CCI
tree, are activated during the same compilation pass.

In the future the Zonnon tree will be extensively used
for displaying structural information about Zonnon
programs in VS’ Solution Explorer views and for
generating UML project diagrams by the Zonnon
Builder (see Section 6).

From an architectural point of view, the Zonnon
compiler differs from most “conventional” compilers.

Source Source
CCI
Tree

MSIL+MD
Zonnon

Tree

Zonnon Front End CCI Back End

Source Source
CCI
Tree

MSIL+MD
Zonnon

Tree

Zonnon Front End CCI Back End

192

In contrast to a “black box” approach whose goal is
to hide algorithms and data structures, our Zonnon
compiler presents itself as an open collection of
resources. In particular, data structures such as
“token sequence” and “AST tree” are exhibited to the
outside world (via a special interface) for reuse by
various programs . The same is true for algorithmic
compiler components. For example, it is possible to
invoke the Scanner to extract tokens from some
specific part of the source code and then have the
Parser build a sub-tree for just this part of the source.

Note that an analogous architecture is used by the
CCI framework to support the deepest integration of
any participating compiler with the Visual Studio
environment. For example, the CCI contains Scanner
and Parser prototype classes that served as base
classes for the Zonnon parser and scanner
components respectively.

6. THE ZONNON BUILDER
The Zonnon Builder is a conventional development
environment comparable with many other IDEs. Our
first goal in equipping the compiler with its own IDE
was to provide an environment that looks familiar to
Pascal programmers who are used to products like
Delphi. On the other hand the Zonnon Builder can be
considered as a simpler and light-weight alternative to
full-featured environments like Visual Studio. The
Zonnon Builder supports the full spectrum of a
typical program development cycle, including source
code editing, compiling, execution, testing and
debugging. The Zonnon Builder supports structured
projects consisting of several source files. Multi-file
projects are compiled into a single assembly. It is
possible to edit project files in different syntax-
oriented editor windows simultaneously.

The second goal of the Zonnon Builder project was
to offer a simple and comprehensible development
environment for novices, specifically supporting the
case of a simplified program development cycle in
that a single program file is being developed,
compiled, debugged and run. Such an option is very
useful and convenient in an educational context .

The Zonnon Builder uses a special window to display
compiler diagnostics. These are actually hyperlinks
that can be clicked directly to visualize the part of the
source code containing the (highlighted) error. In
case of a program crash, the contents of the program
stack are displayed in a separate window. The
sections in the stack window are again hyperlinks
(see Fig.6.1) and clicking at a section again causes the
Builder to display and highlight the corresponding
fragment of the source code.

Figure 6.1 Zonnon program debugging

The Zonnon Builder also provides a simple version
control mechanism. It is possible to save, restore and
compare an arbitrary number of revisions for each
project file (see Fig.6.2).

Figure 6.2 File versioning

Version control for the entire project is also
supported. Each project version holds the state of all
project files at a given time, together with an optional
textual comment.

The Zonnon Builder Implementation
The Zonnon Builder as a whole is implemented in the
form of a conventional .NET application. Its graphical
user interface implementation reuses the standard
.NET libraries System.Drawing and System.Windows.
Forms. Some key components of the Builder such as
the Zonnon-oriented program editor need to directly
call the system API (user32.dll) because some
functionality is missing in the .NET class libraries.

The design of the Zonnon Builder is intentionally
kept largely independent of the specific programming
language. Remaining dependences are encapsulated
in two interfaces (see Fig.6.3).

193

Figure 6.3 Zonnon Builder implementation

The ICompiler interface hides the implementation of
the compiler. The Zonnon compiler wrapper
implements the interface. The ILanguageLexems
interface hides all language specific parts, for example
the set of tokens. Therefore, it is easy to integrate any
other programming language into the environment.

7. FUTURE WORK
Zonnon and Visual Studio
We aim at a closer integration with the Solution
Explorer, including adequate interpretation of CLR
notions (such as “type”, “class”, “method” etc.) in
accordance with the semantics of the Zonnon
language (“module”, “definition”, “procedure” etc.).
We also strive for a closer integration of the object
content presentation and the “intellisense” feature.

Zonnon Builder
The next Zonnon Builder version will include a code
model for compiled Zonnon programs. Programs will
be presented as a hierarchical tree whose nodes
represent Zonnon compilation units and their
contents , respectively. Another improvement will be
automatic generation of UML diagrams for the static
structure of Zonnon programs. The UML diagrams
will visually present the different relationships
between compilation units. Both presentation forms
(code model and UML diagrams) will be integrated
with the program text presentation. The integration
with the standard CLR debugger is also planned.

8. LESSONS LEARNED
The experience in using the Zonnon language shows
that it is quite convenient and can be used both for
educational purposes (as the first programming
language) and as an implementation tool. Some
practical programs with non-trivial algorithms and
graphical user interface were implemented in this
language. The Chess Notebook program from the
Zonnon web site is among the examples.

We are quite satisfied with the CCI framework. It is a
well-designed, practical, powerful and flexible tool for

building VS integrated compilers. It supports both the
integration of existing compilers into the Visual
Studio and the development of integrated compilers
from scratch. CCI also can be considered as a more
powerful and faster alternative to the
System.Reflection library. The troubles with CCI were
the lack of documentation and the unclear status of
this framework.

9. CONCLUSIONS
Zonnon is the new programming language with a
number of novel programming concepts and
constructs. The language covers a wide range of
programming models. This paper describes the
current state of the Zonnon project: the language, the
compiler and its development environment. The
Zonnon compiler is also integrated into Microsoft’s
Visual Studio .NET environment.

The command-line Zonnon compiler, the Zonnon
Builder, the Zonnon Language Report together with
documentation and a large number of Zonnon
program samples and tests are available on
www.zonnon.ethz.ch.

10. ACKNOWLEDGMENTS
Our thanks go to Herman Venter, Brian Kirk, David
Lightfoot, Alan Freed and to the first Zonnon users
and programmers.

11. REFERENCES
[Ger05] Prof V.Gergel, personal communication.
[Gun04] R. Güntensperger and J. Gutknecht, Active

C#, Proceedings of the 2nd International
Workshop on .NET Technologies, Plzen 2004.

[Gut01] Gutknecht, J., Active Oberon for .NET: An
Exercise in Object Model Mapping, BABEL’01,
Satellite to PLI’01, Florence, IT, 2001.

[Gut02] J.Gutknect, E.Zueff, Zonnon Language
Experiment, or How to Implement a Non-
Conventional Object Model for .NET.
OOPSLA’02, November 4-8, 2002, Seattle,
Washington, USA.

[Gut03] J.Gutknecht, E.Zueff, Zonnon for .NET – A
Language and Compiler Experiment. Joint Modular
Languages Conference, JMLC2003, Klagenfurt,
Austria, August 2003.

[Wir88] Wirth, N., The Programming Language
Oberon. Software – Practice and Experience, 18:7,
671-690, Jul. 1988.

[Zon05] J.Gutknecht, E.Zueff, Zonnon Language
Report, www.zonnon.ethz.ch.

194

A Virtual Machine Framework for
Domain Specific Languages

David Fick

dfick@grintek.com
Derrick G. Kourie

dkourie@cs.up.ac.za

Espresso Research Group
University of Pretoria

South Africa, Pretoria, Gauteng

Bruce W. Watson
bwatson@cs.up.ac.za

ABSTRACT

A generic approach to constructing a virtual machine for a DSL in C# is studied. It proposes a generic, object-
oriented framework, in which to build the virtual machine, using an abstract instruction class and an abstract
environment class. They can be extended to provide a concrete layer whose interface constitutes the set of
instructions of a DSL. The framework allows for the generation of a variety of virtual machines each supporting
a particular DSL. Comparative performance results in relation to other DSL implementations are also provided.

Keywords
virtual machine, domain-specific language, instruction set, environment, abstract class, generic framework.

1. INTRODUCTION
Domain specific languages (DSLs) have been
discussed and used in many contexts. (See, for
example, [Arn95] and [Deu98].) In this paper the
design and implementation of a VM Framework for
DSLs is investigated, using .NET. Two other
approaches for constructing a DSL are also briefly
examined. For all three approaches, time of
execution is examined and timed points are declared.
The Shlaer-Mellor (SM) software construction
method has been adopted. A fundamental difference
between SM and other methods is the identification
of separate subject matters, called domains. An SM
domain is a separate real, hypothetical, or abstract
world inhabited by a distinct set of classes that
behave according to rules and policies characteristic
of the domain [Shl92a]. The VM Framework is
layered on top of an existing domain. As a
programming language construct, a domain is simply
represented as a namespace. The namespace forms a
home for related classes and these classes facilitate
the semantics of the DSL.

The VM Framework outlined in this study is an
extension to the typical VM, in that it defines a VM
with an empty instruction set whose environments
and instructions can later be extended.

2. FRAMEWORK DESIGN
The VM Framework provides the basic functionality
of a typical VM, including an Intermediate
Representation (IR) program loader, a program
counter, internal temporary values, and conditions on
which to build branching instructions. A proxy object
is provided through which to start up and configure
an instance of a VM. No modification to the VM
Framework itself is required and its component
classes can consequently be compiled and saved as a
library. The VM Framework consists of five main
classes each discussed in the following subsections,
and is shown in figure 1.

The EVM Class
The EVM class (Extendable Virtual Machine) is the
proxy class. Once instantiated, the object represents
an instance of a configurable VM, with an empty
instruction set and no environment. A specific
configuration can then be applied to the VM
instance. When an IR program is executed, the VM
will invoke the correct Inst instance created at load
time, defined in the configuration file. The EVM class
also encapsulates the internal temporary values in the
temps hash table. Each internal temporary value has
a unique ID, and instructions with ID operands can
gain read and write access to them. The temporary

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

195

values have an object type, so they can be assigned values most convenient to the DSL being
constructed. Internally, the EVM class contains a

EVM

temps:Hashtable
Reset()
Execute()
GetResult():object

retrieves
result

executes

operates
on has

available

loads

configures

provides
environment and
instructions

loads
program

1 1..*

1..*

1

1

1

1

1

1

1 1..*

type of

1

1 1..*

Env

GetResult():object

Config

instructions:Hashtable
environments:Hashtable
ins_env:Hashtable

Loader

Program_counter:int
Reset()

Inst

Execute()

Type

Figure 1. Information model of the VM Framework

loop in its Execute() method, that iterates
through each instruction stored by the Loader.
The very next instruction to be executed is first
fetched, and then the Execute()method of its
class is invoked. This may entail accessing an
internal temporary value, or handling a branch
instruction and saving the current program counter
value, if need be. Some branch instructions do not
require the program counter to be saved.

The Config Class
The Config class is responsible for the
configuration setup of an instantiated VM. The
Config class encapsulates three mappings:
instructions, environments and
ins_env, and are defined in Figure 2 below.

instructions : string Inst Type
environments : string Env
ins_env : string string

Figure 2. Configuration mappings
The instructions mapping maps the string
name of an instruction, to an Inst type. Derived
instances of the Inst class are only created upon
program loading. The environments mapping,
maps the string name of an environment, to an
instance of Env. As indicated below, the Env
instance will typically encapsulate some Abstract

Data Type (ADT) such as a runtime stack. The
last mapping, ins_env, maps the name of an
instruction to the name of the environment that the
instruction is to use. The name of the environment
is looked up in the environments mapping, and
the actual instantiated environment is retrieved, and
later accessed by the instruction during the
execution of the loaded IR program.

The Loader Class
The Loader class encapsulates a loaded IR
program and the program counter. The loaded
program is an array of Inst instances, for each
instruction of the program. The Loader class also
maps labels to program counter values. The
mapping is updated with a program counter entry
for each label in the program. When a branch
occurs, the index of the next instruction can be
retrieved using the mapping. The parser has the
string name of the instruction and uses the mapping
defined in the Config class to retrieve the Inst
type that is used to create the Inst instance. Thus
when a program is fully loaded, the array will
contain instances of Inst, each Inst
encapsulating its own operands ready for
execution, and the program counter is reset to the
beginning of the array.

196

The Inst Abstract Class
The abstract Inst class encapsulates a reference
to a Env. This will be the environment updated by
the instruction during the execution of the loaded
IR program. Note that it is only a reference and
other instructions will have a reference to the same
Env instance. The Inst class does not define
how the updates are performed, and instead
provides an abstract Execute() method, that
further extensions to the instruction are obligated to
override. While there are still instructions to be
executed by the loaded program, the Execute()
method is called for each instruction. When the
program counter has run through each instruction
instance, the program has completed execution and
the result of the execution can be retrieved.

The Env Abstract Class
The abstract Env class encapsulates some ADT, or
even a number of ADT’s that form the central data
storage mechanism for the language. The abstract
Env class does not dictate the type of ADT that is
encapsulated, and thus does not define any member
ADT. It merely provides an abstract
GetResult() method that extensions of Env are
obligated to override.

3. ENVIRONMENTS
The purpose of the abstract Env class is to have an
ADT that is updated during runtime, and that is
appropriate, or convenient for processing the
semantics of the language. For example, in a simple
real-valued expression language, a runtime stack
can be used as an environment, where operands are
first loaded onto the stack and then an arithmetic
operation is performed on the most recently pushed
values. In a ray-tracer [Wat00a] scene description
language, the main data structure may be a runtime
stack, for any arithmetic calculations, and a bitmap
image data type that is incrementally updated as the
image information is processed. Thus it is possible
to extend the environment built for an expression
language, into one that is suitable for a ray-tracer
language. Classes that extend the abstract Env
class, are obligated to override the method
GetResult(). The method GetResult()
returns an instance of an object. When an
instance of a VM has completed execution, the user
can call GetResult() to retrieve the result of
the execution. In the example of an expression
language, this would typically be a double value,
while for a ray-tracer language this result would be
an instance of a bitmap image type. Since
framework users will be aware of the data type they
are using for the result, a simple type cast to narrow

the returned instance to the user’s own result type is
sufficient.
An example of EnvExp, a concrete extension to
Env for an expression language, is provided in
Figure 3. It encapsulated a real-valued stack, and
returns the last entry on the stack. If all operations
on the stack are consistent, there should be only
one remaining value on the stack, which is the
result of evaluating the expression.

class EnvExp : Env
{
 public EnvExp () {
 stack = new Stack (100);
 }
 public override object GetResult () {
 object result;
 if (stack.isEmpty ()) {
 result = -1.0;
 }
 else {
 result = stack.peek ();
 }
 return result;
 }
 public Stack GetStack(){return stack;}
 protected Stack stack;
}

Figure 3. Example EnvExp class

4. INSTRUCTIONS
There are five classes of instructions, each
represented by an abstract class extending Inst.
The user creates their own instruction by extending
one of the classes of the abstract instructions
provided. Each instruction will take at most one
operand. The five classes of instructions are
defined in terms of their operand types. Instructions
written in the source IR program can be labeled, if
they are targeted by any branching instructions.
The token and grammar definition for parsing IR
program code is shown in Figure 4.

 LABEL : [lL][aA][bB][eE][lL]
INS : [_a-zA-Z][_a-zA-Z0-9]*
BRANCH : @[1-9][0-9]*
TEMP : $[1-9][0-9]*
DOUBLE : [-+]?[0-9]+(\.[0-9]+)?
STR : \".*\"

ir_list :
ir_list : ir_list ir_instr

ir_instr : ir_label INS
ir_instr : ir_label INS STR
ir_instr : ir_label INS TEMP
ir_instr : ir_label INS DOUBLE
ir_instr : ir_label INS LABEL BRANCH

ir_label :
ir_label : BRANCH

Figure 4. IR Token definitions and grammar

Instructions with No Operands
A Boolean property of this class,
LoadProgramCounter, in Figure 5, is an

197

option to recall the last saved program counter.
This allows the creation of instructions that return
from a branch into a subroutine.

 abstract class Inst_OpCode : Inst
{
 protected bool
 LoadProgramCounter = false;
}

Figure 5. The Inst_OpCode abstract class

As an example, the Add instruction is presented in
Figure 6, as used in a simple expression language.
The instruction Add simply pops the two topmost
operands off a stack and pushes the sum back on.

Instructions with a Branch Label
Instructions with a branch label are used for
conditional or unconditional branching. Two
properties are used to implement branching
semantics, depending on the requirement of the
branch condition. The first property,
BranchCond, is the actual condition to
branching. This property should be assigned to
true in the overridden Execute() method for
unconditional branching.

For conditional branching it is assigned according
to the evaluation of a boolean expression inside the
body of the Execute() method. The second
property, SaveProgramCounter, dictates
whether the program counter should be saved for a
corresponding return call into a subroutine. The
complete class is shown in Figure 7.

Instructions with a Temporary
Internally, temporaries are implemented with a
Hashtable that map temporary names (ID’s) to
object references. They are akin to conventional
registers, but a temporary can be treated as any
object type as illustrated in Figure 8. Instructions
have full access to a temporary. The instruction can
modify the temporary by typecasting the object to
the required usable type.

Instructions with a String Parameter
Instructions with string parameters are useful in
string processing applications such as those that
deal with regular expressions. This class, shown in
Figure 9, exists to provide the means to parse a
string defined in the source IR program and to store
it in the variable str.

Instructions with a Number Parameter
Similarly to the above string parameter instruction,
instructions with number parameters exist to
provide the means to parse numbers defined in the
source IR program, or to facilitate instructions that

provide any intermediate arithmetic calculation.
Real or integer numbers can be parsed. However,
internally they are treated as double values.

 class Add : Inst_OpCode
{
 public Add (EnvExp env)
 {
 this.env = env;
 }

 public override void Execute ()
 {
 double d1;
 double d2;
 double r;

 d2 = (double)
 ((EnvExp)env).GetStack().pop();

 d1 = (double)
 ((EnvExp)env).GetStack().pop();

 r = d1 + d2;

 ((EnvExp)env).GetStack().push(r);
 }
}

Figure 6. The Add instruction

 abstract class Inst_OpCode_Br : Inst
{
 protected string label;

 protected bool
 BranchCond = false;

 protected bool
 SaveProgramCounter = false;
}

Figure 7. Inst_OpCode_Br

 abstract class Inst_OpCode_ID : Inst
{
 protected string ID;
 protected object temp;
}

Figure 8. Inst_OpCode_ID

 abstract class Inst_OpCode_Str : Inst
{
 protected string str;
}

Figure 9. Inst_OpCode_Str

 abstract class Inst_OpCode_Num : Inst
{
 protected double num;
}

Figure 10. Inst_OpCode_Num

5. EXTENDING THE FRAMEWORK

The Configuration File
Before an instantiated VM can execute instructions
in a loaded IR program, the VM needs to be
configured as a specific VM type. This is achieved
through a configuration file that is initially loaded.
Once the VM has been configured, an IR program

198

can be loaded and executed. The configuration file
specifies the name of the class used as an
environment, as well as the names of all instruction
classes, both stored as .NET DLL’s. The
configuration file will give the complete instruction
set for a particular VM. Figure 11 gives an example
configuration file for an expression language.
The keyword environment is followed by an
environment class name, and one environment
instance will be instantiated for that class. When
instructions are instantiated at program load time,
the environment that will be used by the instruction
is named after the using keyword.

Extending the Environments
Suppose a new language is required, be it similar to
an existing language, or one that features an
entirely new syntax. If an existing language uses an
environment with an appropriate data structure then
the new language can extend the existing
environment to suite its own needs. A ray-tracer
language needs to render a scene onto a bitmap, but
may also require a means to perform numeric
calculations. Thus the EnvExp environment of the
expression language can be extended with two
extra data structures; a scene and a bitmap, giving
rise to an EnvRT environment suitable for a ray-
tracer.

Extending the Instruction Sets
Instructions are extended from one of the five
instruction classes mentioned earlier, to a set of
concrete instruction classes instantiated at load
time. Extending instruction sets with environments
that are subclasses of each other, makes for a
scalable framework in which to design a tailored
VM for a DSL. The ray-tracer language serves as
an example. The EnvRT environment is a subclass
of EnvExp, so any one of the instructions
operating on an EnvExp, can also operate on a
EnvRT, as illustrated in the configuration file for
the ray-tracer language, depicted in Figure 12.

6. BUILDING A DSL
Once a defined environment and instruction set are
in place, a front-end for the DSL needs to be
developed. Essentially this is the task of writing a
simple compiler for the DSL. This entails designing
syntax for the language using compiler tools. The
example DSL in this section was built using LG to
define the tokens for the lexer, and PG to define the
grammar for the parser. Both tools bear a familiar
syntax to most commonly used industry tools. The
translation of a small, functional expression
language can be intuitively understood by the
following illustrative example. The program in
Figure 13 evaluates the expression

 (* Create an instance of the *)
(* expression environment. *)
environment EnvExp

(* Register the following expression
(* instructions with the DVM. *)
Push using EnvExp
Store using EnvExp
Load using EnvExp
Sub using EnvExp
Add using EnvExp
Mul using EnvExp
Br using EnvExp
Brgz using EnvExp
Nop using EnvExp
Div using EnvExp

(* Some generic instructions *)
Call using EnvExp
Ret using EnvExp
Print using EnvExp

Figure 11. Example configuration file to setup
the VM for a small expression language

 (* Create an instance of the *)
(* ray-tracer environment. *)
environment EnvRT

(* These instructions were part of *)
(* the EnvExp environment. *)
Push using EnvRT
Add using EnvRT
Sub using EnvRT
Mul using EnvRT
Div using EnvRT

(* Ray-tracer specific instructions. *)
LookAt using EnvRT
Specular using EnvRT
Diffuse using EnvRT
Reflect using EnvRT
Translate using EnvRT
Quad using EnvRT

Figure 12. Configuration file to setup a ray-
tracer language borrowing some instructions
from an expression language

5,29
1

=+∑
=

nwherei
n

i

 …(1)

in a functional manner. The token and grammar
definitions for each of the five instruction types are
given in section 5, and the translated IR code for
this program is shown in Figure 14 as a concrete
example, that demonstrates the use of temporaries
(as storage for variables n and i) and also
branching instructions for the actual
implementation of the summation construct.

 let
 n = 5
in
 9 + sum (i) 1..n (2 * i)
end

Figure 13. Programmatic representation of the

summation expression (1)
The generated IR code performs operations on a
runtime stack. This stack is indeed defined as part

199

of the environment EnvExp discussed earlier, and
once the IR code has completed execution, the only
remaining value on the stack will be the result of
the expression.

 Push 5
 Store $1
 Push 9
 Push 1
 Store $2
 Push 0
@100 Load $2
 Load $1
 Sub
 Brgz label @200
 Push 2
 Load $2
 Mul
 Add
 Load $2
 Push 1
 Add
 Store $2
 Br label @100
@200 Nop
 Add
Figure 14. Translated IR program of the

summation expression (1)

7. COMPARATIVE RESULTS
Comparative performance results were done
between three different DSL implementations: an
interpreter, a hardcoded VM and the VM
Framework. Two time intervals were compared for
each implementation; compiling DSL source code
to IR (SRC IR), and executing the IR to observe
the semantics (IR SEM). The total time
(SRC SEM) is also calculated. The measured time
is in units of 100ns. Only the total time
(SRC SEM) is relevant for the interpreter. The
hardcoded VM has a predefined set of instructions
and the VM Framework is similarly configured
with the same set of instructions. For the purpose of
the experiment, a ray-tracer language, used to
define geometric objects to be rendered onto a
scene.
From the performance results in Figure 15, it can
be seen that using some of the reflection properties
of .NET does not necessarily impede the IR
program’s execution speed, and in this case it is
actually shown to perform better than its hardcoded
counterpart. Naturally, the interpreter is quickest to
deliver observable results, however, it will suffer
from a lack of scalability. The hardcoded VM will
suffer less from scalability problems, as it is easier
to add new instructions as part of the VM core. The
VM Framework treats environments, and
instructions that access these environments, as
separate external libraries, or DLL’s, and they do
not form part of the VM Framework’s core
execution unit. Rather, these DLL’s are configured
together as a set of building blocks to yield a
customized VM for a particular DSL. Furthermore,

the VM framework easily accommodates a scaling
up of the DSL with new constructs as the need
arises.

0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

5 0 0 0 0 0 0

1 2 3
T i c k s
(1 0 0 n s)

 Legend

1 – Interpreter
2 – Hard-coded VM
3 - VM Framework

– SRC -> SEM
– SRC -> IR
- IR -> SEM

Figure 15. Comparative performance results of

three types of DSL implementations

8. CONCLUSION
This paper described a framework that allows rapid
development of DSL’s, with emphasis on language
scalability. The VM Framework also relies on
certain reflective constructs of .NET to configure
an instantiated VM at runtime, and .NET DLL’s are
used extensively to aid in scalability and
modularity. For the VM Framework to serve any
use it must be extended by a set of concrete classes
that form the instruction set and environments
suitable for a particular DSL. Typically, a domain
expert will work alongside a software practitioner
to collaboratively tailor a DSL to the expert’s
needs. Thus the syntax of constructs needs to be
refined to be as intuitive as possible, while the
practitioner needs to decide what type of
instructions are necessary to facilitate the semantics
of the constructs. This may involve a few iterations
but a flexible framework will aid in the
development lifecycle of the DSL.

REFERENCES
 [Arn95] Arnold, B. R. T., Deursen, A. v., and Res,

M. An Algebraic Specification of a Language
for Describing Financial Products. Proceedings
of the ICSE-17 Workshop on Formal Methods
Application in Software Engineering Practice,
1995

Deu98] Deursen, A. v., and Klint, P. Little
Languages: Little Maintenance? Journal of
Software Maintenance, volume 10, 1998

 [Shl92a] Shlaer, S., and Mellor, S. J. Object
Lifecycles: Modeling the World in States.
Yourdon Press, P. T. R. Prentice Hall, 1992

[Wat00a] Watt, A. 3D Computer Graphics.
Addison-Wesley, pp.342-369, 2000

200

http://cis.paisley.ac.uk/crow-ci0/
http://cis.paisley.ac.uk/crow-ci0/
http://cis.paisley.ac.uk/crow-ci0/

Java DataSet

Markus Lorez
University of Applied Sciences, Rapperswil

Oberseestrasse 10
CH – 8640 Rapperswil

Markus.Lorez@hsr.ch

Alain Schneble
University of Applied Sciences, Rapperswil

Oberseestrasse 10
CH – 8640 Rapperswil

a.s@realize.ch

ABSTRACT

Today’s applications are required to distribute data beyond a company’s intranet and access services located all
over the world. XML and Web Service technologies provide portable solutions in a heterogeneous Internet envi-
ronment. Still, the data has to be interpreted according to schema definitions and transformed into an appropriate
intra-application representation. The .Net DataSet can represent relational data and exchange it using the XML
syntax. The XML schema used by the DataSet (DiffGram) to map data to XML is proprietary. Using the XML
data as is on another platform requires additional parsing and interpretation. The goal of this project was to re-
implement the .Net DataSet in Java to provide seamless interoperability between .Net Web Services using Data-
Sets and Java Web Service clients/consumers. This paper discusses the need for a Java DataSet and the problems
that arose during the reimplementation. Further, it summarises the Java implementation and the seamless-
ness/transparency of the Java DataSet integration.

Keywords
Toolkit-Interoperability, .Net Web Services, DataSet, XML, Interoperability with JavaJAX-RPC/Axis, Data-
Centric Applications, Porting Components from .Net to Java

1. INTRODUCTION
Almost every application needs to store data. Rela-
tional databases are still the most common solution
for storing information at least for data-centric busi-
ness applications. These applications often directly
manipulate this data and a relational representation is
appropriate or even desired (e.g. to present the data
in a table/grid). There is no need for a complex ob-
ject oriented domain model for such applications
because it will not offer any benefits – a relational
model is sufficient.

Another characteristic of data-centric applications is
the requirement to work with disconnected data. But
working with disconnected data poses the problem of
concurrent data modification. This in turn requires
the application being aware of modifications done on
another’s behalf.

In terms of interoperability, Web Services are cur-

rently the state-of-the-art for building distributed
systems. Web Services typically use SOAP [Soa] as
message protocol, which itself relies on XML. These
technologies allow to access services built on one
platform (e.g. .Net) to be accessed by clients built on
a different platform (e.g. Java). But interoperable
services have to exchange the data passed in mes-
sages in a portable format as well (i.e. XML).

The Microsoft .Net platform easily allows developers
to build interoperable distributed systems, because
technologies such as Web Services and XML are an
integral part of the framework. The framework fur-
ther offers an applicable concept called DataSet. The
DataSet is capable of holding an in-memory repre-
sentation of relational data. It can even be used in
combination with Web Services as data exchange
container because it allows serialisation and deseri-
alisation to and from XML.

But there is a problem when accessing a .Net Web
Service using DataSets from another platform (e.g.
Java), because the platform-dependent DataSet con-
struct is not available. Even though DataSets use
XML as serialisation format, interpreting and recon-
structing the relational model is a complex, error-
prone and time-consuming task.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

This would require building interoperable .Net Web
Services without DataSets. However, DataSets pro-

201

vide a practical and applicable solution and can help
to solve some reoccurring problems like the concur-
rency issue when working with disconnected data.
Because many .Net Web Services are (and will be)
built using DataSets, there is a need for an easy ac-
cess to these services from another platform.

For the reimplementation of the .Net DataSet, Java 5
has been chosen because the Java Platform has
proven to be a robust environment for distributed
business applications as well as .Net.

Microsoft .Net DataSet
The DataSet is able to hold an in-memory representa-
tion of relational data. It can be compared to a rela-
tional database: it allows the definition of a relational
schema (tables, columns) and the storage of data ac-
cording to this schema. The DataSet even supports
constraints (i.e. unique/foreign key constraints and
allow/deny DBNull values). This makes it an ideal
replacement for a domain model in data-centric ap-
plications.
The DataSet is meant to be passed through different
software layers, from the data access up to the user
interface layer. The .Net framework supports this
approach by offering classes that enable two-way
communication between the DataSet and database.
Further, a DataSet can directly be bound to user in-
terface components supporting data binding (e.g. to a
table/grid).
What makes the DataSet such a usable data container
for disconnected data is its capability to store differ-
ent versions of the data (i.e. original, current and
proposed). It thus implements some kind of unit of
work pattern [Fow02], because it allows a client to
modify data and retransmit the modified DataSet
back to the server once all update operations are
completed by the client. By including the original
data as well, it can easily be determined which data
were already modified by another client in the mean-
time.
When DataSets are used in WebServices, they are
passed as XML payload including both the schema
and the data. The schema is described by an (ex-
tended) XML Schema. The data is represented by an
XML grammar called DiffGram, which supports the
representation of current and original data as well as
error information concerning the data.

2. JAVA DATASET
As described earlier, a platform-independent imple-
mentation of the .Net DataSet is highly desirable.
Actually, there are two different possible ways to
reach this goal. The first alternative would be to port
the DataSet (or the .Net framework in its entirety) to
different native platforms resulting in a number of

several platform-dependent versions. In fact, this
approach is already realised to some extent by the
Mono project [Mon]. The second alternative would
be to port the DataSet once to a platform-
independent framework, such as Sun’s Java. The
latter approach is the ultimate goal of the Java Data-
Set project.

Goal
On a lower level, there are several goals and re-
quirements for a DataSet reimplementation in Java.
Since the project was limited to 16 weeks, the de-
sired functionality had to be adapted to that time re-
striction.
We included everything that is essential to use the
DataSet in a client. This includes the components of
the relational data model (such as tables, rows, col-
umns, constraints and relations), row state handling,
(XML-) serialisation and deserialisation and the
GetChanges method. Other DataSet components,
however, are not vital in client use (such as Data-
Views or DataAdapters).
Since most developers who implement a Java client
using DataSets are familiar with the .Net DataSet, the
syntax should be as near as possible to Microsoft’s
DataSet. Luckily, C# and Java (especially version
5.0) are quite similar except for a few language con-
cepts.
Another requirement was that the installation of the
Java DataSet library should be kept as simple as pos-
sible. Therefore, third-party libraries should be
avoided. The Java DataSet itself uses no additional
libraries. For Web Service access, however, Apache
Axis is used.

Implementation
Before porting a highly complex construct – such as
the .Net DataSet – to another platform, thorough
analysis of the original is indispensable. Unfortu-
nately the (otherwise very good) documentation by
Microsoft is only helpful to some extent because it is
designed to help application developers using the
DataSet. It is not suited, though, to support a devel-
oper intending to dissect the DataSet’s internals and
re-implement it on another platform. As a conse-
quence, the DataSet’s internal mechanics must be
discovered by other means, such as own tests or even
analysis of the IL code (Intermediate Language,
comparable to the ByteCode of Java).
Once these difficulties have been overcome, the im-
plementation of the Java DataSet is quite straight-
forward. The major differences to the original are
due to the divergence of the Java and C# languages
and their frameworks, respectively. One important
difference in usage is the direct invocation of getter
and setter methods in Java. Java properties are

202

SOAP-Envelope

Body

Operation Name

Parameters

Input Parameter 1:

<soap:Envelope xmlns:soap="..." ...>
 <soap:Body>
 <UpdateAccounts xmlns="...">
 <AccountsParameter>

 <xs:schema id="AccountsDataSet" ...>
 <xs:element name="AccountsDataSet"
 msdata:IsDataSet="true">
 <!-- Accounts DataSet
 schema definition -->
 </xs:element>
 </xs:schema>

 <diffgr:diffgram ...>
 <!-- account data -->
 </diffgr:diffgram>

 </AccountsParameter>
 </UpdateAccounts>
 </soap:Body
</soap:Envelope>

Figure 2. SOAP message transmitting a DataSet
as operation parameter.

merely a naming convention as opposed to being
built into the language itself as in C#.
When it comes to porting software to a different plat-
form there is a regular issue: data types. It is a pecu-
liarity of the Java framework that there are no un-
signed data types. Therefore, one has to implement a
custom mapping mechanism to map the upper half of
the unsigned C# data type’s range to the negative
part of the corresponding Java type, leading to a fair
amount of additional complexity. The simpler ap-
proach used in the Java DataSet is to use the next
bigger type class, allowing the whole unsigned value
range to fit smoothly into the positive half of the Java
type.
Third issues are access modifiers (public, protected,
internal, private). In C#, access scope is based on
assembly structure whereas logical grouping is pro-
vided by namespaces. As a consequence, access
scope and logical grouping are orthogonal. In Java,
both access scope and logical grouping are realised
by packages. In the DataSet, the different classes
collaborate tightly by calling members of other
DataSet library classes, which implies that all classes
must be located in the same package (resulting in a
rather large package).

Outlook
The Java implementation is far from complete. As
mentioned above, there are several components in
the original Microsoft DataSet that are not yet im-
plemented in the Java port. However, for now it is
possible to use the DataSet as a general data (trans-
port) container as well as in Web Service to client
communications.
Additionally, there is a usage scenario of the Java
DataSet in Java GUI applications. Since the DataSet
provides a tabular data structure, it is an ideal table
model providing data values to a JTable. Only an
additional small intermediate layer between DataSet
and JTable would be necessary, resulting in a setup
similar to the combination DataSet/DataGrid in .Net.

3. CONSUMING .NET WEB
SERVICES FROM JAVA
.Net Web Services rely on SOAP1 as XML message
protocol. SOAP is currently wide-accepted and there
are many implementations available. In Java, most
“RPC-oriented” implementations follow the APIs
and conventions defined by JAX-RPC [Jax]. A feasi-
ble SOAP implementation conforming to JAX-RPC
is Axis [Axi]. Using Axis, a Java client can consume
a (.Net) Web Service without problems as long as
standard data types (like xs:string) are used as in-
put/output parameters for Web Service operations.
Using custom data types (like DataSets) poses some
problems: a custom serialisation and deserialisation
has to be implemented and the SOAP implementa-
tion needs to be extended to offer transparent usage.

Passing DataSets in SOAP Messages
A common approach to building a .Net Web Service
that uses DataSets as data exchange containers is to
follow the RPC-oriented invocation style2. For ex-
ample, an operation could involve updating the data-
base to reflect the modified data contained in a Data-
Set. This means that DataSets have to be passed to
the Web Service as operation parameter (or returned
as the operation's return value). Figures 1 and 2 show
an example of an RPC-oriented SOAP Message –
emitted by a .Net Web Service client – containing a

1 Since SOAP Version 1.2, the term SOAP has two expan-

sions – Service Oriented Architecture Protocol and Sim-
ple Object Access Protocol – to reflect the different ways
in which the technology can be interpreted.

2 .Net by default uses “Document” as message and “Lit-
eral” as serialisation format [Rpc]. This paper uses the
term RPC-oriented independently of the underlying mes-
sage format because “Document” is a superset of “RPC”
and it can also be used to mimic an RPC-oriented invoca-
tion style – which in fact is what .Net does by default.

Serialized DataSet Schema
Serialized DataSet Data

Figure 1. SOAP-Envelope of an RPC-oriented
operation call with a DataSet as operation

parameter.

203

DataSet as operation (input) parameter. The response
sent by a .Net Web Service looks very similar. The
default behavior of a .Net Web Service passing Data-
Sets is to include both the DataSet schema and data,
whereas the data is represented as DiffGram.

The interoperability issue does not primarily lie in
the “generic” message parts being transmitted
because they (should) conform to the W3C SOAP
recommendation but rather in the custom data
included as parameter or return value. Basically, a
SOAP implementation is aware of simple types and
some array encoding styles. Custom types can
sometimes be mapped to classes (e.g. Java Bean
classes) automatically using tools (e.g. JAXB in Java
or the WSDL2Java utility from Axis). But this
approach is often not applicable to complex data
types. The .Net DataSet falls into this category as
both the schema and the data have to be interpreted
and a “simple object representation” would not
suffice. The following section presents the solution
realised by the Java DataSet implementation on top
of Axis.

JAX-RPC/Axis and Transparent Usage
Axis implements the JAX-RPC API and offers the
ability to extend the default Java-to-XML type map-
ping using JAX-RPC interfaces. For custom data
types like the DataSet, specialised serialisers and
deserialisers have to be implemented to enable Axis
to transform the XML representation to a Java object
and vice versa. Thus, the DataSet requires a Data-
SetSerializer and DataSetDeserializer that are aware
of this transformation process. Serialisers and deseri-
alisers will not be instantiated directly by Axis be-
cause it delegates this work to factory classes: Data-
SetSerializerFactory and DataSetDeserializerFactory.

The DataSetDeserializer is event driven – it receives
SAX-Events caught and forwarded from the Axis
infrastructure. Axis calls the appropriate factory to
obtain a deserialiser instance whenever it can find a
registered XML type. Similarly, it calls the appropri-
ate factory to serialise a registered Java type using
the returned serialiser.

A custom type mapping can be registered using the
TypeMappingRegistry. Normally, registering a cus-
tom type mapping involves the following steps:

1. Get a reference to the default type mapping reg-
istry

2. Instantiate serialiser and deserialiser factories
3. Register a new type mapping between the Java

class and XML-Type and specify both factory
instances

The Java code needed to set up such type mapping is
shown in Figure 3. When creating an ASP.Net Web-

Service, the WSDL document defines custom types
for each operation's parameters and/or return value.
This involves registering a custom type mapping for
each DataSet-type parameter and return value.

ServiceFactory sf = ServiceFactory
 .newInstance();
Service webSvc = sf.createService(url,
 qWebServiceName);

TypeMapping tm = webSvc
 .getTypeMappingRegistry()
 .getDefaultTypeMapping();
tm.register(DataSet.class,
 qualifiedXMLTypeName,
 new DataSetSerializerFactory(),
 new DataSetDeserializerFactory());

Figure 3. Registering a custom type mapping
between Java and XML.

Usage Example
By implementing custom serialisers/deserialisers and
registering the appropriate type mappings, the invo-
cation of Web Service operations receiving and re-
turning custom data types is transparent to the caller.
The listing in Figure 4 provides an example of a Web
Service call invocation returning a DataSet instance
to the caller, assuming that the correct type mapping
was registered.

ServiceFactory sf = ServiceFactory
 .newInstance();
Service webSvc = sf.createService(url,
 qWebServiceName);

Call call = webSvc.createCall(qPortName,
 qOperationName);
DataSet dataSet = (DataSet) call
 .invoke(null);

Figure 4. WebService call returning a DataSet.

4. CONCLUSION
Despite its incompleteness, the current Java DataSet
implementation allows the simple and transparent
exchange of data between .Net Web Services and
Web Service consumers in Java. The development of
a Web Service consumer is highly simplified by a
ready-to-use Java DataSet.

5. REFERENCES
[Fow02] Fowler, Patterns of Enterprise Application

Architecture, 2002.
[Soa] W3C SOAP Recommendation,

http://www.w3.org/TR/soap/
[Mon] Mono Project, http://www.mono-project.com
[Axi] Axis Project, http://ws.apache.org/axis/
[Jax] Java API for XML RPC, http://java.sun.com/

xml/jaxrpc/index.jsp
[Rpc] RPC/Literal and Freedom of Choice, MSDN,

/library/en-us/dnwebsrv/html/rpc_literal.asp

204

	Proceedings_4.pdf
	A83-full.pdf
	A83-full.pdf
	INTRODUCTION
	ARCHITECTURE
	Design goals
	System Architecture

	SUPPORTING TECHNOLOGIES
	CLR Debugging Services
	Symbol Manager

	USING COM INTEROP TO ACCESS THE CLR DEBUGGING SERVICES
	About COM-interop
	Wrapping the debugger COM API
	Wrapping the metadata COM API

	IMPLEMENTATION OF A HIGH-LEVEL API
	Initializing the debugger
	Handling events
	Creating a process
	Suspending and resuming the process
	Mapping between source and IL code
	Setting breakpoints
	Source-to-IL mapping
	Setting the breakpoint
	Handling breakpoint events

	Accessing the stack trace
	Stepping source code
	Step-over
	Step-in
	Step-out
	Other stepping behavior

	Accessing local variables
	Resolving declared variables
	Accessing the value
	Rendering values

	Accessing object contents
	Conclusion

	INTEGRATION IN X-DEVELOP
	Communication protocol
	GUI
	Experience

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES

	A37-full.pdf
	INTRODUCTION
	PRELIMINARIES
	THE OVERALL PICTURE
	THE GLOBAL VIEW OF excCLR
	THE StackWalk PASS
	THE Unwind PASS
	THE Leave PASS
	THE RULES OF execCLRE
	CONCLUSION
	ACKNOWLEDGMENT

	A41-full.pdf
	INTRODUCTION
	WORKFLOW ARCHITECTURE
	NSI COMPONENT DESIGN
	MANETService Package

	NSI IMPLEMENTATION AND TESTING
	USING THE NSI COMPONENT
	CONCLUSION AND FUTURE WORK
	ADDITIONAL AUTHORS
	REFERENCES

	B23-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	Reflection: Accessing Type Information at Run-time
	Introduction to Data Binding
	Open Problems

	1. NAVIGATION EXPRESSIONS
	Fields, Properties, Indexers
	Multiple Associations
	Cast operators
	Root object ambiguity

	2. NAVIGATION TYPE DEFINERS
	Inheritance and Access Modifiers
	Comparison to Delegates

	3. COMPILER IMPLEMENTATION
	4. CONCLUSION
	5. APPENDIX A : FORMAL C# LANGUAGE DEFINITION
	6. APPENDIX B : ILLUSTRATION OF THE COMPILER GENERATED CODE
	7. REFERENCES

	B13-full.pdf
	INTRODUCTION
	FRAMEWORK DESIGN
	The EVM Class
	The Config Class
	The Loader Class
	The Inst Abstract Class
	The Env Abstract Class

	ENVIRONMENTS
	INSTRUCTIONS
	Instructions with No Operands
	Instructions with a Branch Label
	Instructions with a Temporary
	Instructions with a String Parameter
	Instructions with a Number Parameter

	EXTENDING THE FRAMEWORK
	The Configuration File
	Extending the Environments
	Extending the Instruction Sets

	BUILDING A DSL
	COMPARATIVE RESULTS
	CONCLUSION
	REFERENCES

	B03-full.pdf
	INTRODUCTION
	Microsoft .Net DataSet

	JAVA DATASET
	Goal
	Implementation
	Outlook

	CONSUMING .NET WEB SERVICES FROM JAVA
	Passing DataSets in SOAP Messages
	JAX-RPC/Axis and Transparent Usage
	Usage Example

	CONCLUSION
	REFERENCES

