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Abstract
Signed distances are frequently employed concepts in computer graphics and geometric modeling. In high-
performance applications, these are most often approximated by bilinearly filtered regular grids of signed distance
samples. However, this framework does not preserve the fundamental properties and behavior of signed distance
functions, such as unit length gradients and the recently proposed null closest point energies. Hermite interpola-
tion, in particular its cubic realization, has been well established in the domain of signal processing. Although
these have been also shown to be efficient means to approximate signed distance functions from a general loss
perspective, their relation to these properties have not been investigated previously. We present a comparative
empirical study on various Hermite interpolation constructs focusing on how the resulting approximants deviate
from the properties of true signed distance functions.
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1 INTRODUCTION

Signed distance functions (SDFs) are essential in com-
puter graphics and geometric modeling. In real-time
graphics, SDFs are evaluated on discrete samples ar-
ranged in a regular grid, and during rendering, a recon-
structed function approximates the unknown original.

Most often the fast and simple built-in bilinear filter-
ing is used for the reconstruction. However, recent ad-
vancements have proposed higher-order reconstruction
methods for SDFs.

These existing methods focus on minimizing the er-
ror between the original and reconstructed SDF. Yet,
evaluating the quality of an approximation to an SDF
requires the consideration of additional properties. In
some applications, e.g., visualization [Har96, BBV19],
maintaining an SDF-like structure is more critical than
achieving perfect reconstruction accuracy.

Recently, Marschner et al. pointed out [MSLJ23], that
simple unit gradient length constraints are insufficient
to guarantee SDF properties. They proposed closest
point energy as a new metric to measure SDF fidelity.
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prior specific permission and/or a fee.

In this paper, we review methods based on cubic Her-
mite interpolation from an SDF reconstruction perspec-
tive. While it is evident that algebraic surfaces, such as
Hermite cubics, cannot possess unit length gradients,
the extent to which they can approximate other SDF
properties is not a well studied area.

Our experiments were conducted in 2D for ease of re-
production, though the approach can be extended to any
dimension, particularly 3D.

The paper is organized as follows. Section 2 provides
an overview of SDF reconstruction methods, with par-
ticular focus on Hermite interpolation approaches. In
Section 3, we present the computation of analytic SDF
derivatives and introduce our solution to a key practical
issue. Section 4 details the Hermite interpolation meth-
ods under investigation, while Section 5 presents and
discusses our experimental findings.

2 RELATED WORK
General reconstruction of SDFs
A discrete signed distance representation consist of two
components: i) a finite set of data and ii) an algorithm
that combines the data into an analytic functional ap-
proximation to the original SDF. The latter is most often
referred to as filtering or interpolation.

Perhaps the most straightforward realization of this
concept is a regular grid of SDF samples that are
combined by bilinear interpolation. This approach
gained popularity in anti-aliased font rendering appli-
cations following Green’s publication [Gre07]. They
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proposed to use 2D textures to represent the signed
distance field. Each texel stores its signed distance to
the closest boundary curve of a glyph, i.e., a character
in the font. Bilinear interpolation of these values yields
a C0 approximation to the SDF of each glyph. The
interpolated distance is used for anti-aliasing and other
distance-based effects. Here, the versatility of the
distance representation is paired with efficient queries
via hardware accelerated bilinear texture filtering.

Despite these advantages, a practical observation is also
often raised as a drawback of SDF textures: they tend to
round out sharp features, unless a high resolution grid
is used. While the phenomenon is indeed apparent, it is
usually incorrectly attributed entirely to SDF textures
themselves, whereas it is equally caused by the way the
samples are interpreted and combined.

A new approach was taken by Chlumsky et al.[CSv18]
where a multi-channel formulation was presented to
alleviate the smoothing observed in bilinearly filtered
SDFs. The single distance value is replaced by three
pseudo-distances at each texel that denote the pseudo-
SDF values for shapes bounded by subsets of the orig-
inal boundary curves. Upon query, the median of these
values is used.

An alternative to preserve sharp features is to increase
the descriptive power of a sample itself. Koschier et
al. [KDB16] proposed to use independent local polyno-
mial approximations to the SDF over disjoint regions of
space. The distance approximation is the result of the
evaluation of the closest polynomial using the coordi-
nates of the query position.

Hermite-based reconstructions
Valasek and Bán [VB23] proposed an approach where
polynomial approximations are combined such that the
resulting approximation is globally continuous up to a
higher order. One of their solutions was to store SDF
values and partial derivatives at the samples and use
Hermite interpolation to obtain a tri-cubic polynomial
that reconstructs the SDF values and gradients exactly
at the vertices. Since this is an underdetermined prob-
lem, they set the first mixed partial derivatives to ob-
tain the volume version of the Ferguson patch. They re-
ferred to this as Ferguson-Hermite interpolation. This
approach was latter shown to be compatible with adap-
tive spatial subdivision [BV23] and extended to use the
generalization of the Adini-twist to volumes to infer a
better mixed partial derivative estimate [BV25].

Song et al. formulated the SDF reconstruction as a
general function approximation problem and used poly-
nomial splines over hierarchical T-meshes as approx-
imants [SJP10]. These were demonstrated on recon-
structing first order data, that is, values and gradients.
The derivatives were computed from the parametric
form of the input.

Our paper investigates how Hermite interpolation is ap-
plied to the approximation of SDFs. Prior work fo-
cused on different heuristics and mechanics to obtain
SDF derivative data. We compare these to inspect how
well the resulting polynomial approximations preserve
the SDF property of the input.

This is often derived from how far away from an
Eikonal the approximant is, that is, how much its
gradient deviates from being unit length. However,
Marschner et al. [MSLJ23] showed that even if a field
is changed to conform to this constraint, it still does not
necessarily yield an actual SDF. Instead, they proposed
the incorporation of the closest point energy to the
formulations to encourage the optimization of neural
implicits to form a true distance function.

Hermite interpolation requires partial derivative data in
addition to the SDF values. These gradient values can
be either computed analytically or estimated from sam-
ples. In this work, we investigate methods of both of
these approaches.

3 ANALYTIC DERIVATIVES OF SDF
The c ∈ R level set of an f : E2 → R implicit function
is written as { f = c}= {xxx ∈ E2 | f (xxx) = c}. Similarly,
{ f ≤ c}= {xxx ∈R2 | f (xxx)≤ c}. An f :R2 →R function
is a distance function (DF) if

f (xxx) = d(xxx,{ f = 0}) = inf{∥xxx− yyy∥ | f (yyy) = 0} ,
(1)

and a signed distance function (SDF) if it is continuous
and | f | is a distance function [BVG19]. In case of a
ccc : [a,b]→ E2 parametric curve, the DF is defined as

f (xxx) = inf{∥xxx− yyy∥ | ∃t ∈ [a,b] : ccc(t) = yyy} , (2)

and the SDF is analogous to the implicit case. While
the concept itself is elegant, in practice, a closed-form
realization of the SDF of a free-form shape is just as
an elusive artifact as the arc-length parametrization of
integral and rational polynomial curves. However, its
analytical properties are surprisingly tangible.

Song et al. [SJP10] derived a formula for computing the
mixed partial derivatives of an SDF function. Their ap-
proach assumes the existence of a footparameter map-
ping t : E2 → [a,b], which computes the ppp closest point
on the curve to a given xxx query position as ppp = ccc(t(xxx)).
We refer to the closest curve point as a footpoint.

The gradient of an f SDF of ccc(s) can be written as

∇ f (xxx) =± xxx− ccc(t(xxx))
∥xxx− ccc(t(xxx))∥ . (3)

The second order derivatives of the SDF require ∇t.
However, the authors showed that ∇t could be esti-
mated by solving a linear system.
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(a) Anteater data
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(b) Stag data
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(c) Antelope data

Figure 1: SDF data used for measurements.

A practical issue arises with the formalism above: the
gradient includes the reciprocal of the distance between
the footpoint and the query position, a term that also
appears in the second-order gradient expression. This
becomes a concern when a sample position approaches
the curve, as numerical instabilities arise. Despite the
SDF being smooth – even on the curve itself – nearby
samples produce incorrect second-order gradient values
due to division by diminishing distances.
To address this, we leverage that the gradient of a 2D
SDF is always perpendicular to the tangent of the curve
at the footpoint, that is,

(xxx− ccc(t(xxx)))T · ccc′(t(xxx)) = 0 ,

holds if the curve is twice differentiable at the foot-
point. In this case, the gradient of the SDF is obtained
by rotating the ccc′(t(x)) curve tangent at the footpoint by
a ±90◦ rotation and normalization. This approach elim-
inates the distance term from ∇ f , with the rotation sign
determined by the winding order of the curve. How-
ever, this solution is only valid when the footpoint lies
on a smooth curve segment. For non-smooth regions,
particularly at corners, the original formulation is used.

4 METHODOLOGY
Hermite Interpolation
Assume that a grid on plane is defined by points
[xi,y j] ∈ R2, where i, j ∈ Z, xi = i ∗ ∆x,y j = j ∗ ∆y,
∆x, ∆y are the distance of the grid points in x and
y direction respectively. Then 2D Hermite Spline is
defined as

H(x,y) =
1

∑
k,l=0

(ci+k, j+lh0,k(s)h0,l(t)+

gx
i+k, j+lh1,k(s)h0,l(t)∆x+

gy
i+k, j+lh0,k(s)h1,l(t)∆y+

gxy
i+k, j+lh1,k(s)h1,l(t)∆y∆x),

(4)

where hi j are the Cubic Hermite basis functions[Ska22],
x ∈ [xi,xi+1], y ∈ [y j,y j+1] for some i, j ∈ Z, and
s, t ∈ [0,1] are the local basis coordinates, such that
x = xi + s∆x and y = y j + t∆y.

If f : R2 → R is twice differentiable at grid points, set-
ting ci, j = f (xi,y j), gz

i, j = ∂z f (xi,y j), z ∈ {x,y} and
gxy

i, j = ∂xy f (xi,y j) yields (4) to interpolate f up to first
order and cross partial derivatives.

In practice, since the analytic gradient coefficients (ex-
act derivatives) are often unknown, they are typically
estimated using numerical methods. We are investigat-
ing some of these methods used for SDF interpolation.

Least-squares fitting based gradient esti-
mations
Most of the methods that are investigated in this work
assumes that gradient of SDF is known, and only cross
partial derivative needs to be estimated numerically. To
ensure fair comparisons and to establish a consistent
baseline, we computed Hermite derivative coefficients
using linear least squares fitting (LSQ).

Rather than solving one large linear system to compute
all the missing coefficients in Equation (4), decom-
posed the problem into three tractable sub-problems.
At the grid points where Equation (4) is evaluated,
only the weights associated with ci, j are non-zero, and
these weights are equal to one. Hence, ci, j = f (xi,y j).
Next, we placed sample positions along the edges of
grid cells, initially in the x-direction. When evaluating
Equation (4) at these positions, only ci, j (already
known) and gx

i, j contribute with non-zero weights.
We sampled 16 positions from the SDF on each edge
aligned in the x-direction and estimated the gx

i, j coef-
ficients by solving a much smaller linear system. The
same procedure was then applied in the y-direction.

At this point, the only remaining unknowns were the
cross-derivative coefficients gxy

i, j, which we estimated
using 16×16 interior samples per grid cell.
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(a) LSQ, 82
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(c) LSQ, 642

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

(d) Catmull-Rom, 82
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(g) Analytic derivatives, 82
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(h) Analytic derivatives, 162
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(i) Analytic derivatives, 642

Figure 2: SDF reconstructions of anteater data

We assume that LSQ-based Hermite reconstruction rep-
resents the best possible outcome for cubic Hermite in-
terpolation from a function reconstruction perspective.
As shown later, our results support this assumption.

Investigated Hermite methods
We examined cubic Hermite methods that have been
previously used for SDF reconstruction. These primar-
ily differ in how gradients(gx

i, j, gy
i, j) and mixed deriva-

tives (gxy
i, j) are estimated.

The classic approach approximates gradients using cen-
tral differences and derives mixed partial derivatives
from these first-order estimates. This corresponds to
a special case of Catmull-Rom spline surfaces.

Song et al. [SJP10] proposed an analytical formula-
tion for computing both gradients and mixed deriva-
tives. While we included test cases with their analytical
derivatives, we substituted them with our numerically
stable formulation where applicable.
Valasek and Bán [VB23] introduced a reconstruction
method based on resampling a Ferguson patch. For cu-
bic Hermite patches, this is equivalent to assuming van-
ishing mixed gradients. In our experiments, we com-
puted directional gradients analytically and explicitly
set mixed partials to zero.
The same authors also proposed estimating Hermite al-
gebraic derivatives (HAD) via local least-squares fit-
ting. We adopted this method exclusively for mixed
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Catmull-Rom LSQ Analitic derivatives Ferguson Adini twist HAD

RMS

4 0.056 0.028 0.036 0.036 0.034 0.039
8 0.024 0.013 0.023 0.023 0.023 0.017

16 0.009 0.003 0.006 0.006 0.006 0.006
32 0.003 0.001 0.002 0.002 0.002 0.002
64 0.001 0.000 0.001 0.001 0.001 0.001

IoU

4 0.566 0.751 0.717 0.717 0.732 0.684
8 0.788 0.840 0.784 0.777 0.777 0.808

16 0.871 0.957 0.926 0.924 0.924 0.912
32 0.962 0.979 0.975 0.976 0.976 0.973
64 0.985 0.994 0.992 0.992 0.992 0.991

Length Deviation

4 0.367 0.300 0.265 0.269 0.268 0.322
8 0.240 0.213 0.206 0.203 0.203 0.220

16 0.211 0.154 0.166 0.166 0.166 0.175
32 0.147 0.115 0.118 0.118 0.118 0.126
64 0.105 0.081 0.086 0.086 0.086 0.090

Angular Deviation

4 37.186 30.924 36.800 36.521 34.955 34.235
8 29.073 23.697 30.541 30.888 30.836 24.991

16 21.497 13.387 16.600 16.628 16.621 15.537
32 14.174 9.553 12.061 11.878 11.876 11.087
64 9.886 5.990 8.071 8.095 8.095 7.325

CPE (original gradients)

4 0.061 0.046 0.043 0.044 0.044 0.048
8 0.042 0.027 0.028 0.028 0.028 0.034

16 0.022 0.014 0.016 0.016 0.016 0.016
32 0.012 0.008 0.007 0.007 0.007 0.009
64 0.006 0.004 0.004 0.004 0.004 0.004

CPE (normalized gradients)

4 0.053 0.031 0.034 0.034 0.033 0.042
8 0.029 0.018 0.019 0.019 0.019 0.024

16 0.015 0.009 0.011 0.011 0.011 0.010
32 0.007 0.004 0.004 0.004 0.004 0.005
64 0.003 0.002 0.002 0.002 0.002 0.003

Table 1: Measured errors for the anteater data. Angular deviation is meant in degrees.

Catmull-Rom LSQ Analitic derivatives Fergusson Adini twist HAD

RMS

4 0.092 0.039 0.071 0.073 0.072 0.059
8 0.032 0.012 0.018 0.018 0.018 0.019

16 0.010 0.003 0.006 0.006 0.006 0.006
32 0.003 0.001 0.002 0.002 0.002 0.002
64 0.001 0.000 0.001 0.001 0.001 0.001

IoU

4 0.140 0.712 0.488 0.475 0.449 0.398
8 0.699 0.884 0.849 0.845 0.843 0.826

16 0.917 0.976 0.972 0.972 0.972 0.963
32 0.986 0.993 0.994 0.994 0.994 0.993
64 0.996 0.999 0.998 0.998 0.998 0.998

Length Deviation

4 0.566 0.370 0.420 0.424 0.427 0.473
8 0.362 0.269 0.276 0.280 0.279 0.300

16 0.247 0.177 0.192 0.193 0.193 0.199
32 0.180 0.131 0.139 0.138 0.138 0.143
64 0.119 0.087 0.094 0.094 0.094 0.098

Angular Deviation

4 62.449 39.514 46.593 46.711 48.275 40.040
8 34.765 21.209 28.903 28.334 28.517 25.702

16 20.955 11.640 15.940 15.934 15.881 14.235
32 13.358 7.497 10.919 10.883 10.878 9.469
64 9.672 5.703 8.039 8.041 8.040 6.955

CPE (original gradients)

4 0.076 0.056 0.058 0.059 0.055 0.053
8 0.049 0.036 0.033 0.034 0.033 0.036

16 0.027 0.017 0.018 0.019 0.019 0.019
32 0.015 0.010 0.009 0.009 0.009 0.010
64 0.008 0.005 0.004 0.005 0.005 0.005

CPE (normalized gradients)

4 0.066 0.035 0.046 0.048 0.042 0.044
8 0.027 0.017 0.016 0.017 0.017 0.019

16 0.014 0.007 0.009 0.009 0.009 0.010
32 0.007 0.003 0.004 0.004 0.004 0.004
64 0.003 0.001 0.002 0.002 0.002 0.002

Table 2: Measured errors for the stag data. Angular deviation is meant in degrees.

derivatives, following their suggested approach: for
each texel, we sampled the SDF on a fine 72 grid (cov-
ering the dual of the input grid) and fitted a polynomial
to the samples.

Additionally, the authors generalized the Adini twist
technique to volumes [BV25]. For our experiments,
however, we retained the original surface patch for-

mulation. This means that for each sample located at
the corner of four cells, we computed a Coons patch
[Coo67] using analytical directional derivatives. In our
case, the cubic Hermite patch formalism allows closed-
form estimation of mixed gradients, namely

gxy
i, j ≈ ∆x(gx

i, j+1 −gx
i, j−1)+∆y(gy

i+1, j −gy
i−1, j)

−(ci+1, j−1 − ci−1, j−1)− (ci+1, j+1 − ci−1, j+1).
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Catmull-Rom LSQ Analitic derivatives Ferguson Adini twist HAD

RMS

4 0.066 0.037 0.051 0.052 0.052 0.053
8 0.027 0.010 0.018 0.018 0.018 0.017

16 0.009 0.004 0.006 0.006 0.006 0.006
32 0.003 0.001 0.002 0.002 0.002 0.002
64 0.001 0.000 0.001 0.001 0.001 0.001

IoU

4 0.296 0.468 0.472 0.474 0.460 0.303
8 0.516 0.807 0.721 0.718 0.720 0.680

16 0.757 0.926 0.895 0.895 0.895 0.850
32 0.920 0.969 0.962 0.962 0.962 0.951
64 0.981 0.990 0.995 0.995 0.995 0.992

Length Deviation

4 0.421 0.413 0.396 0.399 0.394 0.445
8 0.325 0.258 0.266 0.266 0.265 0.288

16 0.253 0.190 0.196 0.198 0.197 0.218
32 0.180 0.138 0.142 0.142 0.142 0.154
64 0.127 0.097 0.099 0.099 0.099 0.107

Angular Deviation

4 62.576 36.459 41.168 41.972 40.931 55.161
8 34.999 19.238 26.099 26.156 26.118 25.064

16 23.813 12.482 16.941 17.057 17.034 16.632
32 15.721 7.499 11.239 11.257 11.254 10.096
64 9.771 5.078 7.599 7.602 7.601 6.555

CPE (original gradients)

4 0.091 0.066 0.075 0.077 0.076 0.078
8 0.044 0.026 0.032 0.032 0.032 0.035

16 0.026 0.014 0.015 0.016 0.016 0.018
32 0.013 0.009 0.008 0.008 0.008 0.009
64 0.006 0.004 0.003 0.003 0.003 0.004

CPE (normalized gradients)

4 0.070 0.048 0.061 0.062 0.061 0.065
8 0.034 0.016 0.023 0.023 0.023 0.026

16 0.018 0.007 0.009 0.010 0.010 0.012
32 0.008 0.004 0.005 0.005 0.005 0.005
64 0.003 0.002 0.001 0.002 0.002 0.002

Table 3: Measured errors for the antelope data. Angular deviation is meant in degrees.

Catmull-Rom LSQ Analitic derivatives Ferguson Adini twist HAD

RMS

4 0.845 0.721 1.583 1.417 1.524 0.869
8 0.660 0.070 0.259 0.359 0.362 0.448

16 0.145 0.006 0.020 0.043 0.042 0.050
32 0.012 0.001 0.001 0.004 0.004 0.003
64 0.001 0.000 0.000 0.000 0.000 0.000

Table 4: Measured RMS errors for function f (x,y) = sin(9(x2 + y2))+3(x+ y).

Error metrics
We used the root mean square (RMS) deviation metric
to quantify the general approximation power of each
method.

We adopted the intersection over union (IoU) metric to
assess shape preservation capabilities, commonly used
in computer vision for comparing binary shape similar-
ity. For IoU measurements, we generated binary im-
ages from both the analytic SDF and its Hermite recon-
struction, where pixel values indicate interior/exterior
membership relative to the shape. This allowed us to
quantify shape distortion independent of function ap-
proximation errors.

A straightforward way to assess how well the recon-
structed function adheres to the Eikonal property is by
measuring the deviation of the gradient magnitude from
unity. In addition, we measured the angular deviation of
the gradients of the SDF and the cubic approximations.

Marschner et al. [MSLJ23] introduced the closest point
energy (CPE) metric to improve SDF reconstructions.
This method approximates the SDF using gradients at
multiple sample points. For each sample, a new posi-
tion is computed by stepping back along the negative
gradient, using the signed distance as the step size. The

absolute reconstructed distances at these new positions
are then summed to obtain the CPE.

Originally, CPE was used for training neural pseudo-
SDFs, where gradients satisfy the Eikonal property.
However, this assumption does not hold for polyno-
mial reconstructions. We therefore also used a modified
CPE where gradients are normalized before the back-
ward step. This adaptation allows evaluation of both
the accuracy of reconstructed SDF values and the cor-
rectness of gradient directions, independent of gradi-
ent magnitude deviations, which are inherent in poly-
nomial representations. Our experiments demonstrate
that this modified CPE consistently produces lower en-
ergy values for polynomial reconstructions compared to
the original formulation.

5 RESULTS
We tested each method on three distinct contour
datasets, referred to as anteater, stag and antelope. The
data comes from FreeType letter contours available
online[fon]. Each letter contour is composed of
multiple linear and quadratic Bézier curves.

Among the three, the anteater contour is more com-
plex, consisting of hundreds of curves. It features sharp
edges, highly variable segments, and smooth contours.
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Figure 3: Plots of error metrics used in our measurements, taken from anteater data. Generally, plots are in
logarithmic scale, and smaller value is better. For IoU, results are plotted linearly, and the higher value is better.

This complex geometry makes it an especially demand-
ing test case for reconstruction quality. Figure 1 shows
the analytic representation of these test contours.

We sampled the analytic SDF at progressively finer
grid resolutions and reconstructed the SDF using each
method. Then, we applied each metric at every reso-
lution. The reconstruction results are shown in Figure
2. The results of our measurements are summarized on
Table 1 for the anteater, Table 2 for the stag and Table
3 for the antelope data.

The Catmull-Rom spline method consistently demon-
strated the poorest performance across all resolution
levels, which was expected given its exclusive reliance
on finite-difference gradient approximations rather than
analytically computed or high-precision estimated gra-
dients.

The least squares method yielded the best results, which
aligns with our assumption since Hermite bases are
polynomial. Moreover, LSQ reconstructions exhibit

similar or often superior SDF properties compared to
other methods, as evidenced by the angular deviation.

In general, the length deviation error remains signifi-
cantly high for all methods and resolutions. Although
the RMS and IoU metrics indicate adequate reconstruc-
tions, the length deviation consistently stays around 0.1
(10% of the reference unit gradient magnitude).

Length deviation also impacts the closest point energy
metric. This effect is absent in the modified closest
point energy values, which are approximately half of
the original measurements. See Figure 4.

Based on these results, while Hermite interpolation ac-
curately approximates the SDF values, it does not pre-
serve the key SDF properties, such as unit-length gra-
dients, gradient directions, or CPE to the same degree.

The methods described above were demonstrated for
interpolation of SDFs. However, these methods are
general and applicable to any function, they can be used
on any function. To illustrate this, we interpolate the
function f (x,y) = sin(9(x2 +y2))+3(x+y). Since this
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Figure 4: Comparing original CPE and modified CPE for LSQ gradients and analytic gradients. Axes are in log
scale. Modified CPE values are approximately half of the original measurements.

is not a distance field, SDF-specific metrics are not ap-
plicable; thus, we report only RMS errors for all gra-
dient estimation methods. Measurement results can be
found on Table 4.

6 CONCLUSIONS
We investigated cubic Hermite interpolation based re-
construction of signed distance functions. Beyond the
standard root mean square error, we also investigated
how similar to an SDF the approximants are.
We incorporated the recently proposed metric tailored
for pseudo SDFs. We proposed a modification which
diminishes the necessity of Eikonal property.
Empirically, we demonstrated that the best results are
obtained by least squares fitting. However, all meth-
ods suffer from non-unit gradient magnitudes, that is a
necessary condition for SDFs.
As future work, we plan to investigate how the findings
from this study can be incorporated into gradient fitting
and estimation methods for cubic Hermite reconstruc-
tion of signed distance functions.
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