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Abstract

We propose to use discrete signed distance rep-
resentations in Monte Carlo geometry processing
simulations. In particular, we investigate the ap-
plication of algebraic and geometric generaliza-
tions of traditional signed distance fields. These
are means to unify signed distance and closest
point queries that are required by the walk-on-
spheres algorithmic framework. We apply these to
plane shapes enclosed by parametric polynomial
boundaries. Our tests quantify the performance-
accuracy trade-off compared to brute force closest
point queries on test shapes.

Keywords— Computer Graphics, Geometry Pro-
cessing, Monte Carlo

1 Introduction

Rendering photorealistic images can be formulated as
the solution to a Fredholm integral equation of the sec-
ond kind [1]. Monte Carlo approaches have proven to
be highly practical means to solve these and have been
adapted in production graphics renderers [2]. Follow-
ing the introduction of graphics cards with hardware
accelerated ray tracing support, Monte Carlo path
tracing methods have been also brought to the real-
time setting [3].

In contrast, finite element methods (FEM) are most
often used to analyze geometric objects by means of
solving various partial differential equations (PDEs).
These, however, rely on the existence of sufficiently
high quality lower order approximation to the input -
most often triangular or tetrahedral meshes.

Sawhney and Crane [4] proposed to adapt Monte
Carlo methods to the geometry processing context. In
particular, they showed how Monte Carlo formulations
can be applied to the solution of some common partial
differential equations (PDE) defined over geometric
shapes. Their work generalizes the class of problems
that can be addressed within this framework, building
upon the idea of walk-on-spheres [5]. They have also
demonstrated how acceleration techniques developed
within the photorealistic image synthesis framework
can be applied to geometry processing.

Within the Monte Carlo geometry processing
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(MCGP) framework, a significant computational ef-
fort is spent on distance queries to closest boundary
points. To accelerate these, we propose to adapt pre-
computed discrete distance representations.

We show that standard zero order algebraic distance
fields, most often implemented as bilinearly filtered
textures [6], are efficient means to accelerate MCGP
tasks on 2D shapes defined by paremetric boundaries.
Moreover, we show that higher order constructs, in
particular, geometric distance fields (GDFs) [7] im-
prove on accuracy further.

In Section 2, we present the related work in the area
of Monte Carlo algorithms. In Section 3, we review
the concept of geometric distance fields, and how to
generate and query them. In the last Section 4, we
examine the accuracy and performance of Monte Carlo
geometry processing method with distance field closest
point proxies.

2 Related Work

Monte Carlo geometry processing solves PDEs by eval-
uating random walks. By noting that a continuous
random walk within an open ball reaches any point
on the boundary of the ball with equal probability,
one can substitute the walk by taking uniform sam-
ples on the surface of the sphere instead [5]. In case
of interior starting points, this leads to the most ef-
ficient walks by using maximal spheres in the sense
that their radii are the largest such that no bound-
ary point is contained within the interior points. The
walk terminates when it reaches a sufficiently small
neighborhood of the boundary. Sawhney and Crane’s
proposed solution for the Laplace equation is summa-
rized in Algorithm 1 [4].

MCGP is agnostic to the geometric representation,
as it only relies on the existence of closest boundary
point distance queries. While this can be done effi-
ciently on signed distance function (SDF) represen-
tations, it requires acceleration structures for other
cases. Still, even in the presence of such, robust and
high performance closest point finding algorithms are
not trivial to implement for parametric descriptions
[8] and general implicitly defined volumes.

Our paper proposes to use algebraic and geomet-
ric distance fields as closest point query interfaces for
MCGP methods. We examine the accuracy and per-
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Algorithm 1 Walk on spheres for solving Au =0
on 2, u =g on 0N

1u=0 > Solution estimate
2: fori=1...nWalks do

3: T = x0 > Start a new walk
4: do

5: > Move to random point on

6: > largest empty sphere

7: r = distance(x, 0N)

8: x = randomSphere(x,r)

9: While (r > ¢€) > Close enough
10: > Sample boundary value
11: u = u ~+ g(closestPoint(x, 0))
12: end for
13: return u/nWalks

Figure 1: The reconstruction of a circle using a
8 x 8 order 0 field (64 scalars) and a filtered 4 x 4
order 1 geometric field (54 scalars)

formance of these methods in the plane by solving
Poisson equations on shapes bounded by low degree
polynomial curves. In general, we investigate if there
is a systematic performance and accuracy characteris-
tic to various discrete SDF representations.

GDFs are discrete data structures that store sim-
ple basic shapes — geometric proxies — that can be
used to approximate the SDF of the original input.
The proxies are chosen such that their SDF is triv-
ial to evaluate and are higher order approximations
to the input SDF locally. For example, a first order
GDF in the plane stores halfplanes at each sample.
The SDF of such a halfplane reconstructs both the
original SDF and its gradient [7] at the sample posi-
tion. Upon distance queries, the SDFs of the closest
halfplanes are evaluated and the results are blended
together in a sufficiently continuous manner. In gen-
eral, it can be shown that the SDFs of the tangent line
and the osculating circle at the closest point are first
and second order approximations to the original SDF
[7], respectively. Figure 1 demonstrates the quality of
SDF reconstruction of GDFs compared to traditional
bilinearly filtered distance textures.

Similarly to MCGP, GDFs are also agnostic to the
input representation and only require the existence of
closest point queries. However, these queries on the
original input are only used during GDF construction,
i.e., in preprocessing. At runtime, the GDF functions
as a complete replacement of the SDF of the original
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input. Although the reconstructed isosurface may not
be exact or continuous to the order of the original,
MCGP methods are robust against perturbations and
defects of the input such as these.

3 Monte Carlo Geometry
Processing on Parametric
Input

We present a pipeline to compute various kinds of dis-
tance fields as closest point proxies in 2D. We assume
that the shapes in question are defined by Bézier curve
segment boundaries.

In Section 3.1, we describe the input data consisting
of Bézier curves and present our method of obtaining
closest points on them. In Section 3.2, we introduce
algebraic and geometric distance fields, and we show
how to calculate them. Finally, in Section 3.3, we
present our method of querying the different fields to
obtain the approximation of the SDF and introduce a
gradient-preserving filtering method.

3.1 Brute Force Footpoint Queries

Our input geometry of FreeType characters are given
as lists of oriented outline segments. The segments
are either linear or quadratic Bézier curves. Each seg-
ment is parameterized over [0, 1]. We assume that all
segments are simple, without self intersections. To de-
termine the closest surface point — called footpoint — at
a query location g, we iterate over all outline segments
and calculate the distance between each segment and
q by solving the corresponding cubic algebraic equa-
tion explicitly.

The sign of the distance, indicating whether the
query point is inside or outside, is calculated from the
local geometric data of the nearest segment. If the
footpoint is an inner point of the segment (i.e., the
corresponding ¢t parameter is such that 0 < ¢ < 1), the
sign is determined by the normal vector at the foot-
point. Otherwise, if the footpoint is at a vertex, we
need to account for the normal vector of both connect-
ing segments.

3.2 Distance Field Generation

A distance field is a grid of samples, each of which
stores data that can be used to reconstruct the SDF
value locally. This value is exact at the sample po-
sition and an approximation elsewhere, in general.
Upon querying the distance field, multiple samples
are used to compute individual approximations to the
SDF at the query position and these approximations
are combined by blending. The blending may not nec-
essarily improve the accuracy of the overall approxi-
mation, however, it does alter the order of continuity.

A distance field can be stored as a 2D texture, where
the sample positions are the centers of rectangular
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Figure 2: The blue shape is our original geometry
for which we want to construct the order 1 field.
The first order geometric proxy is a half plane de-
fined by the footpoint and the normal at the foot-
point. The outside of the half plane is where the
normal points.

cells. We investigated two approaches as to what data
to store: algebraic and geometric.

Algebraic fields use polynomials to approximate the
SDF at the sample positions. The degree of the poly-
nomial depends on the order of the field. The order 0
algebraic field (A0) stores one constant value in each
sample, which is the SDF value at that position. When
evaluating the field, we fetch the 4 closest samples to
our query position and apply a bilinear filter on the
stored distance values.

The first order approximation of the SDF can be
represented by the three coefficients of a linear poly-
nomial. These polynomials can be obtained with the
value and partial derivatives of the SDF at each query
point as shown in [9]. An order 1 algebraic (A1) field
is composed of such polynomials.

Geometric distance fields have been introduced in
[7]. These constructs use a proxy geometry at each
sample that has the same SDF as the original shape
at the sample position. The order 0 geometric dis-
tance field stores the footpoint to the query position
and the sign of the SDF. This allows us to infer not
only an approximate distance, similarly to an A0 field,
but also to reason about the location of the footpoint.
The existence of multiple footpoints is possible at sam-
ples along the medial axis, however, as the cut locus
is a set of measure zero, this configuration has a very
low probability. For this reason we only used one foot-
point.

An order 1 approximation has to reconstruct the
SDF value and gradient at the footpoint. As such,
the tangent line at the footpoint is the correct first
order geometric proxy since |V f|l2 = 1 for an SDF
everywhere outside the cut locus. As an inside-outside
partitioning of the plane is also needed, the simplest
order 1 proxy is the half-plane defined by the tangent
line at the footpoint with a normal vector coinciding
with the normal vector at the footpoint. We use an
outward pointing normal. This definition of the half
plane can be seen on Figure 2.

A half-plane is defined by a point and a vector. We
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store the proxy with 3 scalar values, as the normal
is parallel to the vector from the footpoint to sample
position and its length is exactly the SDF value at the
sample. So it is enough to store the distance value and
the normal and the position of the footpoint can be
obtained during evaluation.

Note that while we used shapes with linear and
quadratic Bézier segments, the construction of the
fields is general, and can be extended to higher order
curves with the same algorithm.

3.3 Distance Field Queries

The distance field is stored in a 2D texture, with the
defining properties described in the previous section.
When evaluating the field, we can read the values from
the field at each query point and calculate the distance
in the following way.

When applying nearest point sampling at a point
p, we fetch the closest sample and read the data from
the corresponding texel.

For algebraic fields, we can evaluate the linear poly-
nomial with the stored coefficients.

For geometric fields, we calculate the ¢, center of
the field cell containing the query point p. For each
sample, we obtain the footpoint f, from the distance
value d and normal direction n as fp = ¢, — d - n.
Finally, we calculate the signed distance from the half
plane, with d, = (p — fp)* - n.

For a globally smoother result, we can use filtering
by taking the distances inferred from the four clos-
est samples and blend them. An optimization to the
algebraic case was shown in [9], by highlighting that
this can be done by first blending the coefficients and
evaluating the resulting single polynomial. Note that
this is not possible in the geometric case, instead, each
geometric proxy has to be individually reconstructed
and the blending has to be applied to the individual
approximations.

The bilinear filtering would not preserve the gra-
dients at the sample positions, only the SDF values.
To achieve exact first order reconstruction, a gradient-
preserving filtering has to be applied to the SDF val-
ues inferred from the samples, such as Hermite-based
blending [7]. In particular, hs(t) = —2t + 3t? is used
as the interpolating coefficient instead of the general
value ¢ € [0, 1] that represents the position of the query
point between the two closest samples.

4 Test Results

We based our tests on an open source implementation
of the MCGP method, in particular the Poisson solver
of [10]. The program creates an image with given res-
olution where the color of each pixel represents the
solution of the equation at that position. The solu-
tion is based on the walk-on-spheres algorithm and
uses SDFs to calculate the step lengths.

The original algorithm used simple closed-form SDF
functions, such as a circle. First, we expanded its ca-
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(a) Letter W.  (b) Letter R. (c) Letter Q.
13 segments 24 segments 37 segments

e

(d) Cat. (e) Antilope. (f) Bunny.
93 segments 54 segments 73 segments
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Figure 3: Shapes used for testing the accuracy
and performance of the algorithm. All shapes are
from the Freetype library [11] and consist of de-
gree 2 and 3 Bézier curves. The number of the
Bézier segments of each shape is presented in the
captions.

pabilities to handle shapes with linear and quadratic
Bézier boundaries, so that it can support our FreeType
[11] test shapes. Then we expanded it to evaluate more
complex shapes by using precomputed geometric dis-
tance fields. The distance fields were generated with
a fast GPU based algorithm, then transferred to main
memory so that it can be evaluated on the CPU during
the walk-on-spheres method.

All tests were done with a simluation grid of reso-
lution 256 x 256. We used double precision binary64
numbers throughout the tests on the CPU. The num-
ber of walks performed for each point was 4096. We
used the shapes presented in Figure 3. We solved the
Poisson equation —V?u = ¢ ||z|2 — 0.1, Y& € D
where c is a scaling constant for displaying the result.

As ground truth, we solved the Poisson equation
using the exact distance values obtained as discussed
in Section 3.1. We iterated on the Bézier segments of
the shapes and solved the exact algebraic equation to
obtain the footpoint.

Then we compared the results with bilinearly fil-
tered AQ, bicubically filtered A1 and G1, and nearest
neighbor filtered G1 fields. As our input data was an-
alytical, the partial derivatives used for the A1l field
are the same as the normal used for the G1 field, thus
the two fields are equivalent and their evaluation gives
the exact same value at any query position. Thus, we
only present the results for the nearest neighbor and
bicubically filtered G1 fields.

First, we investigated the accuracy of the solution
by comparing the result of the PDE on the ground
truth shape and the evaluated fields at each pixel using
4096 steps. We calculated the root mean square error
of the values. The results are presented in Table 1.
Although all runs are stochastic by nature, multiple
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measurements confirmed the systematic difference in
terms of RMS between the different fields and filters.

The results show that the geometric field has the
highest accuracy generally and in some cases an un-
filtered geometric field is as accurate as an AQ field
with a 4 times higher size. In the last test, we can see
that on higher resolution the G1 field underperforms,
this can be due to the fact that the geometric data is
not always C° continuous as it depends on the sample
positions, while the filtered A0 field is always continu-
ous. This can be improved by applying an appropriate
filtering method on the geometric field.

However, the results show that the Hermite filter-
ing does not improve on the quality of the geomet-
ric field. This can be attributed to the fact that the
cubic Hermite blend interpolation method does not
use the geometric properties of the stored data, there-
fore, we loose information about the footpoints and
the normals. To improve the quality, we need a filter-
ing method that keeps the geometric interpretation of
the data and uses geometric operations to improve on
the approximation.

We visualized the solution to the PDE using the
different fields in Figure 4. We solved the PDE
~V2u = c- cos(pz) - sin(py), ¥p € D and the color
of each pixel shows the result of the equation at that
point. As per results, the G1 field reconstructs the
border more accurately and is close to the ground
truth in most areas. There are artifacts around the
cut locus caused by discontinuity in the field. The
Hermite interpolation keeps the artifacts.

To examine this topic further, we compared three
fields that reconstruct the border of a shape with high
accuracy using the Antilope and Cat from Figure 3 (d)
and (e) with a constant 1 impulse function as an exam-
ple. The results can be seen on Figure 5. These show
that the G1 field can reconstruct the border with a
much smaller resolution. However the field has small
artifacts on the inside, due to the discontinuities in
the data. The G1 field is not C° everywhere, espe-
cially around the cut locus, as presented in Figure
6. This results in small errors, while still maintain-
ing an overall high accuracy as presented in Table 1,
because outside the problematic areas the field has a
high quality. This means that the visual problems do
not necessarily mean that the field is inaccurate, and
even a visually imperfect geometric field can be used
well for calculations. Also note that the A0 field does
not reconstruct the cut locus exactly either, but its
continuous nature prevents visible artifacts.

The discontinuities in the G1 field can be improved
by using an appropriate filtering method. However,
Figures 5 (d) and 6 (d) emphasize that the Hermit
filtering is not suitable, as it ignores the geometric in-
terpretation of the data and introduces further errors.
In the future a new filtering technique is needed that
can correct these issues in the neighborhood of the cut
locus without decreasing the quality elsewhere.

Next, we compared the performance of the different
methods. We compared the performance of the fields
on an AMD Ryzen 7 5800H laptop CPU. The perfor-
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Figure 4: Visual comparison of Monte Carlo simulation on different fields.
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(e) 322, A0 (f) 32%, G1 (g) 32%,G1 H

(1) 322, A0

(m) 322, Gt

(n) 322, G1 H

GT refers to ground truth

and G1 H refers to a Hermite filtered G1 field. We solved the Poisson equation —V?u = c - cos(py) -

sin(py), Vp € D where ¢ is a scaling constant for displaying the result.

The figure shows that the

geometric field reconstructs the border better and is accurate in most areas. It can also be seen that the
G1 field is not continuous especially around the cut locus, causing large errors in the simulation. The
Hermite filtering, while continuous, decreases the quality in the problematic areas. Further visualization

of this topic is presented in Figure 5

mance results are presented in Table 2. The time of
generating the field is a few milliseconds during pre-
processing, so it is not included in the results. It can
be seen that using any geometric field improves the
performance considerably. All distance fields are 1.5-2
orders of magnitude faster than using our naive ana-
lytic closest point search. The bicubically filtered G1
fields are the slowest among the former.

The performance varies even between the different
resolutions of the same field which can be attributed
to the random nature of the Monte Carlo algorithm.
The algorithm does not slow down as the resolution
increases as it only has an influence on the size of the
texture we have to read. If the texture fits in the
cache of the computer, the time of reading is around
the same, and calculating the distance from the values
is independent of the resolution.

Lastly, as the Monte Carlo algorithm is a random
algorithm, we tested the variation of the runtime and
the RMS error. We used the Cat model from earlier
with 32 x 32 resolution and run the algorithm 5 times.
The results are presented in Table 3. The results have
very little variation, suggesting that the tests and con-
clusions presented in the section are not impacted by
the random nature of the algorithm.

5 Conclusions

We showed that signed distance fields can be used as
an interface for SDF queries in a Monte Carlo algo-
rithm. The results proved that the fields improve the
performance while retaining the accuracy.

The first order geometric distance fields performed
the best. These offered the same accuracy as the order
0 field with 4 times higher resolution in multiple tests
and reconstructed the shapes well, even with small res-
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olution fields. As for performance, simulations using
order 0 and 1 fields had a similar runtime.

We saw that the filtering methods do not necessarily
improve on the quality of the geometric field, because
they ignore the geometric meaning of the data. More-
over, Monte Carlo geometric processing is tolerant to
contour and shape defects, which makes nearest neigh-
bor filtered first order geometric fields a good distance
query interface.

Future research is required to devise filtering meth-
ods that can utilize the geometric nature of the sam-
ples used in geometric distance fields. Moreover,
adapting our extensions to a GPU solution should im-
prove simulation times considerably.
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Letter W Cat
ground truth around 2 hours ground truth around 3 hours
Resolution A0 G1 GI1 Hermite Resolution A0 G1 G1 Hermite
162 6ls 64s 168 s 162 59 s 25s 72 s
322 59s 66 s 165 s 322 3bs 3ls 79 s
642 57s 67s 171 s 642 27s 34s 88 s
Letter R Antilope

ground truth around 2 hours

ground truth

around 3 hours

The first

Resolution A0 G1 GI1 Hermite Resolution A0 Gl G1 Hermite
162 42s 43 s 103 s 162 44 s 28s 72's
322 37s 44s 111 s 322 45s 3ls 78 s
642 34s 44s 115 s 642 455 32s 115 s
Letter Q Bunny
ground truth around 2 hours ground truth around 3 hours
Resolution A0 Gl GI1 Hermite Resolution A0 G1 GI1 Hermite
162 62s 59s 129 s 162 71s 66s 175 s
322 47s 53 s 134 s 322 55s 66 s 171 s
642 41s 57s 143 s 642 6ls 70s 176 s

Table 3: The performance and accuracy of the algorithm after 5 runs. The test was done on the Cat
model with 32 x 32 fields. These results show that there is small variance in both runtime and error.

A0 G1 G1 Hermite

Performance RMS error Performance RMS error Performance RMS error
run 1 35.24 s 0.013567 31.77 s 0.010090 78.54 s 0.019194
run 2 35.43 s 0.013568 31.01 s 0.010076 78.03 s 0.019194
run 3 35.77 s 0.013570 30.82 s 0.010079 78.93 s 0.019194
run 4 35.49 s 0.013571 30.93 s 0.010092 78.58 s 0.019196
run 5 35.55 s 0.013569 30.79 s 0.010092 78.25 s 0.019186
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(a) A0, 256 x 256 128 x 128

(d) G1 Hermite, 64 x 64

Figure 5: Comparison of a bilinearly filtered
A0 (a), (b) an unfiltered (c) and an Hermite fil-
tered (d) G1 field that reconstruct the border of
the shape with high accuracy. We solved the PDE
—V2u 1, Vp € D using the fields, and the
pictures present the results of the equation as the
color of each pizel. It can be seen that the A0
field needs a much higher resolution. The G1 field
shows small artifacts on the inside. The unfiltered
G1 field is not C° continuous everywhere, espe-
cially around the cut locus, resulting in small inac-
curacies in the area, while keeping a generally high
quality elsewhere as proved by the RMS errors in
Table 1. Although the Hermite interpolation helps
with the discontinuity, it does not fit the approach
of the geometric data and introduces further error
in the problematic areas. Further visualisation can
be seen on Figure 6.
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(b) A0, 128 x 128
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(a) A0, 256 x 256

(c) G1, 64 x 64
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(d) G1 Hermite, 64 x 64

Figure 6: Comparison of the distance function
computed from a bilinearly filtered A0 (a), (b) an
unfiltered (c) and an Hermite filtered (d) G1 field
that reconstruct the border of the shape with high
accuracy. The coloring is adapted from [12]. The
G1 field is not continuous around the cut locus,
while the distance value is accurate elsewhere. The
discontinuity can be solved using an appropriate
filtering method that keeps the overall good quality
of the field. The figures in (d) show that the Her-
mite filtering is not sufficient, as it is performed
on the distance values, and makes the area of the
cut locus inaccurate while decreasing the quality in
other areas too.
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