ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Real-time Rendering of Algebraic Surfaces via Polynomial
Fitting

Csongor Csanad Karikd

E6tvos Lorand University
Péazmany P. stny 1/C.
Hungary 1117, Budapest

jpoiwr@inf.elte.hu

Gabor Valasek

E6tvds Lorand University
Péazmany P. stny 1/C.
Hungary 1117, Budapest

valasek@inf.elte.hu

ABSTRACT

We investigate the problem of robust real-time algebraic surface rendering. We show that expressing the compo-
sition of the ray and the algebraic surface as a single univariate polynomial is not robust in practice, comparing
results between monomial, Bernstein, Lagrange, and Chebyshev basis fits. We show that fitting multiple poly-
nomials over subintervals, such as a unit length subdivision of the ray extent within the region of interest, is a
viable approach to overcome the robustness issues. In addition, we discuss a heuristic method for determining split

locations.

Keywords

Computer Graphics, Algebraic Surfaces, Ray Marching, Polynomial Interpolation

1 INTRODUCTION

Rendering surfaces defined as isocontours of general
f:R3 — R mappings is a challenging task. Achiev-
ing high performance and robustness simultaneously is
only viable for special subsets of such mappings. For
example, if f(x) = f(x,y,z) is the signed distance to
the closest isocontour point, or a lower bound thereof,
it is possible to use sphere tracing [Hart96] or one of its
variants [Kein14, Bal18, Ban23] to realize both of these
objectives.

However, stipulating such a distance property on f(x)
is a rather constraining requirement to adhere to, es-
pecially for closed-form formulations. Instead, it can
be relaxed to prescribing the existence of computable
Lipschitz bounds along ray segments [Kal89, Gal20],
that is, to be able to compute L > 0 scalars such that
|£(x) — £(¥)| < L||y—x||> holds for all x,y € R? on the
ray segment. As @ is a signed distance lower bound,
these surfaces can be rendered with any of the sphere
tracing techniques. Still, the actual process of deriving
the Lipschitz bounds has to be worked out in a case by
case or a function class by function class manner.

Our research focuses on rendering algebraic surfaces in
a finite subset of space, that is, we assume that f(x) is a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

http://www.doi.org/10.24132/CSRN.2025-28

polynomial of known degree and we visualize it within
e.g. an axis-aligned bounding box. We do not assume
any distance-like behavior on f(x). Additionally, we
narrow down our discussion to methods that do not rely
on any kind of preprocessing to compute auxiliary data
such as acceleration structures.

We investigate the numeric precision and runtime per-
formance of fitting one or more polynomials to f along
eachray. In theory, choosing the same degree for the fit-
ted polynomial as that of the original surface function
provides a polynomial that exactly matches f along the
ray. In practice, our experiments showed that the con-
version from the trivariate formulation to the univariate
polynomial is hindered by numerical errors enough to
cause visual distortions on the GPU, such as in the case
of the Barth sextic surface shown in Figure 1. There-
fore, we mainly focus on the numeric stability of fit-
ting and the polynomial evaluation, excluding the root-
finding stage of the rendering.

We examined multiple different polynomial bases, all
of which exhibited numeric issues of varying degrees.
We show how splitting the polynomials improves nu-
meric stability and simple heuristics to determine when
such splits are necessary.

In the next section, we examine the polynomial fitting
and evaluation methods relevant to our work. There-
after, in Section 3, we discuss our rendering framework
and the numerical issues of using a single segment and
splitting into multiple segments. Section 4 presents the
results of our performance evaluation and we conclude
our findings in Section 5.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

A

Figure 1: Rendering the Barth sextic with a single de-
gree 6 polynomial fit along each ray within an axis-
aligned bounding box of dimensions 10 x 10 x 10 cen-
tered at the origin. A reference render with direct ray-
marching using f(x) surface function evaluations is
shown on the left. We used an univariate polynomial in
the monomial bases on the right and sampled it during
ray marching instead of evaluating f(x) directly. Note
the noise in the center of the right image.

http://www.wscg.eu

‘

2 BACKGROUND AND RELATED
WORK

2.1 Polynomial fitting

The goal of polynomial fitting is to obtain a func-
tion of the form p(x) = ¥V ¢;b;(x) matching a set of
(x0,30), (x1,71), - (xy,y) data samples. The poly-
nomial is uniquely defined by its ¢; coefficients (i =
0,1,...,N) and b;(x) : R — R basis functions.

We investigated the monomial, Bernstein, Lagrange,
and Chebyshev polynomial bases. Despite its numeric
drawbacks, monomial bases are ubiquitous and are
often a default for many practitioners. The Bernstein
bases offer significantly better numeric properties
[Far96] and deeper geometric insights, however,
traditional evaluation algorithms pose increased com-
putational costs. From an interpolation point of view,
fitting is the most trivial in the Lagrange basis, whereas
the Chebyshev bases offers more efficient means of
evaluation.

Monomial M;(x) = x!
Bernstein ~ BY (x) = (Ily)xi(l —x)N
Lagrange LN (x) =TIy, ;j;i
ket
Chebyshev T;(x) = cos(icos ! (x))

http://www.doi.org/10.24132/CSRN.2025-28 266

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

. Degree
Basis 3 5 10
Monomial | 85.21 2771.06 17686488.95
Bernstein 4.32 16.56 510.28
Chebyshev | 66.87 225522 13933909.74
DCT 1.41 1.41 1.41
Lagrange 1.00 1.00 1.00

Table 1: L? condition numbers of interpolation ma-
trices generated from different bases and using the
Chebyshev-Lobatto grid over [0,1]. DCT represents the
Chebyshev basis, but with the Discrete Cosine Trans-
form used for the interpolation, instead of the matrix in
equation 1.

In general, the fitting of a polynomial of degree N to
a set of N+ 1 sample points can be accomplished by
solving the following linear system of equations:

by (x0) bY (xo) BN(xo)] [o] [/(x0)
by (x1) by (x1) by (x) | C‘l _ f().Cl)
W) B () N | enl s
i T

(1)

where H is a matrix constructed from the {bY (x)}Y.,

polynomial bases and x; are the sample po-

sitions. We use the Chebyshev-Lobatto grid
X = cos(%n),i — 0,1,...,N (Chebyshev

nodes), as it offers optimal conditioning for the fitting
matrices.

H~' is precomputed in our implementation and is in-
corporated into the GPU shader as a constant. Thus,
at runtime, we only need to multiply the sample vector
s with the precalculated H~! from the left. Since the
embedded constant matrices depend on the x; sample
positions, their distribution cannot be changed at run-
time. It is also necessary to normalize the domain of
the interpolated polynomials, for example, to [0; 1].

Unfortunately, for most polynomial bases H~! is ill-
conditioned, which means that rounding errors in s
cause significant errors in the interpolation. For exam-
ple, when using the monomial basis, matrix H takes the
form of a Vandermonde matrix, which is notorious for
being ill-conditioned. Table 1 shows a comparison be-
tween the L% condition numbers of different bases.

When using the Chebyshev basis, it is possible to do the
interpolation with the discrete cosine transform (DCT).
This results in a significantly better conditioned matrix,
as shown in Table 1. The DCT matrix D corresponding
to degree N interpolation can be constructed with the
following formul.

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

1 1 1
D= | 2da 2d> 5 2dy N1
N+1
2dN+1,1 2dN+1,2 2dN+l,N+l
where

<2<N+1—j>+1>n) |

d; j = cos ((i—l) AN

Once the D matrix is precalculated, Chebyshev
coefficients are calculated by multiplying it with
the samples taken at the Chebyshev-Lobatto grid:

cos (2%,@:1])70 k=0,1,...,N. Thus, we obtain the

final Chebyshev basis coefficients with ¢ = D - s.

2.2 Evaluation

In this section, we discuss the algorithms employed for
evaluating the polynomials.

We used Horner’s method to evaluate polynomials in
the monomial basis, as shown in Algorithm 1.

Algorithm 1 Horner’s scheme

1: Imput: cg,cy,...,cn coefficients,
2: NeNt xeR
3: QOutput: ye R
4:
5: y<cn
6: fori=N—-1,...,0do
7: Yy Y- X+
8: end for
return y

We used the De Casteljau algorithm to evaluate poly-
nomials in the Bernstein basis, as shown in Algorithm
2.

Algorithm 2 De Casteljau’s algorithm

1: Imput: ¢g,cy,...,cn coefficients,
2: NeNt xeR
3 Output: ye R
4:
5: q(*[CO,C],..wCN] DLCngthN+l
6. fori=1,....Ndo
7: forj=0,...,N—ido
8: gj < (1—x)-gj+x-gj41
9: end for
10: end for
return g

We used the Clenshaw algorithm [Cle55] for polyno-
mials in the Chebyshev basis, as shown in Algorithm
3.

http://www.doi.org/10.24132/CSRN.2025-28

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Algorithm 3 Clenshaw’s algorithm

Input: cp,cq,...,cn coefficients,
NeNt xeR
Output: y € R

fori=N,...,1do
b+ ci+2b;-x—by
by + by
: by + b,
10: end for
return co+b; -x—b;

1
2
3
4:
5: bl,bz,bc +~—0
6
7
8
9

Lagrange polynomials were evaluated with the
barycentric interpolation formula. Barycentric weights
wo,wi,...,wy were precomputed and stored in the
shader as a constant array. These weights depend on
the set of sample positions xg,xy,...,xy which are the
Chebyshev nodes in our case. They are given by the
following formula:

N

w; = (2)
k=0

ket

Xi — Xk

Algorithm 4 describes the part of the process imple-
mented in the shader.

Algorithm 4 Barycentric Lagrange interpolation

1: Imput: cg,c1,...,cn coefficients,

2 no,ni,...,ny Chebyshev nodes,

3 wo, W1, ..., Wy barycentric weights,
4 NeNt xeR

5: Output: ye R
6

7

8

9

y,denom < 0
fori=0,...,Ndo
: if |x —n;| < 107° then
10: return c;

11: end if
12: d —
1
13: denom < denom + d
14: yy+d-c
15: end for
return 2

3 RENDERING FRAMEWORK

Our goal is to render algebraic surfaces without prepro-
cessing the input geometry.

For each ray, we compute the intersection between the
ray and the bounding box of the algebraic surface. If the
total degree of the algebraic surface is N, we take sam-
ples of it at N + 1 Chebyshev nodes. The samples are

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Split segment in half

A

Start new segment
from the current end
to the end of the ray

Sample f(x,y,z) at Normalize samples to
N+1 Chebyshev |—»[-1;1], map domain to
nodes [0;1] or [-1;1]

Convert samples to
polynomial basis
coefficients

Return
distance

Ray march the

—>
segment

Figure 2: Our rendering pipeline. Note that there is a limit on the length a segment can be split into.

normalized by division with the largest absolute value
among them. Then, a degree N polynomial is fit to the
N + 1 normalized samples. The control data are com-
puted with precomputed inverted H matrices. The co-
efficients obtained in this way represent the algebraic
surface along the ray for the given frame. Note that
these may change in subsequent frames, as the methods
tested here allow arbitrary temporal complexity in how
the coefficients of the algebraic polynomials change.

Once an univariate polynomial is obtained, we apply
ray marching to find its smallest positive root. Our
goal is to investigate the interpolation and evaluation,
therefore, we constrain ourselves to the simplest possi-
ble root-finding method: ray marching. This way, it is
possible to directly compare the accuracy of the inter-
polated polynomial with the original surface function.

The complete pipeline is shown in Figure 2.

3.1 Single segment results

We used the Barth sextic as our main test surface. It is
defined as the zero contour of the following function:

f(x,3,2) =4(¢° =) (9% — 22) (92 — 1)
—(1429) (> +y* +2 —1)?,

where ¢ = ”Tﬁ is the golden ratio.

We ray march univariate polynomial fits to compare
the exact reproduction capabilities of various polyno-
mial bases. Figure 3 shows a comparison of the results
achieved with the four bases as well as an image ren-
dered via directly ray marching the trivariate surface
function f. Tracing was done with the same world-
space step length and the same maximum number of it-
erations, ensuring a fair comparison between the meth-
ods.

The ill-conditioned fitting matrices of the monomial
and non-DCT Chebyshev bases cause the rendered im-
age to contain a significant amount of noise around thin-
ner parts of the surface. Despite having a better condi-
tioned fitting matrix, the Bernstein basis still exhibits
similar artifacts, as shown in Figure 3d. The same er-
rors are also present in Image 3e, which was rendered
using Lagrange interpolation. Considering that the La-
grange basis has the best conditioned fitting matrix pos-
sible, that is, the identity matrix, the question arises as

http://www.doi.org/10.24132/CSRN.2025-28

to whether the bottleneck of precision lies in the evalu-
ation.

To investigate this, we extracted function samples and
polynomial evaluations from the shader. The resulting
plots are displayed in Figure 4. We draw two conclu-
sions from this data. The first is that after sample nor-
malization, the negative range of the polynomial around
the root becomes very small (smaller than the machine
epsilon for 32 bit floating point numbers). This makes
root-finding an immensely difficult and unstable task.
Secondly, rounding errors in the samples seem to affect
the accuracy of interpolation significantly compared to
the negative range of the function.

3.2 Splitting into multiple segments

As discussed in the previous section, the main issue
with the single-segment method lies in the range of the
interpolated function over the domain of the ray. On
one hand, the normalization of samples before interpo-
lation is necessary to avoid the precision issues arising
from doing arithmetic with large floating point num-
bers. On the other hand, this normalization may de-
crease the absolute range of the function around the
root too much, making the root almost impossible to
find. Such a case is shown in Figure 4, where normal-
ization decreases the negative range around the root as
much that the rounding errors of the samples cause the
interpolated polynomial to miss the root completely.

This problem can be remedied by splitting the ray into
multiple segments and constructing separate interpolat-
ing polynomials covering each segment. This way the
range of values covered by each polynomial is reduced,
as shown in Figure 5. The questions we intend to in-
vestigate in this section are how to determine whether
we need to split an interval and where exactly the ray
should be split. We investigated a multitude of possible
basis-dependent or independent splitting heuristics. In
this section, we cover the most reliable method accord-
ing to our experiments.

3.2.1 Uniform length segments

The simplest way to split the ray is to create M segments
of uniform length at each pixel. In our experiments,
shown in Table 2, ray marching clearly dominates the
runtime cost of polynomial interpolation. Therefore, it
is practical to use this method for this root-finding al-
gorithm. The only two parameters are the maximum
number of segments and the length of each segment.

268

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

(A

<t
:/

http://www.wscg.eu

<

F‘“\-

(a) Reference direct ray march at 1920x1080.

N
i

(c) Monomial

(d) Bernstein

(g) Chebyshev
(DCT)

o

w\

4‘

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

(b) Direct ray marchrng (reference)

4

g

(e) Lagrange (f) Chebyshev
(h) Chebyshev

(uniform multi-segment)

Figure 3: The Barth sextic rendered with different polynomial bases. Figure 3a shows the complete rendered
image. Figures 3c, 3d, 3e, 3f and 3g show the part highlighted with a red border, rendered with a single polynomial
segment per ray in different bases. Note the noise around thin parts on these images. Figure 3h shows how splitting

into multiple segments increases stability, even when using the same unstable interprolation method as on 3f.

le—7
41 —— Machine epsilon
—— Polynomial ulp
---- Reference values
34 —— Polynomial values

0404 0405 0406 0407 0408 0.409

Figure 4: Comparison of surface function and its inter-
polating polynomial around the closest root at a noisy
pixel of Figure 3e. The polynomial is of degree 6 and it
was computed via barycentric Lagrange interpolation.
The world-space distance covered by the ray is approx-
imately 10.88 units. Note the range of this figure.

It must be noted that ray marching should be replaced
with faster, more advanced root-finding methods in
practice, as it does not provide robust first root iden-
tification properties. This may change the distribution
of the necessary calculations such that the polynomial
interpolation becomes the dominant part of the algo-

http://www.doi.org/10.24132/CSRN.2025-28

—— Machine epsilon
—— Polynomial ulp
---- Reference values
—— Polynomial values

0.0015

0.0010

0.0005

0.0000

—0.0005

—0.0010

—0.0015

0.49 0.50 051 0.52

Figure 5: The same roots as shown in Figure 4, but
interpolated over a smaller segment covering a distance
of approximately 0.68 world-space units. Note that the
location of the roots changed due to both the domain
being normalized to [0, 1] and the range normalized by
the maximum absolute sample.

rithm. This is our motivation to reduce the number of
segments whenever splitting does not yield additional
visual improvements to the final image.

269

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

3.2.2 Basis-agnostic split heuristics

Algorithm 5 describes a framework for splitting the
polynomial with heuristics based on samples taken
from the surface function. The benefit of such heuris-
tics is that they are inexpensive to calculate as the
coefficients need not be interpolated. This is especially
beneficial when multiple splits occur in sequence, since
this way we skip the unnecessary interpolations before
the final segment is determined for root-finding.

Algorithm 5 Rendering framework employing sample
based splitting heuristics

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

the segment falls below a minimum length. Algorithm
6 describes this condition in more detail.

Another basis agnostic method would be to calculate
the interstitial error of the approximation. The main
problem of this and other error measurement based
methods is that the magnitude of the function spans a
wide range, making any difference calculations numer-
ically unstable. Figure 4 shows that after normalization,
the difference between the polynomial and the surface
function is below the machine epsilon of the used single
precision floating point numbers.

1: Input: f:R3 — R surface function,

2 ng,ni,...,ny Chebyshev nodes,
3 N € N*, o € R3 ray origin,

4 d € R3 ray direction,

5: tmin, fmax Tay ends, € step length
6: Output: r € R root distance

7

8

9

begin < fiin
. end ¢ fnax
10: i < max_iters
11: s 0
12: whilei >0 & s < max_splits do
13: S+ 10,0,...,0]
14: fork=0,...,Ndo

> split counter

> N+ 1 samples

15: Sk < f(o+d - (ny - (end — begin) + begin))
16: end for

17: o + maxy_, | Sk| > normalization factor
18: Se[%,%,...,%}

19: do_split, split_pos < SplitHeuristics(S)

20: if do_split & s < max_splits then

21: end = split_pos

22: s s+1

23: else

24: C < Interpolate(S) > coefficients
25: [+~ m > step length
26: found, root, iters «+— RayMarch(C, 1)

27: if found then

28: return root - (end — begin) + begin

29: else

30: begin < end

31: end < fimax

32: i< i—iters

33: end if

34: end if

35: end while

36: return —1 > no root found

The range normalization problem discussed in Section
3.1 inspires a heuristic condition directly. If there is a
large enough difference between the magnitude of sur-
face function samples, the ray should be split into two.
The condition is recursively checked until we arrive at
a set of samples that fail the criterion or the length of

http://www.doi.org/10.24132/CSRN.2025-28

Algorithm 6 Sample magnitude based split heuristics

Input: #,in, fmax € R segment ends,
S0,51,--.,Sv € R samples,
N € N7 degree, @ € R threshold
Output: do_split, split_pos € R

a + maxt_ [S|

b+ min}_ |Si|

if log;y(a) —log;o(b) > a then
: do_split <— True

10: split_pos ¢ ‘minfimax

11: [+ MinStepLength (#yin)
12: if split_pos — fiin < [then
13: split_pos <— min(split_pos + I, fmax)
14 end if

15: else

16: do_split < False

17: end if

return do_split, split_pos

1
2
3
4:
S:
6
7
8
9

3.2.3 Split positions

We chose a simple split in half heuristic. However, the
previously discussed splitting criteria are susceptible to
over-splitting in practice. That is, the splitting does not
stop, but goes on repeatedly after the maximum split
count is reached. This creates a needlessly small seg-
ment at the beginning of the ray. The rest of the ray
span within the bounding box is covered by a single
segment, effectively the same as the starting segment.
We need to avoid over-splitting as it wastes processing
power without visual impact.

Fortunately, this situation can be conveniently avoided
by introducing a minimal segment length. This could be
a single parameter, or it can be used to control the level
of detail at further distances. We calculate the minimal
step length with

. 3
1t tmins d) = (t;’“> 4001 |-d. ©

offset

where ¢ denotes the beginning of the current segment
and fpi, and d denote the beginning and the length

270

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

50

0

(a) Unit length segments.

(b) Split heuristics with threshold: 2.

50

| | 0

(c) Unit length (d) Heuristics

Figure 6: The number of splits per pixel when us-
ing unit length segments and the sample based split-
ting heuristics. Lighter green denotes higher number of
splits. Note that in the case of the split heuristics this is
not equal to the final number of segments which is typ-
ically 25-30 around the center of image 6d. Unit length
splitting produces maximum 13 segments on image 6c.

of the complete ray-AABB intersection, respectively.
This ensures that the minimal segment length increases
rapidly as the trace approaches the end of the ray. The
distribution of minimal segment lengths can be changed
by adjusting the exponent, while the initial minimum
length is adaptable by altering the offset.

The resulting number of splits is visualized for each
rendered pixel in Figure 6. The combination of the pre-
viously discussed splitting heuristics with the minimal
step formula (3) generates a high number of segments in
important areas where numeric stability would be low
otherwise. In the case of the Barth sextic, critical areas
are primarily in the center.

4 TEST RESULTS

The primary subject of our experiments was the Barth
sextic. To showcase the generality and limitations of

http://www.doi.org/10.24132/CSRN.2025-28 271

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

the proposed methods, we also include measurements
from two additional surfaces: tangle cube, an algebraic
surface of degree four:

fleyz)=x* =524y =52+ =52 +11.8, (4)

and calyx from the collection of Hauser [Hau25], which
has a degree of five:

fleyz)=x+y2 —2*. (5)

These surfaces are shown in Figure 7.

1\“,‘ L// ~ \
S \ : *
-

Dy , J
LN Py

\

Figure 7: Evaluated surfaces. From left to right: Barth
sextic, Tanglecube, Calyx.

We implemented the discussed techniques in C++ using
the Nvidia Falcor system. The tests were carried out on
a laptop with an AMD Ryzen 7 7840HS CPU and an
NVIDIA RTX 4060 laptop GPU. The reported perfor-
mance figures are timing reports of the render dispatch
taken in Nsight.

As shown by the runtime measurements in Table 2, the
monomial and both Chebyshev bases achieve real time
performance on all three surfaces, while rendering with
the remaining two bases runs at interactive speeds. In
this case the main reason of bad performance is the
costly evaluation algorithm. Therefore, splitting the
polynomial into segments is viable for real-time ren-
dering. If the surface is rendered with ray marching,
the runtime is dominated by either the evaluations of
the surface function or the evaluations of the interpo-
lated polynomials. As depicted in Table 2, the perfor-
mance cost of the more complicated logic of the heuris-
tic splitting method, as well as the performance cost in-
curred by the extra samples taken outweigh the bene-
fits of the significantly lower number of total segments
(7,549,523 compared to 12,619,762, approx. 40% less).
However, this difference could offer meaningful per-
formance gains for other root-finding methods, such as
Bézier clipping [Sed90] or the root finder devised by
Yuksel [Yuk22]. When the method used for root finding
is ray marching, the performance cost of splitting into
more segments is relatively low compared to the poly-
nomial evaluations during ray marching. This is shown
by the relatively small difference of runtime between
the single segment and the uniform segment method in
Table 2.

In order to measure the precision of the different meth-
ods, we computed the Structural Similarity Index Mea-
sure [Wang04] between the rendered outputs and a ref-
erence image. We computed the reference image with

—_

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

Barth Tanglecube Calyx
Single Uniform | Heuristic Single Uniform | Heuristic Single Uniform | Heuristic

Basis segment | segments | segments | segment | segments | segments | segment | segments | segments
Monomial 9.06 11.48 12.16 1.97 2.46 4.24 4.76 5.73 6.07
Bernstein 457.18 461.63 499.27 54.06 57.37 84.80 191.23 182.59 196.05
Lagrange 39.05 39.59 46.39 7.72 7.56 15.32 18.40 18.99 20.53
Chebyshev 12.55 15.26 15.49 2.58 2.87 4.48 6.37 7.19 7.74

DCT 12.55 16.15 16.51 3.56 3.09 6.02 6.30 7.71 7.45

Direct
ray march 17.10 ms 3.47 ms 6.96 ms

Table 2: Comparison of the dispatch times of a single 1920 x 1080 frame for rendering the Barth sextic using
different bases (Figure 3a). The step length for ray march is the same for all methods (0.005). The uniform
segment method splits the ray into a maximum of 10 unit length segments, after which the last segment covers
the rest of the ray. The heuristic method uses a split threshold of 2, with maximum 50 splits. For ray marching,
all methods were limited to 5000 steps over the entire ray (enough to cover it completely). The last row contains
timings using ray marching on the original trivariate f(x,y,z) function. All values are in milliseconds.

ray marching the trivariate function using the same
world space step length as we used with the polyno-
mial methods. In this way, any difference between the
outputs is a result of inaccuracies in the fitting and eval-
uation of polynomials. The results are in Table 3.

The method generally works well in easier scenarios
such as the tanglecube shown in Figure 7 or other closed
surfaces that lack singularities or thin parts. However
in case of the calyx surface the limitations are much
more apparent, as shown by Figure 8. The surface has
a cusp singularity, along which significant numeric is-
sues appear. Figure 8 shows the most problematic area
rendered with a high quality ray march setting.'

Based on these measurements and the qualitative com-
parison of rendered images we conclude that the nu-
meric stability of the polynomial evaluation and inter-
polation can be compensated with a larger number of
smaller segments. Therefore, if ray marching is used
for finding the root, it is more important to choose a ba-
sis with a high performance evaluation algorithm. Out
of the tested bases, the Chebyshev basis with the dis-
crete cosine transform interpolation method offered the
best trade-off of performance and stability. It is also ap-

Single Uniform | Heuristic

Basis segment | segments | segments
Monomial 0.9428 0.9995 0.9996
Bernstein 0.9979 0.9998 0.9997
Lagrange 0.9989 0.9998 0.9997
Chebyshev | 0.7351 0.9992 0.9987
DCT 0.9992 0.9998 0.9997

Table 3: Structural similarity index measure of the dif-
ferent methods compared to the reference image ren-
dered with ray marching. The parameters are the same
as the ones used for performance measurements in Ta-
ble 2. The rendered surface is the Barth sextic.

Reference ray march renders were created by decreasing the

step length and increasing the step count until further changes
did not yield any visual improvement.

http://www.doi.org/10.24132/CSRN.2025-28

parent that heuristic splitting produces less accurate re-
sults for a similar or worse runtime cost. This is mainly
caused by the fact that the region of pixels in which the
heuristic splits the polynomial is not tight enough, as it
includes many pixels where even a single polynomial
could achieve satisfactory results. This is visualized in
Figure 6d. On the other hand, it fails to detect every
case when a polynomial should be split further, result-
ing in artifacts similar to the ones shown in Figure 9.

@l=3

b l=1

()1 =025 (d)!1=0.1

Figure 8: Rendering the calyx surface using uniform
segment length of /. Note that decreasing / below a
certain threshold does not yield any gain in quality due
to the limits of floating point precision. In this case the
sweet-spot is around [= 0.25.

272

ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

Figure 9: Split count (green) and shaded result blended
together. Notice that rendering artifacts are constrained
to regions where fewer splits were made by the heuris-
tic. (Chebyshev basis without DCT, using the heuristic
split method., SSIM similarity to ground truth: 0.9987.)

5 CONCLUSIONS

In this paper we showed that converting algebraic sur-
faces to univariate polynomials along rays is a viable,
albeit nontrivial way to render ray-surface intersections.
In theory, sampling the surface function at N + 1 posi-
tions along the ray provides all the necessary points to
interpolate f or(z) exactly. In practice, however, the
fitting and evaluation of such polynomials is not accu-
rate enough to achieve noiseless results, regardless of
the basis chosen.

For challenging algebraic surfaces, such as the Barth
sextic, it is necessary to split the ray into multiple seg-
ments. The monomial and Chebyshev bases offer bet-
ter performance than the reference ray march on the
three-variable input. The quadratic complexity of the
de Casteljau algorithm makes it unsuitable for real-time
rendering. Lagrange interpolation achieves the best re-
sults in terms of accuracy but falls behind the monomial
and Chebyshev bases due to its slower evaluation.

Whether splitting should be done into uniform length
segments or according to heuristics depends on the run-
time cost of the used root-finder. In our case, we tested
ray marching and the reduced total number of ray seg-
ments does not improve the runtime performance of the
algorithm.

The proposed methods do not generalize well to non-
algebraic surfaces as they assume that the degree of the
surface is known in advance. Furthermore, they do not
employ robust fitting methods to compute the polyno-
mials. Instead, they rely on the minimal number of sam-
ples required to compute an exact fit. Since the runtime
cost of ray marching is proportional to the maximum
distance, these methods are only suitable for rendering
small scenes.

ACKNOWLEDGMENT

Supported by the EKOP-24 University Excellence
scholarship program of the Ministry for Culture and
Innovation from the source of the National Research,
Development and Innovation fund. Supported by ELTE
Eo6tvos Lorand University, Budapest, Hungary.

http://www.doi.org/10.24132/CSRN.2025-28 273

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

EKOP

Egyetemi Kutatéi Osztondij Program

REFERENCES

[Ball18] Bdlint, C., and Valasek, G. Accelerating
Sphere Tracing. Eurographics 2018 — Short Pa-
pers, The Eurographics Association, 2018.

[Ban23] Ban, R., and Valasek, G. Automatic Step Size
Relaxation in Sphere Tracing. Eurographics 2023
— Short Papers, The Eurographics Association,
2023.

[Cle55] Clenshaw, C.W. A Note on the Summation of
Chebyshev Series. Mathematics of Computation,
Vol. 9, No. 51, pp. 118-120, 1955.

[Far96] Farouki, R.T., and Goodman, T.N.T. On the
Optimal Stability of the Bernstein Basis. Math.
Comput., Vol. 65, No. 216, pp. 1553-1566, 1996.

[Gal20] Galin, E., Guérin, E., Paris, A., and Pey-
tavie, A. Segment Tracing Using Local Lipschitz
Bounds. Computer Graphics Forum, Vol. 39, No.
2, pp. 545-554, 2020.

[Hart96] Hart, J.C. Sphere Tracing: A Geometric
Method for the Antialiased Ray Tracing of Im-
plicit Surfaces. The Visual Computer, Vol. 12, No.
10, pp. 527-545, 1996.

[Hau25] Hauser H.: Gallery of Singular Al-
gebraic Surfaces. Available at home-
page.univie.ac.at/herwig.hauser/gallery.html,
Accessed on 2025-04-29.

[Kal89] Kalra, D., and Barr, A.H. Guaranteed Ray In-
tersections with Implicit Surfaces. Proceedings of
the 16th Annual Conference on Computer Graph-
ics and Interactive Techniques (SIGGRAPH ’89),
pp- 297-306, 1989.

[Kein14] Keinert, B. et al. Enhanced Sphere Tracing.
Smart Tools and Apps for Graphics — Eurograph-
ics Italian Chapter Conference, The Eurographics
Association, 2014.

[Sed90] Sederberg, T.W., and Nishita, T. Curve Inter-
section Using Bézier Clipping. Computer-Aided
Design, Vol. 22, No. 9, pp. 538-549, 1990.

[Wang04] Wang, Z., Bovik, A.C., Sheikh, H.R., and
Simoncelli, E.P. Image Quality Assessment: From
Error Visibility to Structural Similarity. IEEE
Transactions on Image Processing, Vol. 13, No.
4, pp. 600-612, 2004.

[Yuk22] Yuksel, C. High-Performance Polynomial
Root Finding for Graphics. Proc. ACM Comput.
Graph. Interact. Tech., Vol. 5, No. 3, Article 27,
2022.

ISSN 2464-4617 (print) Computer Science Research Notes - CSRN
ISSN 2464-4625 (online) http://www.wscg.eu WSCG 2025 Proceedings

http://www.doi.org/10.24132/CSRN.2025-28 274

