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ABSTRACT

In this work, we introduce a novel approach for synthesizing new curves by leveraging Variational Autoencoder
(VAE) latent space interpolation. Our method encodes existing ordered point sequences representing curves into
a compact latent representation, enabling smooth and meaningful transitions between different curve shapes. By
performing controlled interpolations in the learned latent space, we generate diverse, high-quality smooth curves
that maintain structural coherence and geometric consistency. The proposed method is particularly useful for
applications in shape design, procedural modeling, and data augmentation in geometric learning.
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1 INTRODUCTION

Curve generation plays a fundamental role in numer-
ous fields, including computer-aided design (CAD),
animation, computational geometry, and data-driven
shape synthesis [Ju2005, Wang2020]. From design-
ing smooth, aesthetically pleasing contours in indus-
trial design to generating natural-looking trajectories
in robotics and motion planning, the ability to create
novel curves from existing data is essential. In a typi-
cal design pipeline, for example, in the automotive in-
dustry, the designer creates an initial clay model of the
car body. Using scanner devices, the model is digi-
tized, and different techniques are applied to extract the
curves and surfaces of the model for further manipula-
tion and design purposes. Exploring some variations of
an existing model while preserving its key features is a
common aspect of the design process [de2020]. In addi-
tion, Deep Neural Networks (DNN) have been applied
to process 2D curves for modeling, optimization and
reconstruction [Laube2018, Gao2019, Barzegar2024].
However, the quality of results are highly dependent on
good quality training data, which is often not available.

Traditionally, curve synthesis relies on parametric rep-
resentations such as Bézier curves, B-splines, or proce-
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dural methods, which require explicit control points and
manual adjustments. This human design process is also
time-consuming and tedious. In addition, while these
techniques offer precision, they often lack flexibility
in generating diverse shapes. Integrating deep learn-
ing methods facilitates automated shape exploration by
reducing its computational complexity and minimizing
the need for human involvement [Regenwetter2022].

Recent advances in machine learning, particularly deep
generative models, offer a promising alternative for
curve synthesis by learning underlying shape distribu-
tions from existing data. Generative models such as
Diffusion models [h02020], Variational Autoencoders
(VAE) [kingma2013] and Generative Adversarial Net-
works (GAN) [Goodfellow2014] have shown promis-
ing results in geometric deep learning for 2D and 3D
shape generation [Hui2022, K002023, Chen2018], re-
construction and completion [Mittal2022, Cheng2023]
and are frequently explored in automating design ex-
ploration.

Generative models are capable of extracting features
and patterns from data, learning a meaningful represen-
tation, and generating new samples with similar char-
acteristics. VAEs in particular have proven effective
in capturing compact latent representations of complex
geometric structures, enabling smooth and meaningful
interpolations.

In this work, we propose a novel approach for gener-
ating new curves from ordered point sets using VAE
latent space interpolation. By encoding curves into a
continuous, low-dimensional space, our method facili-
tates controlled shape transformations, allowing for the
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Figure 1: The pipeline of the proposed method: In the training phase, ordered points sampled from smooth 2D
cubic B-spline curves are fed to a Variational Autoencoder to learn the data distribution and generate reconstructed
curves. At inference, arbitrary curves are fed to the network to extract their latent vector. The latent vectors are
linearly interpolated and fed to the decoder to synthesize new curves.

synthesis of realistic and structurally coherent curves.
In this paper, we investigate the latent space interpo-
lation within a VAE trained on 2D curve data. We
demonstrate the effectiveness of our method for gener-
ating high-quality interpolated curves that maintain key
geometric properties. Our contributions include (1) a
novel pipeline for encoding and interpolating curves in
a learned latent space, (2) a framework for generating
smooth and diverse curves with minimal user input and
(3) a coarse and continuous latent representation which
enables manipulation for design exploration.

The remainder of this paper is structured as follows:
Section 2 provides an overview of the latest related
works. Section 3 presents the proposed method in de-
tail, including the neural network architecture and in-
terpolation process. The evaluation of the proposed
method is provided in Section 4 followed by the con-
clusion in Section 5.

2 RELATED WORKS

Generative models, Generative Adversarial Networks
(GAN) in particular, are ideal when employed for
curve synthesis. Every GAN contains two compo-
nents trained in a competitive manner: a generator to
generate new examples and a discriminator which is a
classifier to recognize real samples from the generated
fake ones. After training, the discriminator will be
discarded and the generator will be utilized for new
data generation.

There have been numerous works on using GANS to au-
tomate the shape exploration of curves describing air-
foils: BézierGAN [Chen2018] is a Generative Adver-
sarial Network where the generator produces the con-
trol points, weights, and parameter variables of rational
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Bézier curves. A custom Bézier layer is then applied to
derive the discrete points on a 2D curve from the pre-
dicted parameters. Their method allows for meaningful
interpolation between different shapes to explore a de-
sign space. In their paper they focus on the design of
airfoils. An extension of BézierGAN is the BSpline-
GAN [Du2020], where the Bézier layer is replaced
with a B-spline parameterization layer in the generator.
These techniques are mostly applied in aerodynamic
product design, to enable fast and interactive shape ex-
ploration before assessing the aerodynamic properties
of a shape. The adversarial scheme causes sensitivity
to parameter changes in GAN, which leads to mode
collapse and makes it difficult to find a balance be-
tween the generator and discriminator [Creswell2018,
Gonog2019]. Tan et al. [Tan2022] present a conditional
GAN for airfoil shape optimization. They smooth the
results using the Savitzky-Golay algorithm [Press1990]
and B-spline interpolation. The manual parameter se-
lection limits the generalization capability of this ap-
proach. Yonekura and Suzuki [Yonekura2021] propose
a conditional VAE for 2D curve generation. Again,
their focus is on design space exploration of airfoils.
Wang et al. [Wang2023] applied a hybrid generative
model, VAEGAN [Larsen2016] to take advantage of
both VAE and GAN for generating and optimizing air-
foil shapes. With VAE, they learn a continuous and
structured latent vector, followed by a GAN to gen-
erate realistic output. Wada et al. [Wada2024] intro-
duce a new airfoil shape synthesis approach which com-
bines GAN with external physic equations. Their ap-
proach can create new shapes that are beyond the train-
ing set. NURBS-OT [Yang2025] is a generative curve
model which integrates an optimal transform distance
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[Villani2009] technique with a lightweight neural net-
work to learn NURBS parameterization. Due to the
complexity of NURBS, their model encounters training
instability.

Recent works have used generative models to aug-
ment training data. Kim et al. [Kim2021] propose a
time series augmentation technique using an autoen-
coder and adversarial augmentation method. Chen
et al. [Chen2021] introduce a cooperative training
with latent space masking-based data augmentation
for medical image segmentation. LatentAugment
[Tronchin2023] is a data augmentation method to
explore the latent space for enhancing the diversity of
images generated by GANS.

In contrast, we are aiming to generate a general dataset
with comparatively large shape variations.

3 METHODOLOGY

We design a VAE to learn a continuous and coarse
representation, referred to as the latent representation,
from samples taken from 2D B-spline curves. We then
apply interpolation over the latent representation to cre-
ate new polygonal curves that have similar characteris-
tics.

The pipeline of the proposed method is shown in Fig-
ure 1. In the training phase, the input is discrete set
of 2D points sampled from open cubic B-spline curves.
The network is a Variational Autoencoder, where the
encoder part includes convolutional layers and incep-
tion modules [Szegedy2015] to learn a coarse and con-
tinuous representation from the input data. The decoder
is the counterpart of the encoder and reconstructs the
input data from the latent representation. The system
is trained to output the same points along a curve as
the input. If the output is an accurate reconstruction
of the input curve, it demonstrates that the encoding is
good and that the encoding part produces a latent vector
which can be considered a good representative of the
input curve. At inference, our trained model can pro-
duce a representative latent code in two parts: a mean
distribution and a standard deviation of the input points
samples. We synthesize new curves by interpolating the
mean distributions derived by the encoding of the VAE
network.

3.1 Dataset

For training a neural network, the first step is provid-
ing a sufficient dataset. We utilize the approach de-
scribed in [Barzegar2024] to generate 2D open cubic
B-spline curves with 10 control points. To generate ran-
dom control points, we consider a circle with 64 radius
in the center of a 2D plane of size 128 x 128. From the
zero angle, the circle is divided into ten non-uniform
regions and in each region a random control point is

http://www.doi.org/10.24132/CSRN.2025-25

Computer Science Research Notes - CSRN

WSCG 2025 Proceedings

generated. Using the generated control points, we de-
rive open cubic B-spline curves. The input data is de-
rived by uniformly sampling from 70000 planar gen-
erated open, uniform B-spline curves without intersec-
tions. Each curve data created in this way contains 161
ordered sample points.

3.2 VAE training

Variational Autoencoders are a type of generative mod-
els that are designed to learn the probability distribu-
tion from a dataset and generate new examples with
similar characteristics. Like any autoencoder, it has an
encoder-decoder architecture. The encoder maps the
input data into a continuous lower-dimensional latent
vector. Unlike standard autoencoders, VAEs enforce a
structured latent space by ensuring the latent variables
follow a known probability distribution. This makes its
learned latent space more meaningful.

The encoder is responsible for extracting features and
providing probability distributions over the latent at-
tributes from input data c. Instead of directly outputting
a latent vector z, the encoder predicts a mean pt(c) and
a variance o (c), defining a distribution over possible
latent vectors. A latent vector z is sampled from the
outputs of the encoder

z=u(c)+o(c)-e. (1)

where € is taken from the standard normal distribution,
A4(0,1). The latent vector z is the input to the decoder.

The sample from the latent vector distribution is the in-
put of the decoder. The continuous latent vector en-
ables meaningful interpolation and the generation of
new data. The decoder output ¢ is the reconstructed
version of the input data:

z~Enc(c) =¢q(z|c), é~Dec(z)=p(élz). (2
q(z | c) is the distribution of latent vector z given the 2D
curve ¢ and p(¢ | z) is the distribution of reconstructed
curve ¢ given z.

3.3 The Loss Function

The loss function in a neural network computes the dif-
ference between target and predicted outputs and serves
as a guide for optimizing the parameters of the network.

The VAE is trained using a loss that consists of two
parts: a reconstruction loss (4) and a regularization loss
(5). The reconstruction loss ensures that the recon-
structed output, ¢, is similar to the original input ¢ and is
given by the mean squared difference between the input
curve data ¢ and the reconstructed curve ¢. The regular-
ization loss is Kullback-Leibler (KL) divergence loss
which ensures that the latent distribution produced by

239



ISSN 2464-4617 (print)

ISSN 2464-4625 (online) http://www.wscg.eu

the encoder is similar to a standard normal distribution.
The loss function, (3), is given by:

AE = LMsE + LKL ©)
1 Y 0
LMSE = N Y (ci—a)”. )
-1
ZxL =Dxw(q(z|c) || p(2))- )

The output of the proposed VAE should either be uti-
lized as synthetic data to train deep learning models on
data sampled from smooth curves or in context of de-
sign exploration. In both cases, the generated curves
should be smooth and free from noise. For some test
examples, the model prediction is not as smooth as the
input curve. Therefore, we introduce a new term in the
loss function (3) to ensure the predicted curve also has
the same second-order derivative properties as the input
curve. The Laplacian loss, (7), is given by the mean ab-
solute difference between the second-order derivatives
of the input curve ¢ and the reconstructed curve ¢. Fig-
ure 2 shows the prediction of two VAEs, namely with
and without Laplacian loss.

The final loss function for the proposed VAE is given
by:

LVAE = LMSE + LKL + Laplacian- (6)

gLaplacian = Z |Lap(ci) - Lap(éi” . (N

Figure 2: The reconstruction result of VAE without (left
side) and with (right side) Laplacian loss function.

3.4 Smoothness

The output of our proposed VAE is a discrete set of 2D
points that lie on a curve resembling a B-spline curve
in style but does not exhibit the same smoothness of a
B-spline curve. The Laplacian term in the loss func-
tion guarantees the smoothness of the output curves.
We evaluate the smoothness of the generated curves
via analyzing the tangent vector behavior. To calculate
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the unit tangent vectors, we use the following equation
where p denotes the points lie on the curve:

Pi+1 — Di
i =

= (8)
||Pi+1 —Pi||

In a smooth curve, the tangent direction changes
gradually while in a noisy curve it might show abrupt
changes. We demonstrate the tangent direction of
some consecutive points of the smooth input curve
and the VAE output with and without Laplacian term
in Figure 3. The tangent vectors are visualized as
arrows at selected points along the curve. Compared
to the VAE-generated curve without Laplacian term,
the tangent vectors on the VAE-generated curve with
Laplacian term exhibit smoother directional transitions.

3.5 Investigating VAE architectures

We did numerous experiments to develop an appropri-
ate VAE architecture. The ordered set of points sam-
pled from 2D cubic B-spline curves is the input to
the VAE. Convolutional Neural Networks (CNN) are
a good choice for processing such spatially structured
data [Komarichev2019]. The experiments are started
with a shallow network (CNN_1), including two con-
volutional layers with kernel sizes 3 in the encoder part.
Activation functions introduce nonlinearity in the neu-
ral networks, which allows them to learn complicated
patterns and solve sophisticated tasks. The Rectified
Linear Unit (ReLU) activation function is utilized in all
the convolutional layers. A BatchNormalization layer
[Ioffe2015] is included to stabilize and facilitate the
learning process, followed by a max pooling layer to
reduce the dimension of extracted feature maps. In a
separate experiment, the kernel sizes are changed from
3 to 5 (CNN_2). It improves the performance of the
network, however, using a mix of both kernel sizes
(CNN_3), 5 for the first convolutional layer and 3 for
the second one, has further improved the performance.

The shallow networks are able to capture the overall
shape of the curve, however, they show poor perfor-
mance in regions with high curvature. Increasing the
number of convolutional kernels or layers is a promis-
ing way to improve the performance of a neural net-
work [Szegedy2016]. In two separate experiments, we
double the number of convolution kernels (CNN_4)
and increase the number of convolutional layers from
two to three (CNN_5). Increasing the number of con-
volutional layers demonstrates a greater improvement
compared to increasing the number of convolutional
kernels. The reconstruction still suffered distortions,
however, adding more convolutional layers followed by
max pooling layers lead to negative dimensions. In-
spired by InceptCurves [Barzegar2024], we introduced
inception modules between convolutional layers to im-
prove the performance of the proposed VAE (CNN_6).
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Figure 3: The tangent direction of selected points on (a) the original input curve, (b) the output of the VAE without
Laplacian loss function and (c) the output of VAE with Laplacian loss function.

In an inception module, convolutional layers with dif-
ferent kernel sizes extract features from the same in-
put in parallel and concatenate the results to feed to the
next layer, see Figure 4. It enables the network to ex-
tract multi-scale features concurrently and increase the
representational power of the encoder.

Next layer

ConviD, m, 1 ConviD, m, 3 ConviD, m, 5 ConviD, m, 1

ConviD, m, 1

ConviD, m, 1

Previous layer

Figure 4: Inception module. The number of convolu-
tional filters is denoted by m.

MaxPool, 3

Table 1 presents the evaluation of the above-mentioned
networks on a test set including 1000 open cubic B-
spline curves using mean squared difference between
target and predicted curves.

Network Average MSE
CNN_1 1.018
CNN_2 0.696
CNN_3 0.549
CNN_4 0.364
CNN_5 0.250
CNN_6 0.099

Table 1: The performance of different VAE architec-
tures are analyzed for curve reconstruction.

The reconstruction error, Equation (4), is averaged over
1000 curve reconstructions and is shown to reduce with
adding complexity to the network. Using the inception
module in the architecture reduces the reconstruction
loss considerably. The inception-based VAE is able to
capture the overall shape of the curve and learn the fine
details in the input curve.
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The size of the latent code will also influence the re-
construction accuracy of the proposed inception-based
VAE. We tried different latent dimensions, such as 8,
16, 32, and 64. Increasing the size of the latent code
improves the reconstruction of the input curve. Table
2 presents the evaluation of VAEs with different latent
code sizes using the average mean squared error be-
tween target and predicted curves on a test set consist-
ing of 1000 examples. We set the size to 32 to have a
balance between reconstruction accuracy and computa-
tional complexity.

Latent code size Average MSE
8 12.075
16 0.670
32 0.099
64 0.090

Table 2: The mean squared reconstruction error for
VAE with different latent code sizes.

The architecture of this network is depicted in Fig-
ure 5. In the encoder part, three convolutional lay-
ers and two inception modules are employed. The
number of kernels in the first inception module is 64,
while the second inception module contains 128 ker-
nels. The decoder has a similar architecture, except in
the beginning, a dense layer is employed to transform
the low-dimensional latent representation into a higher-
dimensional feature space.

For training this network, the gradient-based Adam op-
timizer [Kingma2014] with a learning rate of 1073 is
utilized. The batch size is 128, and the network is
trained for 900 epochs. All the experiments are per-
formed using Tensorflow on a Linux server equipped
with a GeForce RTX 4090 GPU.

Figure 6, shows two different test curves with their
corresponding reconstruction via our proposed method.
Below each figure the mean squared difference between
target and predicted curves is calculated. With the
Laplacian smoothing loss function, this network is able
to generate a smooth curve as output. It can also pre-
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Dense, 4096
Deconv1D, 253, 3
BatchNorm
Up-sample, 3
Inception
Deconv1D, 128, 3
BatchNorm
Up-sample, 3
Inception
Deconv1D, 64, 5
BatchNorm
Up-sample, 3
DeconviD, 2, 3

The architecture of the proposed network. In each convolutional layer, the first number is the number

of convolution filters and the second is the size of filters. The architecture of the inception module is presented in

Figure 4.

serve the overall shape of the input curve and recon-
struct it accurately.

106.1 104.9

39.7

(a) Error: 0.333

(b) Error: 0.366
Figure 6: Reconstructing two different curves with the
proposed VAE. The target curve is represented in blue
dashed line and the prediction of the network is de-
picted in red.

3.6 Interpolation

At inference, we consider interpolation between the la-
tent vectors to generate new curve data.

Curve data sampled from two different B-spline curves
are mapped to their respective mean distributions p;
and U, using the encoder. A new latent vector fi is
generated via an affine combination of u; and ,:

A= wi + (1= w)i. ©)

where w is a weight controlling the influence of u; and
U. For interpolation, we set the w to be in the interval
[0,1]. This technique is generalizable to the triplet case,
where the latent vectors of three curves are extracted
and interpolated:

= wily +wally + w3 3. (10)

where wi +wy +wsz = 1.

By interpolating latent means and feeding the newly
generated latent representation to the decoder, it is pos-
sible to generate diverse and meaningful variations of
existing 2D curve data. Thus, we can expand an exist-
ing dataset with realistic and new curves to avoid over-
fitting and improve the generalization capability of a
deep learning model.

4 RESULTS

Our proposed VAE maps planar curve data to a low-
dimensional space, the latent feature vectors, via the
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encoder. The curve can be reconstructed from the low-
dimensional latent vector via the decoder.

The encoder encodes the training samples to an infor-
mative latent space, where the nearby points in this
latent space are geometrically similar [Roberts2018].
Thus, the distance between points shows the difference
of shapes in the dataset. t-distributed Stochastic Neigh-
bor Embedding (t-SNE) is a dimensionality reduction
technique to map the high-dimensional data to a 2D
or 3D space while preserving the similarity between
points. We use t-SNE [Van2008] to visualize the la-
tent space in a lower dimension. In Figure 7, we show
the t-SNE visualization of latent means from the train-
ing set. On the top row, some examples are provided
to illustrate close points in this latent space correspond
to curves with similar shapes. In the bottom, we illus-
trate two interpolations where in the left side, the latent
means of the corresponding input curves are close in the
latent space which leads to a smooth interpolation be-
tween these curves. On the right side, the latent means
in the latent space are far from each other which deteri-
orate the interpolation results. The interpolated curves
might have some features that are not existed in the in-
put curves.

In order to synthesize a new curve, curve data sampled
from two 2D open cubic B-spline curves are fed to the
encoder and their corresponding mean latent vectors are
extracted. We linearly interpolate between mean latent
vectors of two smooth B-spline curves using Equation
(9). Our objective is to generate 2D polygonal curves
that preserve the geometric properties. The interpolated
mean vectors are fed to the decoder. Figure 11 illus-
trates latent vector interpolation of two arbitrary curves
and the new generated curves. We interpolate the latent
vectors in five steps, but this number can be adjusted as
desired. Figure 8 shows an example of triplet interpola-
tion.

If the synthetic data is required in form of B-splines,
we feed the generated curves to another data-driven ap-
proach, such as InceptCurves [Barzegar2024], to derive
a coarse mathematical representation of the new gen-
erated curves and utilize it in the design pipeline for
real-world object creation or manipulation. Because the
newly generated synthetic curves closely resemble B-
splines, the conversion yields good results. In Figure
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Figure 7: The latent space of our proposed VAE is visualized using t-SNE algorithm. Some examples on the
top shows that close points in the latent space correspond to curves with similar shapes. The bottom shows the
interpolation of two close (left) and far (right) points in the latent space.

100 100
80 80
60 60
40 40

20 40 60 80

(@) (b)

20 40 60 80

(© (@)

Figure 8: Three input curves (a), (b) and (c) are inter-
polated (d).

9, new curves are generated with our proposed VAE (a)
and fed to IncepCurves to produce a coarse polygon (b)
for each new generated curve.

There are different techniques for interpolation which
leads to different augmentation. A naive approach is to
interpolate two input curves data points. However, la-
tent interpolation yields results which are more smooth.
Figure 10 shows an example of interpolating curves
vs interpolating their corresponding latent codes using
our proposed VAE. As can be seen from Figure 10
interpolating latent codes results generates new curve
data which is smoother than interpolating the curves di-
rectly.
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Figure 9: Predicting the position of control points of
new generated curve (the light blue one in (a)). The
control polygon with the corresponding B-spline curve
is depicted in red and the generated curve from VAE is
depicted in blue.

S
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In many design workflows, especially in product de-
sign, the shape of a 3D part is often driven by a 2D
curve. Our proposed model supports this process by
allowing a designer to sketch two input curves repre-
senting desired shapes (see Figure 12 a and c). Using
our model, we generate various curves that smoothly

100 100

80 80

60 &

40

60

40

(a) (b)
Figure 10: Interpolating curves (a) vs interpolating the
mean latent vectors of the same curves using the pro-
posed VAE (b).
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Figure 11: In each row, the first two columns demonstrate curves for latent vectors interpolation. The last column

shows 5 steps of linear interpolation.

transition between the two inputs ( we show one ex-
ample in Figure 12 b). These generated curves offer
designers a range of alternative shapes that lie between
their original ideas, serving as a source of inspiration
and creativity. The variations are not random, but rather
geometrically plausible, enabling designers to explore
the latent space of possible designs with minimal effort.
Each generated 2D curve can then be used to form a full
3D shape. This capability provides a valuable tool for
early-stage design, where creative exploration is criti-
cal but time-consuming. Instead of manually sketch-
ing multiple options, the designer can use our system to
quickly produce consistent shape variants that maintain
key geometric properties. We demonstrate an example
in Figure 12 for designing the body of a vase using our
proposed method.

Our proposed generative model enables new 2D curve
generation which can either be utilized for learning pur-
poses or entering the design pipeline. The coarse and
continuous latent representation enables manipulation
for design exploration. In addition, the latent code by
our system can be used to gain understanding which
features are extracted by a network. With deep neural
networks, it is difficult to understand how the features
are extracted or what features are more important in the
final decision. Our proposed generative model can be
used to explore how and which features are extracted in
the latent code.

However, The proposed network is sensitive to its train-
ing set. The training set includes equidistributed curves
which are generated using a particular strategy for con-
trol points selection. Thus, the model is limited in
new curve generation. To generate new curves using
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our proposed method, the user can define the over-
all shape of the curves for interpolation, however, the
shape should remain similar to those present in the
training set. In future, we will work to expand and di-
versify the dataset to cover a broader range of curves
and control points configuration. In addition, the input
and output sizes of this model is fixed. We will improve
the model to process input curves of variable size and
outputs the same size as input.

5 CONCLUSION

In this work, we propose a new generative model for 2D
polygonal curve generation and reconstruction. While
this approach may find applications in numerous fields,
including computer-aided design (CAD), animation,
and robotics, this work focuses on data-driven shape
synthesis. The network is a Variational Autoencoder
designed with convolutional layers and inception
modules to learn a coarse and continuous latent
representation of 2D B-spline curves and reconstruct
the input data or synthesize new examples via inter-
polation. The network is trained in a self-supervised
manner, where it learns low-dimensional informative
features without any labels required. This model is
able to produce smooth curves without the need for any
post-processing.
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