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ABSTRACT

Feature recognition in meshes is a widely studied topic of computer science and is applied in order to identify and
analyse properties of a 3D shape. It finds applications in numerous fields, like, e.g. medical imaging, robotics, cul-
tural heritage, and CAD design. In this paper, we propose a new segmentation-based feature recognition approach
for 3D meshes, where features are defined by the intersection of two neighboring segments. The detected fea-
tures are used to derive very sparse polygonal representations of arbitrary input meshes, even merging features to
achieve a high degree of simplification. We compare results for edge-based segmentation and a new normal-based
segmentation and demonstrate how to derive good results even for pseudocurved surfaces and meshes affected by

artifacts.
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1 INTRODUCTION

In computer vision and graphics, feature recognition in
shapes is a prominent field of research. The focus of
this field has changed over the last years from recogniz-
ing features in images to detecting features in scanned
3D data. 3D scans tend to be prone to measurement
noise which complicates the recognition of features. A
common approach to address this problem is to apply
a type of smoothing to the noisy data that preserves
the features as accurately as possible [Sun02; Wan12;
Liu23a; Hur24; Wan24].

In this paper, we present a segmentation-based feature
recognition approach to derive a sparse polygonal rep-
resentation from noisy volumetric data. The goal was
for the approach to work on noisy input shapes directly
and to be able to handle various types of noise. To
achieve this, we apply a greedy algorithm to find larger
connected areas that represent segments of the shape.
The boundaries between the segments represent the fea-
tures. From these boundary regions, we extract a sparse
polygonal representation which serves as a simplified
representative of the shape. The results presented in
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this paper facilitate the extraction of a sparse polygonal
mesh representation from any 3D input geometry.

The paper is structured as follows: In Section 2, we take
a closer look at the current state of the art in the field of
segmentation-based feature recognition. In Section 3,
the new approach proposed in this work is described in
detail. The results obtained using two different segmen-
tation algorithms are compared and discussed in Sec-
tion 4. Finally, in Section 5, we conclude with an out-
look on possible future work in this field.

2 STATE OF THE ART

The area of feature recognition in shape data is
strongly researched and has numerous applications,
e.g., computer-aided design and manufacturing, com-
puter graphics, and structural engineering [Cal23;
Hur24]. Typical tasks that require feature recognition
include shape denoising, shape simplification, and
quality control. Feature-sensitive smoothing of noisy
polygonal meshes is also important in the domain of
numerical simulation, where it is necessary to find
sharp features, because these areas have a large influ-
ence on simulation [Kob03; Fan10]. One known way
to recognize features is the Hough transform [Has15],
which is used to detect various geometric shapes in
images. This was extended to detect features in the 3D
space [Rom22]. In addition to sharp features, which
represent distinct high-curvature changes in geometry,
such as edges, corners, creases, and ridges of a shape,
there are also so-called smooth or shallow features,
which represent gradual, low-curvature variations in
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the geometry [He 23]. These two different types of
feature are difficult to recognize due to the different
properties that characterize them. Typically, algorithms
aim to optimize the recognition of one feature while
accepting that the results for the other type of feature
may not be optimal. An example of this is the work of
Hurtado et al. [Hur24] where the geometry of the mesh
is used to increase the recognition of sharp features, but
shallow features are not represented well. Other works
create a dual graph for parts of the mesh to improve the
result [Liu23b].

Our work presented in this paper aims to detect sharp
features. A typical approach to detect sharp features
is by analyzing face normals and the change in nor-
mal direction that occurs at sharp features. Various
approaches aim to identify the vertices of a mesh that
are part of such sharp features by considering their one-
ring face neighborhood [Sun02; Wan12; Hur24], or the
change between the normals of adjacent faces [Wan24].
Another approach to detecting sharp features is to find
the planar areas within the mesh. If planar regions are
found, sharp features are located on the border where
two planar regions touch [Lee04; Wan24]. In their ap-
proach Lee et al. [Lee04] create polygonal meshes from
the input mesh, and each edge is labeled with a cost
value. Only high-cost polygonal regions are used for
the second step where a region growth algorithm is ap-
plied. For this region growth, face normals and the area
of the region are used as a metric. Wang et al. [Wan24]
use two different metrics to assess if two faces belong
to the same flat region. One is the intrinsic metric of
the average length of the edge. The other metric is the
L,-norm of the dihedral angle between two neighboring
faces. By combining these two metrics, a good segmen-
tation is provided. An approach from Cohen-Steiner et
al. [Coh04] uses an error-driven approach to segment
the faces into regions. They apply two steps iteratively
until they reach an error minimum. In the first step they
grow a certain number of regions on the mesh and try to
minimize the error. In the second step, a representative
is calculated for each region to minimize the distortion
error for the whole segmentation. Simari et al.[Sim14]
also use a k-means style approach. In their approach,
they start by selecting k region centers and grow the
regions from there. As soon as the whole mesh is par-
titioned into regions, new starting center faces for the
regions are calculated. If these calculated faces remain
the same for all regions, the algorithm is terminated. If
at least one face changes, a version of Dijkstra’s algo-
rithm is applied to each face to find the shortest path
to the nearest cluster center, and the face’s affiliation is
updated to a new region. These two steps are applied
alternately.

Instead of planar regions, other geometries may be
used. Liu et al. [Liu23a] use the fact that man-made
objects can generally be divided into a number of sim-
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ple geometric shapes. They trained a neural network to
recognize simple geometric shapes in a point cloud and
then fit a mesh onto the found shapes and define shape
features along intersections of these geometric shapes.

Vieria and Shimada [Vie05] applied iterative region
growing and fitting of quadratic surfaces. Their ap-
proach maximizes the number of connected vertices
that can be accurately approximated by a single under-
lying surface.

Liet al. [Li 18] focused on the curvature change in the
area of sharp features, but refined this approach by ap-
plying a smoothing algorithm on a copy of the mesh to
find the sharp features there and then using the infor-
mation of the sharp features found to smooth the main
mesh with respect to these features.

The aim of this work is to generate a simplified, sparse
polygonal representation from a dense, possibly noisy
triangle mesh representing man-made or engineering
structures, such as mechanical parts in CAD models.
Near-planar regions are of particular interest in solv-
ing this problem, and therefore, we focussed on grow-
ing near-planar regions. The features are then detected
at the intersections of planar regions. We will discuss
the edge-based simplification by Wang et al. [Wan24]
and its limitations in detail and present a new normal-
based simplification approach which focuses on creat-
ing a sparse polygonal representation. We will refer
to these two different approaches as edge-based and
normal-based feature extraction, respectively, through-
out this paper.

The majority of algorithms which focus on feature de-
tection apply some sort of smoothing to generate pla-
nar regions which are always connected to a loss of in-
formation. We tried to find a new way to detect sharp
features without applying any kind of smoothing. For
this, we looked at different approaches. We tried cre-
ating new planes in space to represent different sets of
faces, but this led to many erroneously detected features
from planes that should not intersect. We then experi-
mented with different approaches, focusing on greedily
growing regions. This leads to the approach we want to
present in Section 3 which uses a sort of probabilistic
method to define features.

3 METHOD

In this paper, a new approach is presented to derive a
feature-sensitive mesh simplification from corrupted in-
put shape data without any pre-processing. We achieve
this by segmenting the input shape into regions of pla-
narity. The segmentation of the input geometry into
planar regions will be discussed in Section 3.1. We
provide details on how we extract features from these
intersections in Section 3.2. The general steps of both
approaches discussed in this paper are presented in Ta-
ble 1.
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3.1 Segmentation

We compare two different segmentation approaches.
One is a modified approach from their work on feature-
sensitive smoothing by Wang et al. [Wan24]. We also
propose an approach based on segmenting the input
shape into planar segments, which specifically aims to
reliably detect sharp features.

3.1.1 Edge-based segmentation

Wang et al. [Wan24] introduce an edge-based approach
in their work on mesh simplification. To determine
whether two triangles are part of the same region in the
mesh, two metrics are used. The first metric is the av-
erage cosine between two face normals of neighboring
triangles. This is a threshold which is intrinsic to the
mesh and therefore does not need any user input. The
second metric used is a local metric, Z(e), which is de-
rived from an edge and the four corresponding vertices
that make up the two faces separated by the edge. The
calculation is performed as follows:

L123(pa—p3)-(P3—p1)+D134(p1—p3)-(p3—p2)

(Ip3=p11)2 (D123 +A134) P1
PeEsv.ye P
_ 123148134
P(e) = A123(P3*I/1)'(l”|*IMjJrAm(M*PI)'(1!71*1!'3) D3 M
(Ip3=p1)2 (D123 +D134)
JANPS P4
Az +D13s

where p; is the position of one of the four corner ver-
tices of the neighbouring triangles labelled in counter-
clockwise order as can be seen in Figure 1, and A is
the area of the triangle build by corner vertex i, j and k.
The Ly-norm of this metric represents the dihedral angle
between the two neighboring faces. If the value is equal
to zero, then a dihedral angle between the two faces is
180°. If the value is larger than zero, then the angle
is smaller than 180°. These two properties are inversely
proportional. This metric is compared with a user-given
threshold. By combining these two metrics, a good seg-
mentation result is retrieved. For more details, we refer
the interested reader to Wang et al. [Wan24].

Wang et al. [Wan24] introduced a post-processing step
to improve their segmentation results by removing the
so-called "islands", small areas that consist of only very
few faces. Next to the user-defined threshold for the
local metric Z(e), they therefore introduce a second
user-defined threshold, namely the minimum number of
faces a segment must contain to not be removed during
post-processing. Both parameters may be tuned to im-
prove the segmentation results for a given input. Their
approach to avoid small island segments in their seg-
mentation approach is to regroup small islands into seg-
ments that are already large enough. Wang et al. are not
clear on how their algorithm handles these islands. It is
stated that these islands check their neighboring faces
for a correct segment, but to which segment the faces
are then regrouped is not explained.
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Figure 1: Point orientation for Wang et al. [Wan24]

We evaluated two different regrouping strategies for
their suitability in our proposed simplification algo-
rithm. In the first strategy, we refer to as instant re-
grouping, a face belonging to an island first examines
its three neighboring faces to determine their affilia-
tion, ignoring those that are also part of islands. Then it
checks whether the remaining neighbors belong to dif-
ferent segments. If all belong to the same segment, the
face is reassigned to that segment. If there are multiple
neighboring segments, the algorithm evaluates which
segment shares the most edges with the current face.
If a dominant segment is identified, the face is reas-
signed to it; otherwise, it joins an arbitrary neighbor-
ing segment. This process helps minimize the jagged
boundaries between the segments. The method is re-
peated iteratively until all islands are resolved. The sec-
ond strategy, which we refer to as iterative regrouping,
is similar to instant regrouping, differing only in the
way the regrouping is handled. In instant regrouping
the segment of the face is instantly changed. In iter-
ative regrouping the face only saves its new segment
but does not change its affiliation yet. Instead, we it-
erate over all faces and determine the segment for each
of them if possible. Only when all faces have deter-
mined their new segment will they change their affil-
iation. This strategy ensures that newly grouped faces
do not influence their neighbors, which could otherwise
lead to a shift of the borders. If faces are still part of is-
land groups, a new iteration starts. The disadvantage of
this strategy is that the borders are more jagged.

3.1.2  Greedy Normal-based Segmentation

In order to find a suitable segmentation of a mesh, dif-
ferent variations of greedy approaches were evaluated.
Each approach starts with selecting an arbitrary face,
the reference face that is currently not part of a seg-
mented group. The face normal of the reference face
is compared to the face normal of each of its neighbor-
ing faces. If the angle difference between the two nor-
mals is smaller than a user-defined threshold, the face
is added to the current growing area and is added to a
queue that is used for the greedy breadth first search.

The result of this greedy normal-based segmentation
approach strongly depends on the position of the face
that is arbitrarily chosen as a reference face in each it-
eration. If a reference face is part of a low-curvature
area, it will grow the area on this low-curvature part
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Phase

Our Normal-based Extraction

Edge-based Extraction

Input processing

Edge recognition

build vertex neighbourhoods,
build face neighbourhoods

I I I
. face normal-based greedy, edge-based greedy,
Segmentation multiple seeded segmentations by Wang et al.
I I I
Segmentation . . . .
. extract intersection of segmentations merge small regions
post-processing
I I I

identify the boundary of intersection
peel boundary

build vertex neighbourhoods,
build face neighbourhoods

identify corner vertices,
connect corners properly

Table 1: Overview over the steps of the two algorithms in comparison.

of the mesh. However, if the mesh is noisy or con-
tains artifacts that dilute sharp features of the mesh,
then the change in normals between each face might
be smaller than the user-defined threshold, and the area
grows around features in a mesh, which are then not de-
tected. In order to resolve this and make this approach
more robust to corrupted input data, multiple iterations
of the greedy approach are executed with different ran-
domly selected reference faces. The different results
from these iterations are then used to find the edges as
described in Section 3.2.

One advantage of this normal-based segmentation strat-
egy is that iterations work independently of each other.
This allows us to parallelize this approach, significantly
speeding up the segmentation. For the examples pre-
sented in this paper, we chose five iterations of this
segmentation, which resolved all the features present
in each of the example meshes.

For this paper, we decided to use c++ as the implemen-
tation language. We did not use special libraries.

3.2 Feature extraction

Various methods for retrieving edges, edge paths, and
corner vertices were evaluated.

After applying a normal-based segmentation, we ini-
tially used the reference face of the segmentation areas
to create planes based on face normals. Although ef-
fective for simple meshes like a cube, it lacked clear
borders, resulting in well-defined planes but missing
edges and corners. Intersecting these planes identi-
fied edges (from two-plane intersections) and corners
(from three-plane intersections), but this led to many
false positives, especially in complex shapes. Filter-
ing them out effectively proved to be difficult. Better
results were achieved using segmentation areas to ex-
tract border vertices as starting points for edge recog-
nition. This method worked well on clean meshes but
failed for meshes which were corrupted by noise or ar-
tifacts. To improve robustness, multiple segmentations
were combined, each using different random reference
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faces. A vertex was identified as border vertices only if
it was identified as a border vertex in all segmentations.
Although this reduced false positives, it also removed
valid border vertices due to slight segmentation shifts.
To further increase robustness, a one-ring neighborhood
was added before intersection, solving the problem of
missing border edges. This solution creates broader
border areas instead of border regions containing only
a polygon path. An example of a segment of this region
can be seen in Figure 2a. To refine this, a peeling pro-
cess was applied: in each iteration, vertices on the hull
of the region (with both inner and outer neighbors) were
marked for removal. This process was iteratively con-
tinued until only a thin border in the form of a polygon
path remained, which included some triangles which
cannot be peeled by the algorithm. This can be seen
in Figure 2b. To remove the residual faces a new vertex
is created in the face and used as a representative. Then,
all edges of the triangle are deleted. The corner vertices
are also deleted if they are not needed for another edge.
The final result are connected polygon lines along the
features of the input shape. This can be seen in Figure
2c.

(a) (b) (©
Figure 2: Peeling process

Similarly, we explore two approaches to extract a
sparse polygon from the segmentation by Wang et
al. [Wan24]: In the first approach, we describe the
edges by defining all vertices that are part of at least
two segments as edge vertices. In a second approach,
we define all vertices that lie on the border of three
different segments as corner vertices. Edges between
corner vertices are added if they share at least two
regions. Defining corner vertices typically leads to the
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shape being represented by sparse polygon meshes.
However, this approach fails if a mesh does not contain
corners, as can be seen in the example of a cylinder in
Section 4.1. For this paper, we used the edge approach
to derive a reliable feature detection for any input
shape and generate results robustly independent of the
quality of the shape data. We use the instant regrouping
approach for post-processing to generate smoother
borders, as discussed in Section 3.1.1.

4 RESULTS

We carried out experiments on a range of simple ge-
ometries, each illustrating different shape feature sce-
narios.

In order to test the proposed algorithm and compare
the results with the example algorithm from Wang et
al. [Wan24], both algorithms are applied to triangu-
lar meshes of different geometric shapes which are cor-
rupted by various levels of noise or are warped by ar-
tifacts. As an input value for D, which is needed for
the edge-based approach, we tested several values and
came to the conclusion that D = 0.001 creates the best
results. For the normal-based approach,different angles
were used for the examples, since the angle that worked
well for one approach did not produce good results for
all the other meshes.

4.1 Experiments on clean meshes

We conducted experiments on a cube mesh. To add a
degree of difficulty typically found in real-world engi-
neering data, the edges of the cube were flattened. Such
scenarios make it difficult to convert shape data into the
very sparse representations which we aimed for in this
work. The input mesh for this experiment is shown in
Figure 3a. An enhancement of one corner is shown in
Figure 3b. To increase the visibility of the flattened cor-
ner, a shader was applied. The angle difference we used
for this mesh is 40°. Two results for the segmentation
approach discussed in Section 3.1.2 can be seen in Fig-
ure 4a and Figure 4b, respectively. For both results, the
main faces of the cube are segmented correctly but dif-
ferences in the area of the edge features can be seen.
The reason for this is the flattened edges of the input
mesh which lead to different representations. In Fig-
ure 4c, the intersection of all segmentation boundary re-
gions was extracted as explained in Section 3.1.2. The
core geometry of a cube is already visible there. The
result of the peeling process and the removal of the tri-
angles as described in Section 3.2 is shown in Figure
4d.

In comparison, the segmentation result of Wang et
al. [Wan24] can be seen in Figure 5. The segmen-
tation result is shown before, Figure 5a, and after
post-processing, Figure 5b. Every vertex that is part of
at least three segments is regarded as a corner vertex
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of the sparse polygon. We introduced edges between
these corner vertices if two of at least three segments
are the same. The sparse polygonal representation,
which is generated in this way, can be seen in Figure
Sc. The polygonal representation of the shape shows
some degree of distortion, which originates from the
flattened edges of the input mesh, which causes a
shift of the corner vertices. The derived polygonal
representations here demonstrate that features are
detected, which are captured as polygon chains. The
results shown in the section are therefore not true
polygon meshes. However, from these polygonal
representations we can derive sparse polygon meshes
simply by converting polygon chains to single edges.
An example in which this has been done is shown in
Figure 11d for the polygonal representation example
shown in Figure 11c.

-

I

y

(a) (b
Figure 3: Input mesh

() (b)

(d
Figure 4: Results for the cube input mesh with the pro-
posed algorithm described in Section 3.1.2.

() (b) (©

Figure 5: Results for the cube input mesh with the al-
gorithm from Wang et al. [Wan24].

To test our approach for curved shapes, we applied the
algorithms to a triangulated cylinder mesh shown in
Figure 6. For this mesh, we used an angle difference of
10°. Figure 7a and Figure 7b show two of the segmen-
tation iterations. It can be seen that some of the faces
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are fragmented in this segmentation. However, this is
resolved through the intersection of all boundary sets,
which can be seen in Figure 7c. The result of the peel-
ing and removal of the triangles can be seen in Figure
7d.

In comparison, the segmentation results for the ap-
proach by Wang et al. [Wan24] are shown in Fig-
ure 8c, before 8a and after 8b post-processing, respec-
tively. Their algorithm is designed to segment curved
and pseudo-curved faces together, which leads to the
whole lateral surface of the cylinder being treated as
one segment. This is a good result for some fields of
application, but it leads to only extracting two not con-
nected circles as can be seen in Figure 8c.

Figure 6: Cylinder input mesh

() (b)

(d)
Figure 7: Results for the cylinder input mesh with the
proposed algorithm described in Section 3.1.2.

(a) (b) (©

Figure 8: Results for the cylinder input mesh with the
algorithm from Wang et al. [Wan24].

To assess the detection of surface features, we analyzed
a cube with a truncated pyramid on its top surface. The
input mesh can be seen in Figure 9. The angle differ-
ence we choose for this mesh is 30°. Two segmentation
results of the proposed algorithm can be seen in Figure
10a and Figure 10b. The generated intersection of these
border regions can be seen in Figure 10c. The final bor-
der polygon, which still consists of some triangles, can
be seen in Figure 10d.
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The segmentation results of Wang et al. [Wan24], are
shown in Figure 11a. This segmentation still contains
some small islands on the abraded edges of the input
mesh. These islands are resolved in the post-processing
step, Figure 11b. The edge polygon recovered from this
segmentation can be seen in Figure 11c. The simpler
corner-based polygon can be seen in Figure 11d. In
this case, both algorithms result in two polygonal rep-
resentations that are not connected. Deriving a polygo-
nal mesh from this result is less straightforward than in
previous examples, since the algorithm cannot extract
a connected polygonal representation from the input.
An approach could be to use topological information
to extract these edges. Another way could be to check
connectivity in the extracted polygons and, if they are
disconnected, add edges.

S —
y A

v
y

Figure 9: Cube with truncated pyramid input mesh

(© (d
Figure 10: Results for the truncated pyramid input mesh
with the proposed algorithm described in Section 3.1.2.

\
@ (b) ©

(d
Figure 11: Results for the truncated pyramid input mesh
with the algorithm from Wang et al. [Wan24].

The last clean shape, on which the algorithms are
tested, is a classic torus, Figure 12.

Two of the segmentation results for the normal-based
segmentation algorithm can be seen in Figure 13a and
Figure 13b. The segmentation results consist of many
different patches of regions. The reason for this is the

220
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way that this algorithm greedily finds the regions by
comparing them to the reference face where this region
started to grow. Due to the curvature, the normals for
faces that should be part of the same region can strongly
change, which results in this segmentation. The strong
fragmentation of the regions leads to the classification
of every face as a border region, as seen in Figure 13c.
This results in a problem where the algorithm tries to
peel the border but only generates a not very useful re-
sult. The peeling on this border region does not give
any useful results because there is no outer hull where
the peeling can start, as shown in Figure 13d.

If the segmentation approach by Wang et al. is ap-
plied to the torus, a less partitioned result is created, as
shown in Figure 14a. The post-processing for this seg-
mentation also yields the same result as without post-
processing as shown in Figure 14b. From here, several
rings are found, but without connections between them,
as shown in Figure 14c. Similarly to the previous exam-
ple, to derive a true polygon mesh from this, additional
edges would need to be introduced carefully.

-—

Figure 12: Torus input mesh

QS
=

(© (@
Figure 13: Results for the torus input mesh with the
proposed algorithm described in Section 3.1.2.

(a) (®) (©

Figure 14: Results for the torus input mesh with the
algorithm from Wang et al. [Wan24].

4.2 Experiments on corrupted meshes

In this section a closer look is taken on how both ap-
proaches handle corrupted data. The corrupted cube is
shown in Figure 15. The cube was not subject to par-
ticular noise, but the edges have been smoothed during
the scanning process, and additional shallow features
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appear. The goal is to derive a polygonal representation
that captures the overall shape but ignores shallow fea-
tures. We choose an angle difference from 40°. The re-
sults for the normal-based approach and the edge-based
approach are shown in Figures 16 and 17, respectively.
Two results of the segmentation of the normal-based al-
gorithm can be seen in Figure 16a and Figure 16b. The
intersection of the border regions of different segmen-
tations can be seen in Figure 16c. It can be seen that the
border region is already a good representation of the
polygon, but there are some holes in these borders. Af-
ter the peeling only a small border is left. This border
also contains some holes and some triangles, but this
is already a good representation of the sparse polygon.
An advantage is that the polygon shown in Figure 16d
has nearly no distortion.

In comparison, the result of the edge-based approach
algorithm gives a smoother polygon, see Figure 17a
before and with post-processing, shown in Figure
17b. However, edge-based segmentation also leads to a
stronger distortion in the final polygonal representation,
as can be seen in Figure 17c.

Figure 15: Cube with artefacts input mesh

Figure 16: Results for the cube input mesh with arti-
facts with the proposed algorithm described in Section
3.1.2.

4

(a) (b) (©)
Figure 17: Results for the cube input mesh with arti-
facts with the algorithm from Wang et al. [Wan24].
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Next, we analyzed both algorithms applied to the cor-
rupted cube with a truncated pyramid on its top surface,
as can be seen in Figure 18. We choose the same an-
gle difference as for the clean mesh with 30°. Again,
the artifacts by which this shape is corrupted lead to
smoothing of the sharp edges, which will not lead to
all edges being identified correctly. In Figure 19a and
Figure 19b, two iterations of the segmentation can be
seen. The result of the intersection can be seen in Fig-
ure 19c. The intersection of the boundary regions of the
normal-based segmentations contains some holes in the
edges, as well as some additional islands due to the arti-
facts. After peeling, the algorithm returns features that
collectively resemble a sparse polygon, but some of the
needed edges are missing, as shown in Figure 19d.

The segmentation of this input shape by the edge-based
algorithm can be seen in Figure 20a. The corners of
the cube part of the mesh are too rounded to be reliably
identified. The upper part of the truncated pyramid is
strongly fragmented due to artifacts. Post-processing
only partly repairs this, so that the result, which can be
seen in Figure 20b. By applying the same approach as
before to the segmented mesh, the polygon can be seen
in Figure 20c is created.

Figure 19: Results for the truncated pyramid input
mesh with artifacts with the normal-based algorithm de-
scribed in Section 3.1.2.

The last mesh to which the algorithms are applied is the
mesh of the cube with the truncated pyramid, but here,
the shape is corrupted by Gaussian noise; see Figure
21. For this mesh, we also used the same angle dif-
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Figure 20: Results for the truncated pyramid input
mesh with artifacts with the algorithm from Wang et
al. [Wan24].

ference at 30°. Two iterations of the segmentation of
the proposed algorithm can be seen in Figure 22a and
Figure 22b. It can already be seen that the noise leads
to stronger fragmentation. This leads to the result that
the border region shows only a small reduction com-
pared to the input mesh as shown,as shown in Figure
22c. Peeling can be applied to this border region but
does not produce a very good result, as shown in Figure
22d.

The edge-based segmentation algorithm is not better
suited for this challenge. The result of the segmenta-
tion as well as the corresponding post-processing can
be seen in Figure 23a and 23b respectively. It can be
seen that uniformly distributed noise leads to a wrong
segmentation where nearly all faces are classified as one
area. Due to this misclassification, it is not possible to
extract a polygon from the segmentation result.

Figure 21: Truncated pyramid with noise input mesh

In order to improve the results, we looked at the ef-
fects of adjusting the user-defined normal-angle thresh-
old for the normal-based segmentation. We used the
mesh of the cube with the truncated pyramid as an in-
put and added different levels of Gaussian noise. The
standard deviation of the noise was derived from the
average length of the edges of the input mesh divided
by 10, 25, or 50, respectively. The angle thresholds of
the normals are 30°, 45°, and 60°. The results for these
different configurations can be seen in Table 2. The re-
sults for the noise with the highest standard deviation
(division factor of 10) still contain a significant amount
of noise, and even lowering the normal angle threshold
did not lead to good feature identification. However, we
were able to derive the most important edges by lower-
ing the normal angle threshold if there was less noise
in the input shape. In the image with an angle differ-
ence of 30°some artifacts caused by the noise are still
present. If the angle difference is increased to 45°the
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Figure 22: Results for the truncated pyramid input mesh
with Gaussian noise with the proposed algorithm de-
scribed in Section 3.1.2.

(2) (b)

Figure 23: Results for the truncated pyramid input mesh
with Gaussian noise with the algorithm from Wang et
al. [Wan24].

majority of artifacts caused by the noise are filtered out
and relevant border edges are found. As soon as the an-
gle difference increases, holes in the border edges are
produced. For even smaller noise, the result is already
quite similar to the result for the noiseless mesh.

S CONCLUSION AND FUTURE
WORK

In this paper, we introduce the segmentation-based fea-
ture extraction algorithm which returns a very sparse
polygonal representation for a dense input mesh. To
segment the input shape, we compare a normal- and an
edge-based approach to find sharp features of a given
mesh at intersections of different segments. The goal
was to find a robust approach that reliably identifies the
overall shape from shape data, which may be corrupted
by artifacts or noise. The presented approach therefore
focuses on sharp features. One advantage that can be
seen in this paper is the higher stability in regard to
noise input meshes. Compared to Wang et al. [Wan24],
our algorithm extracted some features from the noise
input that could be improved by post-processing. The
result still extracts some false positives, but this can be
a field of future research. One way to improve this al-
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gorithm would be to increase the number of segmen-
tation iterations and to determine an appropriate per-
centile that ensures that all features are identified almost
surely.

The results presented are the first and most important
step towards extracting very sparse polygon meshes,
which represent the overall shape of corrupted input
data. Future work will derive clean, very sparse poly-
gon meshes from the polygonal representations derived
in this work.
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