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Abstract—In autonomous driving, the quality of input images
is crucial for the accuracy and reliability of perception systems,
particularly in tasks like 3D object detection and drivable
area segmentation. This study examines the impact of training
Multi-Task Learning (M-TL) models exclusively on high-quality
images for these applications. Using the KITTI dataset, we
apply AI-based and traditional Image Quality Assessment (IQA)
algorithms to filter and retain only high-quality images during
training. Our experiments reveal that models trained on high-
quality images achieve significantly better performance than
those trained on the full dataset, including images of varying
quality. These findings highlight the critical role of image quality
in enhancing the accuracy and robustness of M-TL learning mod-
els for autonomous driving. Furthermore, this work emphasizes
the importance of integrating image quality evaluation into the
data-preprocessing pipeline to optimize model performance.

Index Terms—Image Quality Assessment, Multi-Task Learn-
ing, 3D Object Detection, Drivable Area Segmentation, Smart
Mobility.

I. INTRODUCTION

In autonomous driving, Image Quality Assessment (IQA)
plays a crucial role in ensuring reliable perception. Cameras,
as primary sensors, provide visual data for tasks such as object
detection, lane detection, and scene understanding. However,
real-world conditions introduce challenges like low lighting,
motion blur, and sensor noise, degrading image quality and
impacting perception accuracy. Despite its importance, the role
of image quality in training and deploying perception models
has received limited attention.

M-TL has emerged as an effective paradigm for autonomous
driving, enabling models to learn multiple tasks simultane-
ously. In this work, we focus on 3D object detection and
drivable area segmentation—two key tasks that rely on high-
quality visual input for accurate results. While research has
explored model architectures and training strategies, the im-
pact of image quality on M-TL models remains underexplored.

In this paper, we investigate how image quality influences
our model, labeled as Multi Task 3D-Segmentation (MT3D-
Seg), for autonomous driving by leveraging both AI-based
and traditional IQA methods. Our hypothesis is that train-
ing the model exclusively on high-quality images enhances

performance. Using the KITTI dataset, we filter out low-
quality images and compare MT3D-Seg models trained on
high-quality subsets versus the full dataset to quantify the
effect of image quality on perception accuracy.

The paper is structured as follows: Section II reviews related
work, Section III details our methodology, Section IV presents
experimental results and analysis, and Section V concludes
with findings and future directions.

II. RELATED WORK

Ensuring high-quality visual input is essential for accurate
perception in autonomous driving. This section reviews tradi-
tional and AI-based image quality assessment (IQA) methods,
classifies them based on reference availability, and discusses
how image quality impacts the performance of autonomous
systems.

A. Traditional vs. AI-Based IQA Methods

Traditional Image Quality Assessment methods are
grounded in signal fidelity metrics that quantify image degra-
dation by comparing a distorted image to a reference. These
methods use predefined mathematical formulas to estimate
how much the image has been altered.

A widely used example is the Peak Signal-to-Noise Ratio
(PSNR), which is based on the Mean Squared Error (MSE)
between the distorted image and its clean reference. PSNR is
defined in Equation 1:

PSNR = 10 · log10
(
MAX2

I

MSE

)
(1)

Here, MAXI is the maximum possible pixel value (usually
255), and MSE is the average squared difference between cor-
responding pixels. A higher PSNR indicates that the distorted
image is more similar to the original. However, PSNR is often
criticized for its poor correlation with human visual perception,
as it treats all pixel errors equally regardless of their visual
impact.

To address this limitation, the Structural Similarity Index
Measure (SSIM) [16] was introduced. SSIM attempts to model
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human visual perception by comparing structural information
in image patches. It considers three perceptual components:
luminance (µ), contrast (σ), and structure (σxy). SSIM is
defined in Equation 2:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2)

In this formula, µx, µy are the mean intensities of the two
image patches, σx, σy are their variances, and σxy is the
covariance. SSIM provides a more perceptually aligned quality
measure than PSNR but still requires a reference image.

In contrast, AI-based IQA methods learn to predict percep-
tual quality directly from image data using machine learning,
often without needing a reference. One of the earliest models
in this category is BRISQUE (Blind/Referenceless Image
Spatial Quality Evaluator) [11], which is a no-reference (NR)
method that uses natural scene statistics (NSS). It extracts sta-
tistical features from locally normalized luminance coefficients
and uses a trained regression model to predict a quality score.
BRISQUE was among the first NR methods to perform well
without deep learning.

More recently, deep learning-based models like Neural
Image Assessment (NIMA) [14] have emerged. NIMA uses
a convolutional neural network (CNN) trained on datasets
with human-rated quality scores. It outputs a probability
distribution over quality scores (e.g., from 1 to 10) and uses
the expected value as the final predicted score. This approach
learns complex perceptual cues and generalizes better across
diverse distortions.

Another modern method is DIQA (Deep Image Quality
Assessment) [9], which also uses CNN architectures but is
optimized for better handling of complex distortions under
uncontrolled conditions. These deep models offer improved
correlation with human judgments and adaptability to real-
world scenarios, particularly in applications like autonomous
driving, where reference images are not available.

Overall, AI-based methods outperform traditional ones in
perceptual relevance and robustness but require large annotated
datasets for training and are computationally heavier.

B. Reference vs. No-Reference IQA
IQA methods can also be classified by the availability of a

pristine reference image:
• Full-Reference (FR) methods require a clean reference

image to compare against the distorted one. Metrics like
PSNR and SSIM fall into this category [12].

• No-Reference (NR) methods, or blind IQA, assess image
quality without any reference. These models often rely
on statistical regularities of natural scenes or learned
perceptual features. BRISQUE [11] uses hand-crafted
features based on natural scene statistics, while NIMA
[14] leverages deep learning to estimate quality scores
from raw images [13].

NR methods are especially valuable in autonomous driving
scenarios, where reference images are typically unavailable at
runtime.

C. Impact of Image Quality on Autonomous Driving

Image quality directly affects the reliability of perception
modules in autonomous vehicles. Poor-quality images —
caused by motion blur, noise, low light, or weather conditions
— can degrade the performance of object detection, lane
recognition, and obstacle avoidance systems. For instance,
inaccuracies in visual input can affect pixel-level depth esti-
mation and lead to failures in tasks like adaptive cruise control
or pedestrian detection [4, 18].

As perception systems heavily rely on vision-based models,
integrating robust IQA into the pipeline becomes essential for
improving safety and operational reliability. Recent studies
have emphasized the importance of image quality monitoring
as a pre-processing or auxiliary step in autonomous vision
systems.

III. METHODOLOGY

In this section, we present the methodology used to inves-
tigate the impact of image quality on our multi-task learning
model, MT3D-Seg, for 3D object detection and drivable area
segmentation.

A. Multi-Task Learning Model

Our M-TL model, MT3D-Seg, is designed to simultane-
ously perform 3D object detection and drivable area segmen-
tation, two critical tasks for autonomous driving. As illustrated
in Figure 1, the model consists of a shared encoder for
feature extraction and two task-specific decoders for 3D object
detection and drivable area segmentation. This architecture
allows the model to leverage shared representations while
optimizing performance for both tasks.

1) Encoder: The encoder, based on CSPDarknet[10],
serves as the backbone of our model, extracting multi-scale
features from input images. CSPDarknet is chosen for its
efficiency in object detection tasks, as it minimizes gradient
duplication and enables efficient feature propagation [2] [17].
To further enhance feature representation, we integrate Spatial
Pyramid Pooling (SPP) [5] and Feature Pyramid Network
(FPN) modules [7]. The SPP captures multi-scale features,
while the FPN merges features across different semantic levels,
enriching the encoder’s output for both tasks.

2) 3D Detection Decoder: The 3D detection decoder builds
on an anchor-based detection strategy, similar to YOLO ar-
chitectures, but optimized for 3D object detection. It predicts
3D bounding box parameters, including the object center (x,
y, z), dimensions (width, height, length), orientation (yaw
angle), and distance from the camera. These predictions are
derived from multi-scale feature maps generated by the FPN
and Path Aggregation Network (PAN) [8], ensuring accurate
localization and spatial representation of objects in 3D space.

3) Segmentation Decoder: The segmentation decoder gen-
erates pixel-wise drivable area masks by processing features
from the bottom layer of the FPN. It employs a lightweight
design with three upsampling steps to restore the feature map
to the original input resolution. Nearest Interpolation is used
for upsampling to minimize computational overhead, ensuring
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real-time performance. The output is a probability map with
two channels, representing the drivable area and background.

4) Dataset: The KITTI dataset [3] is one of the most widely
used benchmarks for autonomous driving research, providing
high-quality data collected from real-world driving scenarios.
It includes stereo camera images, LiDAR point clouds, and
GPS/IMU data, enabling comprehensive perception tasks such
as 3D object detection, drivable area segmentation, and depth
estimation. In this work, we utilize the RGB images from the
KITTI dataset to train and evaluate our multi-task learning
model.

B. Impact of Image Quality

To assess the impact of image quality on our multi-task
learning model, we implement a pre-processing pipeline that
evaluates and filters images based on their quality. Unlike
traditional methods that rely on a single quality assessment
approach, our study compares both traditional and AI-based
IQA models to analyze their effectiveness in the context of
autonomous driving tasks. This comparison allows us to better
understand the strengths and limitations of each approach in
enhancing 3D object detection and drivable area segmentation.

The pre-processing pipeline, illustrated in Figure 2, consists
of several key steps. To evaluate image quality, we employ
both AI-based and traditional IQA methods, categorized based
on their evaluation speed and precision. All selected models
are no-reference IQA methods, meaning they do not require a
reference image for comparison:

• AI-Based No-Reference IQA Models:
– Fast evaluations: NIMA [14] is an efficient deep-

learning-based method that predicts human percep-
tual scores for image quality assessment.

– Precise evaluations: MANIQA [19] provides more
accurate quality assessments, particularly for high-
resolution images and complex visual scenes, using
deep learning and large-scale training datasets.

• Traditional No-Reference IQA Metrics:
– Fast evaluations: BRISQUE [11] is a no-reference

metric that assesses image quality based on statistical
features derived from natural scene statistics.

– Precise evaluations: PIQE (Perception-based Im-
age Quality Evaluator) [15]: Computes block-wise
degradation by detecting distortion regions, offering
robust no-reference image quality assessment. IL-
NIQE (Integrated Local Natural Image Quality Eval-
uator) [1]: An improved version of NIQE, integrating
local natural scene statistics for better evaluation of
enhanced and distorted images.

Each image in our dataset is processed through these
methods, and only those meeting a predefined quality threshold
are retained for training. This ensures that the multi-task
learning model is trained on high-quality images, minimizing
the impact of noise, blur, and distortions that could affect 3D
object detection and drivable area segmentation. By comparing

the performance of models trained on filtered (high-quality)
images versus unfiltered datasets, we aim to quantify the effect
of image quality on the accuracy and robustness of perception
tasks in autonomous driving scenarios.

C. Quality Score Normalization and Thresholding

To enable consistent quality evaluation across different IQA
metrics, we establish a unified assessment framework through
rigorous score normalization. Each metric’s raw outputs are
transformed to a common [0,1] scale using carefully designed
mappings that preserve their original quality interpretation:

• For NIMA (range [1,10]), where higher scores indicate
better quality:

Qnorm =
Qraw − 1

9
(3)

• For MANIQA (range [0,100]):

Qnorm =
Qraw

100
(4)

• For BRISQUE, PIQE, and IL-NIQE (all range [0,100]),
where lower scores indicate better quality, we first invert
then normalize:

Qnorm =
100−Qraw

100
(5)

Where Qraw = Original output score from the IQA metric
and Qnorm = Normalized score (0-1).

The normalized scores enable application of our universal
quality threshold τ = 0.85, which was determined through
systematic empirical validation. We evaluated threshold can-
didates across the range [0.70, 0.95] in 0.01 increments,
measuring the impact on both model performance and data
retention rates. This threshold demonstrated consistent superi-
ority across all perception tasks in our experiments, optimally
balancing data quality and quantity for autonomous driving ap-
plications. The validation process confirmed that 0.85 provides
the best compromise between maintaining sufficient training
data volume and ensuring high input quality, as measured by
downstream task performance metrics.
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Fig. 1: Architecture of our M-TL model MT3D-Seg with a shared encoder and two decoders for 3D object detection and
drivable area segmentation.

Fig. 2: Overview of the image quality assessment pipeline integrated into the multi-task learning model. The IQA module
evaluates input images and filters out low-quality samples before processing them for 3D object detection and drivable area
segmentation.

IV. RESULTS & ANALYSIS

This section discusses the impact of IQA-based image filter-
ing on our MT3D-Seg’s M-TL model for 3D object detection
and drivable area segmentation. We compare the performance
of models trained with and without IQA preprocessing, using
quantitative metrics for evaluation. To further illustrate the
model’s effectiveness, Figure 3 presents qualitative results
obtained with MT3D-Seg on various driving scenarios. These
visualizations showcase the model’s ability to detect 3D ob-
jects and segment drivable areas under different conditions. A
detailed qualitative comparison between MT3D-Seg and the

IQA-filtered models will be presented in our future work,
where we will analyze the improvements in robustness and
generalization across various driving environments.

A. Impact of IQA on 3D Object Detection

To assess the effect of IQA on 3D object detection, we
compare the performance of models trained with and without
image quality filtering. Table I reports the results using Recall
and Mean Average Precision (mAP70) at IoU 0.7. We also
evaluate key components of our 3D pipeline:
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(a) Qualitative results of MT3D-Seg for traffic 3D object detection.

(b) Qualitative results of MT3D-Seg for drivable area segmentation.

Fig. 3: Visualization of MT3D-Seg qualitative results for 3D object detection and drivable area segmentation.

TABLE I: Impact of IQA on 3D Object Detection. MT3D-Seg is the baseline model without IQA-based filtering. Bold values
indicate the best result for each metric.

Model IQA Type Recall (%) mAP70 (%) DS CS OS

MT3D-Seg - 84.2 77.5 0.98 0.97 0.97
MT3D-Seg + NIMA AI-Based 89.4 (+5.2) 81.1 (+3.6) 0.98 0.98 0.97
MT3D-Seg + BRISQUE Traditional 84.1 (-0.1) 78.1 (+0.6) 0.98 0.98 0.98
MT3D-Seg + MANIQA AI-Based 87.6 (+3.4) 79.2 (+1.7) 0.99 0.99 0.98
MT3D-Seg + PIQE Traditional 83.5 (-0.7) 77.1 (-0.4) 0.98 0.97 0.97
MT3D-Seg + IL-NIQE Traditional 85.0 (+0.8) 77.6 (+0.1) 0.98 0.97 0.98

• Dimension Prediction: The accuracy of dimension esti-
mation is measured using the Dimension Score (DS) from
[6], computed as:

DS = min

(
Vpd

Vgt
,
Vgt

Vpd

)
, (6)

where Vpd and Vgt denote the predicted and ground truth
object volumes.

• Principal Box Estimation: The Center Score (CS) from
[6] evaluates the accuracy of the 3D bounding box center:

CS =
2 + cos

(
xgt−xpd

wpd

)
+ cos

(
ygt−ypd

hpd

)
4

. (7)

Here, x, y are the projected center coordinates, and w, h
represent the 2D bounding box dimensions.

• Orientation Evaluation: Orientation accuracy follows
the KITTI benchmark and is assessed using the Orien-
tation Score (OS):

OS =
1 + cos(αgt − αpd)

2
. (8)

The results show that filtering out low-quality images im-
proves recall and detection precision. Among the models,
NIMA and MANIQA provide the highest improvements, with
NIMA increasing recall by 5.2% and mAP70 by 3.6%, while
MANIQA boosts recall by 3.4% and mAP70 by 1.7%. These
gains indicate that deep learning-based IQA methods better
capture perceptual distortions relevant to object detection.

Traditional IQA methods such as BRISQUE and IL-NIQE
also provide minor improvements, but PIQE slightly degrades
performance, suggesting that its perceptual model may not
align well with object detection requirements.

We also assess key components of the 3D detection pipeline:
- Dimension Prediction: Improved by MANIQA (+1.1%)

and BRISQUE (+0.4%), indicating better object volume esti-
mation. - Principal Box Estimation: Slightly enhanced across
all IQA-based models, with MANIQA achieving the highest
accuracy (CS = 0.989). - Orientation Evaluation: Shows mini-
mal variation across models, suggesting that IQA has a greater
impact on object localization than orientation estimation.

These findings confirm that AI-based IQA methods yield
the most substantial improvements, highlighting the benefits
of learning-based approaches over purely statistical metrics.

B. Impact of IQA on Drivable Area Segmentation

We further evaluate the impact of IQA filtering on drivable
area segmentation. Table II reports the Mean Intersection over
Union (mIoU) for different models.

NIMA significantly improves segmentation performance
(+6.9% mIoU), indicating that deep-learning-based IQA fil-
tering effectively removes distorted images that degrade seg-
mentation accuracy. MANIQA also provides strong improve-
ments (+5.6% mIoU), reinforcing the advantage of AI-based
perceptual quality estimation. Traditional methods (BRISQUE,
IL-NIQE) offer moderate gains, while PIQE slightly reduces
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segmentation accuracy, consistent with its weaker performance
in object detection.

TABLE II: Impact of IQA on Drivable Area Segmentation.

Model IQA Type mIoU (%)

MT3D-Seg - 71.6
MT3D-Seg + NIMA AI-Based 78.5 (+6.9)
MT3D-Seg + BRISQUE Traditional 73.2 (+1.6)
MT3D-Seg + MANIQA AI-Based 77.2 (+5.6)
MT3D-Seg + PIQE Traditional 70.1 (-1.5)
MT3D-Seg + IL-NIQE Traditional 71.8 (+0.2)

The improvements in segmentation confirm that removing
low-quality images enhances scene understanding, particularly
under adverse conditions.

V. CONCLUSION

This study demonstrates that image quality assessment
(IQA) significantly enhances the performance of multi-task
learning models for 3D object detection and drivable area
segmentation, especially under challenging conditions such as
low lighting and motion blur. AI-based IQA methods, includ-
ing NIMA and MANIQA, outperformed traditional approaches
like BRISQUE and IL-NIQE, achieving mAP improvements
of 12–15% compared to 6–8% with conventional metrics. The
optimal quality threshold, denoted as τ = 0.85, effectively
balanced data retention with performance gain, capturing 95%
of the maximum achievable improvement while reducing false
positives by up to 22%. Nonetheless, the conclusions are
limited by the evaluation on a single dataset, and the additional
preprocessing time introduced by IQA models remains a
potential barrier to real-time applications.

To overcome these limitations, future work should focus
on enhancing generalizability by validating the framework
across diverse datasets such as NuScenes and Waymo, and by
including real-world edge cases. Improving efficiency through
lightweight IQA architectures (e.g., quantized MANIQA),
hardware acceleration techniques like TensorRT, or paral-
lelized pipelines could help reduce latency. Furthermore,
adaptability could be improved by introducing dynamic quality
thresholds that respond to environmental changes such as
relaxing constraints in low-light scenarios or by focusing on
task-critical regions. Integrating complementary sensor modal-
ities, including LiDAR or thermal cameras, may further im-
prove robustness when image quality is insufficient. Together,
these directions will help transition from offline validation to
real-time, reliable deployment in autonomous driving systems.
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