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ABSTRACT
Car-pedestrian collisions are a daily occurrence world-
wide, yet there is a notable absence of public datasets
in this domain. Research in this area is crucial, as it
directly impacts pedestrian safety and serves as a basis
for validating autonomous driving systems. Although
finite element simulations are used, they are computa-
tionally intensive and yield insufficient data for deep
learning applications. In this work, we present the
PeDesCar dataset for safe autonomous driving, which
spans around 15 days of simulated time and encom-
passes over 1 million collision events, each constrained
within a temporal window of up to 2 seconds per event.
The dataset is generated using MuJoCo as a physics
simulator, proving its effectiveness in sim2real robotics
research. We use PeDesCar to train and assess state-
of-the-art models in human motion prediction and vali-
date the realism of the simulation against realistic high-
fidelity finite element simulations. Our results vali-
date that PeDesCar is sufficient for preliminary car-
pedestrian collision research. The visualization code
and dataset are accessible on the project website https:
//github.com/QualityMinds/PeDesCar.

1 INTRODUCTION
Recent strides in the field of human motion prediction
have brought forth many research endeavors showcasing
notable outcomes Lyu et al. [2022]. Currently, several
publicly available datasets are available to forecast fu-
ture human movements. These datasets cover indoor
and outdoor scenarios, capturing data from 18 to 22
joints. They serve as pivotal references in numerous
researches within this field. Despite the advances made
by these dataset benchmarks in human motion with di-
verse actions and environments, there persists a need for
datasets tailored specifically to manufacturing or safety
applications. These include tasks such as injury pre-
diction or assembly processes, which require datasets
with specialized characteristics and annotations Lyu et al.
[2022], Niranjan et al. [2023]. In autonomous vehicles,
novel concepts have emerged in the real-time injury
prediction sustained by unprotected road users (URVs).
The prospective ability to predict injuries facilitates the
implementation of automated vehicle risk mitigation
strategies, thus ensuring safe and efficient traffic flow

*Work done during a research internship at QualityMinds GmbH

Niranjan et al. [2023]. However, simulation tools have
improved efficiency, accuracy, and execution time. We
used MuJoCo Mujoco to simulate various environments
featuring different humanoid agents sourced from Loco-
Mujoco Al-Hafez et al. [2023], along with two CAD car
models. Spanning ‘walking’ and ‘running’ actions in
these agents which were trained via imitation learning.

We acknowledge the inherent disparities between syn-
thetic and real data, as well as the potential inaccuracies
in physical simulations that may result in deviations
from reality. While several datasets exist for 3D human
motion prediction, outlined in the following section, it
is important to recognize that two commonly employed
methods, MoCap (motion capture) and generative mod-
els, face significant challenges when applied to injury
cases in autonomous driving scenarios. MoCap, while
widely used, is impractical for injury cases due to its
inability to accurately capture or replicate complex in-
jury dynamics, and is unreasonable to test directly in
humans. Similarly, generative models present hurdles
in accurately representing the latent distribution of mul-
tiple injury scenarios. In other words, they primarily
focus on generating 3D poses for forward steps without
incorporating the intricate physics involved in human
motion dynamics. These constraints curtail their utility
for injury prediction and prevention within autonomous
driving contexts. This area has garnered increasing atten-
tion in the literature, yet it persists as an open challenge
lacking a definitive resolution. Hence, our work intends
to provide a benchmark dataset, bridging training mod-
els for injury prediction and human motion forecasting.
To address this gap in research, our dataset encompasses
a wide array of initial conditions for both subjects and
cars. We summarize our contributions as follows.

• Delivering a new dataset for impact collisions with
different humanoid models.

• Presenting a benchmark in this dataset using state-of-
the-art architectures.

• Releasing the open-source code and dataset.

2 LITERATURE REVIEW
2.1 Human Motion Prediction
In recent years, we observed an increment of works in
the direction of predicting the future movement in 3D
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Dataset Year subjects joints frames FPS capture system

CMU Ionescu et al. [2014] 2003 8 38 1.5M 25 Marker-less MoCap
H36M Ionescu et al. [2014] 2014 11 32 3.6M 25 Marker-based MoCap
MPI-INF-3DHP Mehta et al. [2018] 2017 8 8 1.3M 25 Marker-less MoCap
3DPW von Marcard et al. [2018] 2018 7 17 51K 30 Cameras with IMUs
AMASS Mahmood et al. [2019] 2019 300 52 9M 25 Marker-based MoCap
NBA2K Zhu et al. [2020] 2020 27 14 27K 30 NBA2K19 game engine
GTA-IM Cao et al. [2020] 2020 20 21 1M 30 GTA game engine

PeDesCar 2025 4 18-22-23 176.7M 200 Mujoco Engine

Table 1: Comparison of our dataset with the most relevant datasets, including some comparable attributes.

Dataset Time (ms)
Model Train Test 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021]

AMASS AMASS 11.2 20.6 36.5 43.1 52.5 68.7
AMASS MujAmass 46.5 69.6 123.7 149.4 191.9 267.4

MujAmass AMASS 27.4 46.7 96.4 121.6 167.6 245.1
MujAmass MujAmass 12.2 21.9 42.5 52.0 69.6 114.9

H36M H36M 11.4 24.8 51.2 62.6 81.1 113.8
H36M MujH36m 30.2 61.5 112.9 139.7 188.0 278.7

MujH36m H36M 36.2 51.4 96.9 120.8 164.9 256.9
MujH36m MujH36m 14.8 24.5 47.4 57.9 77.4 126.5

MotionMixer Bouazizi et al. [2022]

AMASS AMASS 10.1 18.4 32.7 38.9 48.3 64.2
AMASS MujAmass 33.8 64.1 116.4 139.4 181.0 275.6

MujAmass AMASS 19.0 40.0 83.3 103.1 137.1 178.3
MujAmass MujAmass 10.7 19.4 35.3 42.9 58.3 102.4

H36M H36M 11.0 23.6 47.8 59.3 - 111.0
H36M MujH36m 24.6 51.8 106.7 132.0 176.4 269.1

MujH36m H36M 20.8 42.3 83.3 101.2 131.8 184.3
MujH36m MujH36m 13.1 25.2 47.9 58.6 79.4 136.2

CIST-GCN Medina et al. [2024]

AMASS AMASS 9.8 18.6 33.6 39.8 49.2 63.6
AMASS MujAmass 18.2 47.1 112.2 143.6 194.6 291.2

MujAmass AMASS 20.3 46.0 106.7 134.8 188.2 282.5
MujAmass MujAmass 9.4 19.7 39.8 49.0 66.0 111.6

H36M H36M 10.5 23.2 47.9 59.0 77.2 110.3
H36M MujH36m 17.7 41.4 93.3 118.4 162.9 259.7

MujH36m H36M 19.5 45.1 104.7 133.4 185.3 279.3
MujH36m MujH36m 10.4 22.2 45.8 56.7 77.5 129.7

Table 2: MPJPE evaluation of models trained on AMASS, H36M, and pro1A from PeDesCar. We use the MuJoCo
extension, which provides skeletons with the same joint distribution as H36M and AMASS.

poses. Given an input 3D pose sequence a neural net-
work predicts the subsequent 3D pose sequence output.
Initial research started with RNN, GCN, and CNN archi-
tectures Li et al. [2018], Sofianos et al. [2021], Lyu et al.
[2022]. Later, more sophisticated approaches intended
to predict and produce sample-based interpretability Fu
et al. [2023], Zhong et al. [2022], Medina et al. [2024],
used MLP-based Bouazizi et al. [2022] architectures,
or multiple-stages strategies Dang et al. [2021], Mao
et al. [2021], Ma et al. [2022]. New approaches using
transformers have recently achieved cutting-edge perfor-
mance in this task Chen et al. [2022], Nargund and Sra
[2023], Xu et al. [2023].

2.2 3D Pose datasets
The Human3.6M dataset Ionescu et al. [2014] contains
3.6 million accurate 3D human poses and corresponding
images. It features data from 11 subjects (5 females,
6 males) across 17 scenarios, recorded from 4 view-
points using a high-speed motion capture system with 4
high-resolution cameras. The dataset includes 3D joint
positions, video, 24 body part labels, and 3D laser scans.
Standard experimental setups downsample the frame
rate to 25Hz, using 22 joints, with subjects 1, 6, 7, 8,

and 9 for training, subject 11 for validation, and subject
5 for testing Li et al. [2018], Sofianos et al. [2021], Dang
et al. [2021], Mao et al. [2021], Fu et al. [2023], Bouaz-
izi et al. [2022], Ma et al. [2022], Zhong et al. [2022],
Medina et al. [2024]. Another benchmark is AMASS
Mahmood et al. [2019], which unifies 15 motion capture
datasets using the MoSH++ algorithm. It standardizes
diverse body parameterizations via the SMPL (Skinned
Multi-Person Linear) model Loper et al. [2015], result-
ing in over 40 hours of motion data from more than
300 subjects and 11,000+ motions. Experiments typ-
ically downsample to 25Hz and use 18 joints, with 8
subdatasets for training, 4 for validation, and BMLrub
for testing Bouazizi et al. [2022], Zhong et al. [2022],
Medina et al. [2024]. The 3DPW dataset von Marcard
et al. [2018], used to test the generalization of AMASS-
trained models, combines IMUs and handheld camera
footage. It includes 60 video sequences, 2D annotations,
and 3D poses derived from IMUs, covering both in-
door and outdoor activities. It contains 51,000 frames at
30Hz, with the same joint structure as AMASS. In ExPI
Wen et al. [2022], Participants are outfitted with IMUs
while undergoing concurrent capture through handheld
cameras. The ExPI dataset comprises 115 sequences
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encompassing approximately 30,000 frames, depicting
two professional couples executing 16 distinct dance
actions. This dataset was meticulously annotated with
3D body poses and shapes. ExPI serves as a valuable
resource for collaborative motion prediction. All record-
ings are conducted within a multiview motion capture
studio, operating at a frame rate of 25 frames per second
(fps). The authors in Wen et al. [2022] opted for an
analysis involving 18 joints per dancer and conducted
experiments utilizing two distinct benchmarks, referred
to as ‘common’ and ‘unseen’ action splits.
In Wdowicz and Ptak [2023] also reference several other
datasets relevant in the literature that are used for bench-
marking analysis, such as NBA2K Zhu et al. [2020]
with 27,000 frames, GTA-IM Cao et al. [2020] with
1 million frames, and Occlusion-Person with 73,000
frames Zhang et al. [2021]. All were generated in game
engines. Simultaneously, FORCE Zhang et al. [2024]
with 192,000 frames in 450 motion sequences in per-
vasive interactions of carrying, pushing, and pulling
objects. More recently, Wagener et al. [2022] introduced
MoCapAct, a dataset of expert policies trained via rein-
forcement learning to track motion-capture data, along
with their corresponding observations and actions. In
Guo et al. [2022], a dual-stage methodology compris-
ing text2length and text2motion modules was employed
for sampling and generation tasks. Text2length entails
sampling from a trained distribution function of motion
lengths, conditioned on input text. Subsequently, the
text2motion module utilizes a temporal variational au-
toencoder to synthesize human motions corresponding
to the sampled lengths. To handle text and motion in this
task, the authors used HumanML3D, composed by Hu-
manAct12 Guo et al. [2020] and AMASS datasets, and
KIT-ML Plappert et al. [2016]. HumanML3D, is con-
structed, consisting of 14,616 motion clips and 44,970
text descriptions while KIT-ML consists only of 3,911
motions and 6,278 texts.
While numerous methodologies exist for predicting 3D
pose datasets, none have yet been devised, whether
through MoCap techniques or generative modeling, to
accurately replicate injury scenarios pertinent to au-
tonomous driving. Also, acquiring such datasets via
conventional methods remains exceedingly unfeasible.
Some of these datasets are presented in Tab. 1.

2.3 Physics Simulation
Recently, simulations have played an increasingly impor-
tant role in robotics and reinforcement learning (RL) re-
search. While various methods exist for data generation,
such as game engines Cao et al. [2020] which may lack
fidelity in terms of physics reliability, and finite element
method (FEM) simulation software known for its high
cost Trube et al. [2023], Niranjan et al. [2023], we have
chosen a middle-ground approach. In this pedestrian col-
lision study, we employ a ‘light’ physics simulator, such

as MuJoCo, which balances realism and computational
efficiency. For comparison purposes, Wagener et al.
[2022] evaluate the most commonly used RL simula-
tion environments in robotics research, such as MuJoCo,
PyBullet, Gazebo, IsaacSim, and Webots. MuJoCo has
proven its effectiveness as a simulator, especially for
sim-to-real transfer Wang et al. [2022], Byravan et al.
[2022], Haarnoja et al. [2023], Zhao et al. [2020]. The
authors in Al-Hafez et al. [2023] introduce the Loco-
MuJoCo imitation learning benchmark for locomotion,
which provides physically realistic humanoid models.
We utilized these models for our experiments. Due to
the ease of experimentation offered by the benchmark
and its robust foundation in sim-to-real transfer, we se-
lected MuJoCo as our backend simulator for dataset
generation.

3 METHODOLOGY
3.1 Preliminary
As our focus lies within the realm of 3D human
pose estimation, we define the input sequence
as X = {x0,x1, ...,xt1−1} ∈ Rtin×J×D, which is
fed into a model to obtain the output sequence
Y = {y0,y1, ...,yt1−1} ∈ Rtout×J×D, where tin and tout
typically correspond to 400 ms and 1000 ms, respec-
tively, with a sampling rate of 40 ms. Nevertheless,
some studies have explored extended input durations
ranging from 400 ms to 1000 ms while maintaining
equivalent output shapes. Benchmark datasets such as
AMASS Mahmood et al. [2019], 3DPW von Marcard
et al. [2018], and H36M Ionescu et al. [2014] are
commonly evaluated using either 18 or 22 joints,
represented in Euclidean coordinates or joint angles.
Here, J denotes the number of joints, typically 18 or
22, and D represents the number of dimensions, which
ranges from 3 to 10 in this paper. Each pose x or y
corresponds to a single frame with shape J×D.

3.2 Human Motion Prediction
We have chosen state-of-the-art (SOTA) models in hu-
man motion prediction for our evaluation. Some SOTA
models in the field encompass MotionMixer Bouazizi
et al. [2022], siMLPe Guo et al. [2023], STS-GCN Sofi-
anos et al. [2021], and CIST-GCN Medina et al. [2024].
MotionMixer and siMLPe are both MLP-based models
that borrow the idea of Mixer architecture Tolstikhin
et al. [2021] and apply it to the domain of human pose
forecasting. STS-GCN and CIST-GCN are founded on
GCNs. STS-GCN utilizes two successive GCNs to se-
quentially encode temporal and spatial pose data, while
CIST-GCN incorporates specific layers to aid model
interpretability. In contrast to other SOTA models, Mo-
tionMixer adopts pose displacements as its input repre-
sentation, whereas siMLPe utilizes DCT encoding for
the input pose data.
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Protocol joints format collision frame train validation test total FPS

pro10 18-22-23 0 492052 82028 245909 819989 200
pro14 18-22-23 5 475483 79274 237902 792659 200
pro19 18-22-23 9 410862 68501 205682 685045 200
pro1A 18-22-23 0-9 540160 90051 270053 900264 200
pro40 18-22-23 0 184096 30581 91872 306549 50
pro44 18-22-23 5 177757 29570 88785 296112 50
pro49 18-22-23 9 154949 25792 77346 258087 50
pro4A 18-22-23 0-9 540160 90051 270053 900264 50

Table 3: Comparison of our dataset with the most relevant datasets was performed, focusing on comparable attributes.
All units in the table after ‘joints format’ are expressed in frames.

Protocol H1-walk H2-walk H3-walk H4-walk H1-run H2-run H3-run H4-run Total

pro10 22647 35899 32987 31745 23809 32843 33003 32976 245909
pro14 27165 33850 30304 29164 26347 30608 30680 29784 237902
pro19 28635 28366 24274 23601 25602 25793 25284 24127 205682
pro1A 37032 35991 33017 31753 33265 32988 33009 32998 270053
pro40 1970 9391 14971 22243 1647 6144 13887 21619 91872
pro44 2045 9468 14630 20807 1691 6345 13824 19975 88785
pro49 1900 8880 12599 17367 1579 6194 12091 16736 77346
pro4A 37032 35991 33017 31753 33265 32988 33009 32998 270053

Table 4: Number of samples per class considering different experiment protocols. Samples contain 35 frames (10
inputs and 25 outputs).

3.3 Environment Definition
In our problem formulation, we establish our environ-
ment in the MuJoCo engine and adapt LocoMujoco
humanoids Al-Hafez et al. [2023] and cars from open-
source models H. [2020], Robotics [2017]. These en-
vironments allow us to achieve a flexible number of
joints (18 or 22) within the same simulation. thereby
affording significant flexibility for comparative analysis
across multiple datasets. As our simulations involve
car impacts, we have access to pertinent car attributes,
including position, velocity, and other relevant parame-
ters, similar to those in real-world autonomous driving
problems.

First, we will introduce the car models. We have adapted
freely available open-source models to assess the ade-
quacy of physics engines in supporting collisions effec-
tively to acquire the 3D pose sequences. They are the Au-
toCarRos H. [2020] and the Prius Robotics [2017]. We
control the speed of the car directly at the chassis level
to mitigate significant fluctuations in collision velocity.
Additionally, the front and rear wheels, both tangential
speed and orientation, can be configured in the initial
settings. In essence, we have control over all pertinent
elements of the car to execute forward movements and
rotations, thereby simulating real-world conditions. We
recorded all these values as joints for ablation studies.

The car rotations are in a range from 55◦ to -55◦ for the
front wheels while the car speed goes from 5 km/h to
65 km/h. In Fig. 1a, we show the sampling of the car’s
initial positions, and trajectories. As we can observe, we
used uniform distributions for all the parameters we can
control. Some challenges we found during the collision
generation are described in Section 5.

The humanoids employed in our simulations were
trained via Variational Adversarial Imitation Learning

(VAIL) Peng et al. [2019] for 200 epochs, with each
epoch consisting of 1 million steps. Model updates
occurred every 10,000 steps. We used a learning rate
of 1×10−5 with a maximum Kullback-Leibler (KL)
set to 5×10−3 and an initial standard deviation set to
0.5. We applied the same configuration for ‘walking’
and ‘running’ actions. Following the training phase,
we positioned the humanoids within a range of 0
to +/-2 along the X-axis and subsequently moved
them perpendicular to the car direction to facilitate
car-pedestrian collisions. In Fig. 2, a small set of
simulations depicting the trajectory of the humanoid
pelvis is showcased. The simulations are delineated into
X-Y (Fig. 2a) and X-Z (Fig. 2b) planes, facilitating
the observation of parabolic motion patterns after
the collisions, with a focus on discerning variations
contingent upon the vehicle velocity. Additionally,
it can be observed that, following the collision, the
humanoids often come to rest on top of the vehicle,
remaining in position without detaching or falling
until the final frame. This behavior occurs under
various conditions, depending on the initial positions,
orientations, and speeds.

3.4 Implementation Details

We introduced the trained humanoid models and started
simulations using seeds to ensure reproducibility. Every
simulation generates a json file containing the relevant
physics parameters and joints. To use them in a machine
learning pipeline, a post-processing step is required to
convert them into faster-loading files. Given the versa-
tility of the MuJoCo framework, it is possible to exper-
iment in different components, such as longer periods,
period sampling, and different angle collisions between
the car and the humanoid. Our experiments found that
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(a) Initial positions.
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Figure 1: Subset of the initial positions and trajectories.
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(b) X-Z plane visualization
Figure 2: Simulations illustrating the behavior of the
humanoid pelvis joint at varying car velocities.

running them below the 0.5× e−4 becomes stable for
diverse scenarios.

3.5 Dataset Structure
We conducted internal evaluations of various conditions
and benchmarks to establish a standardized dataset with
a consistent frame rate. Our findings indicate that the
optimal simulation time step for MuJoCo is 1×10−5

seconds. However, kinematic angles and 3D positions
are recorded at intervals of 0.005 seconds (200 FPS).
Recording at a higher sampling rate does not yield addi-
tional benefits or capture significant movements. More-
over, current models are incapable of predicting move-
ments with a precision finer than 1 millisecond, ren-
dering higher sampling rates unnecessary. We have an
overall of 176.7M frames contained in around 1.02M
simulations. It is noteworthy that every simulation com-
prises one car-pedestrian collision only. Yet, training
models utilizing sequences devoid of collision events
remains feasible.

We established protocols within the PeDesCar database
to ensure comparability with benchmark datasets. Table
3 outlines these protocols and specifies the attributes
relevant for model training. In particular, we focus on
sequences involving car-pedestrian collisions, consisting
of 10 input frames and 25 output frames. Collisions are
required to occur within the first 10 input frames, as
events occurring later could lead to unpredictable subse-
quent movements. The protocols follow the format pro-
collision frameskip frames; for example, pro14 indicates

Figure 3: Visualization of collision simulations (rows).
All subjects were represented with both actions, utilizing
a single-car model for consistency. (left) Initial frame
(right) Last frame

a frame step of 1, with the collision occurring at frame 4
(with input frames indexed from 0). Furthermore, we di-
vided the dataset into the following classes: ‘H1-walk’,
‘H2-walk’, ‘H3-walk’, ‘H4-walk’, ‘H1-run’, ‘H2-run’,
‘H3-run’, ‘H4-run’. These classes represent both the
4 Ages subjects and actions from the LocoMujoco set-
tings, for example, ‘4Ages1-run’ and ‘4Ages3-walk’ are
expressed as ‘H1-run’ and ‘H3-walk’ respectively. The
number of samples per class for each protocol is de-
tailed in Tab. 4. This table presents samples using only
10 input and 25 output frames, summing a total of 35
frames per sample, a common approach in numerous
studies Lyu et al. [2022]. Notably, our dataset, generated
using MuJoCo, includes more joints than other bench-
mark datasets. To ensure comparability, we aligned
the joint configurations with those of the H36M and
AMASS datasets, using only 22 and 18 joints respec-
tively, and adhered to the typical frame counts used in
several studies Lyu et al. [2022]. This alignment allows
for the comparison of models trained on one of these
datasets and evaluated on our dataset, as shown in Tab.
2. The matched versions of H36M and AMASS are
called MujH36m and MujAmass. More details about
the dataset are provided in Appendix 9.

A visualization code based on MuJoCo was employed
to reproduce each simulation utilizing forward kinemat-
ics exclusively, meaning that each simulation step was
performed without involving extensive physics computa-
tion because the simulations were recorded and replayed.
Visualization samples are illustrated in Fig. 3 for qualita-
tive evaluation and elaborated upon in Appendix 10. As
demonstrated, it is possible to alter the camera view and
zoom, which is similar to the standard MuJoCo engine.
For the sake of consistency, we utilized a single car and
one of the four distinct subjects.
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H1-walk H2-walk H3-walk
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 15.0 26.7 54.6 68.2 95.1 168.1 11.6 21.1 41.3 50.8 68.2 108.3 11.9 21.6 40.5 48.5 62.4 97.2
MotionMixer Bouazizi et al. [2022] 14.3 28.1 56.1 70.3 99.8 182.7 12.7 23.5 44.0 54.1 74.2 127.7 13.9 26.6 48.1 57.2 74.3 123.1

CIST-GCN Medina et al. [2024] 12.1 28.0 63.2 80.4 114.2 202.7 10.7 3.1 49.6 62.3 85.9 137.6 10.8 22.8 45.3 55.0 72.5 112.0

H4-walk H1-run H2-run
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 9.5 17.3 31.5 37.4 47.7 77.4 14.8 25.6 52.8 66.7 93.7 165.3 12.7 22.8 44.7 55.2 74.5 118.6
MotionMixer Bouazizi et al. [2022] 11.4 22.4 41.7 49.9 64.2 104.2 13.6 27.1 56.5 72.0 103.8 187.8 13.5 25.1 46.8 57.3 78.2 133.4

CIST-GCN Medina et al. [2024] 8.4 16.0 28.0 32.8 41.2 70.4 11.2 26.0 59.6 76.6 110.8 199.1 11.0 23.8 50.4 62.9 86.2 137.8

H3-run H4-run Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 12.0 21.5 39.7 47.5 61.5 97.0 10.5 18.9 34.9 41.7 54.0 87.1 12.2 21.9 42.5 52.0 69.6 114.9
MotionMixer Bouazizi et al. [2022] 13.4 25.1 45.6 54.5 70.7 115.8 11.8 23.5 44.7 53.9 70.4 115.2 13.1 25.2 47.9 58.6 79.4 136.2

CIST-GCN Medina et al. [2024] 10.2 20.7 39.5 47.4 62.1 97.9 8.7 17.0 30.8 36.6 46.8 80.0 10.4 22.2 45.8 56.7 77.5 129.7

Table 5: Performance comparison using MPJPE across all action-subject cases in the MujH36m dataset under
protocol pro1A.

H1-walk H2-walk H3-walk
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 17.0 29.2 60.7 76.3 105.6 181.4 15.2 24.3 46.9 57.6 77.4 122.0 14.7 25.0 46.9 56.0 72.3 111.5
MotionMixer Bouazizi et al. [2022] 13.2 25.3 49.3 61.6 87.2 162.0 11.3 19.7 35.6 43.7 60.1 101.4 10.5 17.8 30.0 35.3 46.0 79.2

CIST-GCN Medina et al. [2024] 10.7 24.7 54.9 68.8 96.2 174.7 9.7 20.3 41.7 52.0 70.8 115.4 9.5 19.6 38.0 46.1 59.7 91.9

H4-walk H1-run H2-run
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 12.0 20.5 37.1 43.7 55.7 90.5 16.6 26.8 56.2 71.5 101.1 178.6 15.6 25.2 48.5 59.5 79.9 125.7
MotionMixer Bouazizi et al. [2022] 7.9 13.8 23.3 26.9 33.4 55.4 12.5 24.3 49.1 62.0 89.0 165.5 11.7 20.9 38.5 47.3 65.0 111.0

CIST-GCN Medina et al. [2024] 7.3 13.8 23.9 27.7 34.5 59.2 10.3 23.3 52.3 66.2 93.7 169.7 10.4 21.4 44.1 55.2 75.5 123.2

H3-run H4-run Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 14.4 23.6 42.9 51.2 66.0 103.4 12.6 21.5 39.7 47.3 61.1 98.9 14.8 24.5 47.4 57.9 77.4 126.5
MotionMixer Bouazizi et al. [2022] 10.3 17.4 29.2 34.5 45.1 77.5 8.6 15.6 27.3 32.1 40.6 67.4 10.7 19.4 35.3 42.9 58.3 102.4

CIST-GCN Medina et al. [2024] 9.6 19.0 36.2 43.7 56.9 89.5 8.0 15.2 27.1 32.0 40.7 69.3 9.4 19.7 39.78 49.0 66.0 111.6

Table 6: Performance comparison using MPJPE across all action-subject cases in the MujAmass dataset under
protocol pro1A.

Figure 4: Comparison of displacement comparison fo-
cusing on the pelvis joint in the X-Z plane for multiple
car speed scenarios in both cases MuJoCo (lines) and
FE (dashed lines).

4 EXPERIMENTAL ANALYSIS
4.1 Evaluation and Measurements
We use the metric Mean Per Joint Position Error
(MPJPE) as our evaluation metric, which is widely
adopted and employed by the SOTA Bouazizi et al.

[2022], Guo et al. [2023], Sofianos et al. [2021],
Tolstikhin et al. [2021], Medina et al. [2024] to compare
two pose sequences and is described in Eq. 1.

LMPJPE =
1

J×T

T

∑
t=1

J

∑
j=1

∥∥x̂ j,t − x j,t
∥∥

2 (1)

For initial experimentation, we employed a pre-trained
model, initially trained on the AMASS and H36M
datasets, and applied it to our dataset. Additionally, we
trained the model using our dataset and tested its perfor-
mance on the AMASS and H36M datasets. The results
of these experiments are presented in Tab. 2. Our empir-
ical analysis revealed that the distribution of our dataset
differs from standard benchmarks. Models trained on
H36M or AMASS consistently underperformed when
evaluated on our dataset. Conversely, models trained on
our dataset showed significant improvements in terms of
MPJPE when evaluated on the original datasets. Specif-
ically, MotionMixer and STS-GCN exhibited notable
improvements, while CIST-GCN maintained consistent
performance. This indicates that our dataset is notably
complex and challenging, thereby enhancing the gener-
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alization capabilities of models when assessed against
current benchmarks. We extended our analysis to ex-
amine the difficulty levels of various subject and action
classes. The results for H36M and AMASS are pre-
sented in Tab. 5 and Tab. 6. Our findings indicate
that, in terms of MPJPE, larger subjects are easier to
predict in motion than smaller subjects (e.g., children).
Also, there is no significant difference in performance
between the ‘walking’ and ‘running’ classes in either
table. This short discrepancy is likely attributable to the
greater displacements inherent in the ‘running’ motion.
The analysis revealed that the average error rates on the
H36M were consistently higher compared to those on
the AMASS across various timeframes when using the
CIST-GCN and MotionMixer models. However, the
STS-GCN model manifested the opposite trend, where
the error rates for H36M were lower.

5 DISCUSSION
5.1 Challenges on sequence simulations
Simulations inherently differ from real-world conditions,
necessitating a comparison of our simulations. FE simu-
lations are known for their high fidelity but come with
significant computational costs Trube et al. [2023], Ni-
ranjan et al. [2023]. MuJoCo, on the other hand, offers a
reliable and significantly faster alternative, albeit at the
expense of fidelity. Additionally, minor discrepancies
in skeletal models play a crucial role in influencing the
simulation results.

We validated our dataset using two approaches. First, we
employed a small dataset of FE simulations involving
pedestrian-car interactions. We adjusted the MuJoCo
agents to match the positions of FE subjects and com-
pared the initial and final positions using standard met-
rics. The MPJPE between FE and MuJoCo simulations,
under similar initial conditions, was 69.5 and 766.0 for
the initial and final frames (with a 10ms framerate). De-
spite these efforts, minor discrepancies in humanoid
shapes resulted in differences, such as higher acceler-
ation peaks, increased cumulative errors, and different
simulation lengths. Second, we observed similarities
in displacement trajectories, particularly in their gradi-
ents. However, differences in acceleration between FE
and MuJoCo explained the deviation in the trajectory
endpoints. Overall, the similar trends in the trajectories
suggest the physical plausibility of MuJoCo simulations,
as illustrated in Fig. 4. Following the methodology in
Trube et al. [2023], Niranjan et al. [2023], this com-
parison is sufficient for validating physics simulations,
particularly in car-pedestrian collision scenarios. These
methods collectively support the reliability of MuJoCo
for simulating complex interactions, as demonstrated by
its consistent physics profiles with FE simulations.

Other potential issues of our approach are associated
with the performance of agents trained using reinforce-

ment learning, the absence of muscular activity, and the
approximation of the car CAD models. If the agents
do not accurately replicate human walking and running,
the physical plausibility of the simulation scenario may
be compromised. However, we inspected qualitatively
several simulations and removed outliers and broken
simulations. Some simulations encountered failures due
to glitches or the generation of large and inconsistent
movements by the subject. For instance, significant and
inconsistent accelerations and force collisions were ob-
served. Another example involved large values along
the vertical axis, indicating a substantial jump perpen-
dicular to the floor. This is physically implausible, as
the car exerts a horizontal force on the subject after the
collision.

5.2 Challenges in simulating Human be-
havior

It is exciting to recognize the unique complexity of
human behavior, which currently exceeds the capabili-
ties of reinforcement learning algorithms. For instance,
when a car approaches a person, the individual’s instinc-
tive reactions - such as raising their hands for protection
or jumping - introduce variables that can alter the dy-
namics of the simulation. This complexity enriches the
scenarios, making them more intricate and offering rich
opportunities for future exploration, though it extends
beyond the scope of this paper.

5.3 Case Study: Incorporating Car Infor-
mation

Expanding the scope of the dataset, we included the car
joints in our analysis. We conducted additional exper-
iments by incorporating only the car’s central location
as input to the model, allowing the model to process the
car’s speed and acceleration. This modification aimed
to enhance the model’s performance by accounting for
car dynamics. We trained the model with this additional
input and compared the results, as shown in Tabs. 7
and 8. As observed in Tab. 7, including the car joint
reduces the MPJPE metric. On average, this adjustment
results in an approximate 700% improvement in MPJPE
across all models for both the MujAmass and MujH36m
datasets. Additionally, Tab. 8 shows that models in-
corporating the car joint outperform those that do not.
Specifically, CIST-GCN achieved a better MPJPE for
short-term movements, while MotionMixer achieved
a better MPJPE for long-term movements. This im-
provement is likely attributed to the model’s enhanced
capability to determine the rotation of the subject body
following a collision, facilitated by the car’s directional
information. This data is also available in real-world
applications and could be leveraged to enhance motion
prediction tasks in collision scenarios. Additional ex-
periments using different protocols are detailed in the
supplementary materials.
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Dataset Time (ms)
Model Train Car 80 160 320 400 560 1000 Avg.

STS-GCN Sofianos et al. [2021]

MujAmass 37.0 67.3 109.7 125.8 155.0 206.6 134.0
MujAmass X 2.9 5.2 8.0 9.1 11.0 16.2 10.0
MujH36m 40.9 71.9 118.2 133.7 158.4 209.1 137.9
MujH36m X 2.9 4.7 7.4 8.4 10.0 14.8 9.2

MotionMixer Bouazizi et al. [2022]

MujAmass 35.1 68.7 109.9 122.3 144.4 190.3 130.7
MujAmass X 2.0 4.1 6.8 7.8 9.7 14.9 8.8
MujH36m 45.2 87.8 140.2 156.6 183.2 237.3 159.2
MujH36m X 3.4 6.1 9.6 10.9 13.1 17.8 11.7

CIST-GCN Medina et al. [2024]

MujAmass 35.4 69.0 113.9 130.6 161.1 213.5 138.6
MujAmass X 2.2 4.1 7.0 8.3 10.8 16.3 9.6
MujH36m 36.8 70.6 115.7 134.3 165.3 218.8 142.2
MujH36m X 2.0 3.9 6.4 7.6 9.8 15.0 8.8

Table 7: Evaluation of different models trained on MujAmass and MujH36m including the car joint. The datasets
use protocol Pro44. ‘X’ indicates that the car joint is incorporated into the model. But, it was not used to compute
MPJPE. ‘Bold’ means best MPJPE in each column.

H1-walk H2-walk H3-walk
Time (ms) Car 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN 83.2 161.1 232.6 251.5 282.1 296.5 17.7 30.6 70.1 93.1 138.4 191.7 19.0 30.0 56.8 69.2 92.9 159.6
STS-GCN X 5.2 9.7 12.6 13.5 15.0 19.0 1.7 2.7 5.2 6.4 8.7 14.5 2.1 3.4 6.0 7.2 9.4 17.3

MotionMixer 83.5 168.7 250.1 263.9 279.0 298.9 15.8 33.0 70.1 88.8 124.9 169.7 15.1 29.1 53.6 63.6 83.5 137.2
MotionMixer X 4.0 7.8 11.5 12.3 13.4 17.9 1.3 2.5 5.1 6.5 9.3 15.8 1.7 3.2 6.3 7.8 10.3 16.8
CIST-GCN 84.2 171.7 255.0 266.7 280.7 312.6 16.4 35.2 88.4 121.2 187.4 239.0 15.2 27.3 53.2 67.3 96.6 164.4
CIST-GCN X 3.6 7.1 10.6 12.0 14.0 18.9 1.3 2.6 5.6 7.4 11.4 18.1 1.6 3.0 5.9 7.6 10.9 18.5

H4-walk H1-run H2-run
Time (ms) Car 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN 23.0 38.8 66.9 78.0 98.1 156.0 87.6 166.4 237.1 252.2 278.3 315.9 19.4 34.8 77.9 101.4 144.1 202.9
STS-GCN X 3.3 5.5 9.0 10.4 13.0 21.3 5.2 9.4 12.1 13.1 14.8 18.9 1.6 2.7 5.1 6.3 8.4 14.5

MotionMixer 19.5 35.5 56.6 64.2 78.9 129.3 90.0 172.6 243.3 251.7 264.0 304.2 18.3 38.2 81.1 103.2 144.6 121.8
MotionMixer X 3.0 5.5 9.6 11.2 13.9 20.7 4.0 7.5 10.7 11.4 12.5 17.0 1.2 2.3 4.7 5.9 8.2 14.4
CIST-GCN 20.0 34.6 55.6 63.8 78.0 132.4 91.7 177.8 248.6 261.5 280.0 318.3 17.2 36.6 90.5 121.8 179.5 238.9
CIST-GCN X 2.5 4.5 7.8 9.3 12.0 20.3 3.6 6.9 10.1 11.4 13.4 18.0 1.2 2.4 5.1 6.6 9.5 15.8

H3-run H4-run Average
Time (ms) Car 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN 20.1 32.6 60.3 72.5 96.1 158.5 25.8 44.4 76.0 88.2 109.9 166.4 37.0 67.3 109.7 125.8 155.0 206.6
STS-GCN X 2.1 3.5 6.0 7.1 9.1 15.9 3.4 5.8 9.5 10.9 13.5 21.2 3.0 5.3 8.2 9.4 11.5 17.8

MotionMixer 15.8 30.9 56.8 66.7 86.5 135.7 22.6 41.8 67.2 76.1 93.6 144.0 35.1 68.7 109.9 122.3 144.4 190.3
MotionMixer X 1.6 2.9 5.4 6.4 8.4 14.0 3.0 5.4 8.9 10.2 12.5 11.4 2.4 4.6 7.8 9.0 11.1 17.0
CIST-GCN 16.4 29.4 55.5 69.0 96.2 159.2 22.3 39.5 64.2 73.5 90.2 143.6 35.4 69.0 113.9 130.6 161.1 213.5
CIST-GCN X 1.5 2.8 5.0 6.1 8.2 14.5 2.6 4.7 7.8 9.0 11.2 18.6 2.2 4.2 7.2 8.7 11.3 17.9

Table 8: Performance comparison for motion prediction using MPJPE across all action-subject cases in the
MujAmass dataset. We use the protocol pro44 in these experiments. ‘X’ indicates that the car joint is incorporated
into the model, but it was not used to compute MPJPE.

6 CONCLUSIONS

We introduced the first dataset specifically for Car-
Pedestrian Collisions, along with a framework for visu-
alizing simulation samples. This dataset was utilized to
train SOTA models, which were subsequently validated
using both our dataset and commonly used benchmarks
in human motion prediction. Additionally, we have
made our dataset, models, and code publicly available
under permissive licenses.

While we acknowledge that assessing the reliability of
the data presents significant challenges, which may even
be insurmountable, the dataset remains adequate for pre-
liminary research purposes. Our framework enables
rapid data generation compared to finite element meth-
ods. Despite certain factors that may raise concerns
about the physical realism of our simulations, we vali-

dated the dataset by comparing it with high-fidelity finite
element simulations.
By providing this dataset and framework, we aim to fos-
ter research in safe automated driving and injury risk pre-
diction. The availability of abundant data also enables
the use of deep learning techniques, offering a practical
alternative to computationally intensive physics-based
algorithms.
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Figure 5: Histogram of the simulation lengths.

9 DATASET STRUCTURE
9.1 Simulation lengths
Other statistics from the PeDesCar dataset can be ex-
plained by the number of samples and the simulation
lengths. Fig. 5 illustrates the density distribution of
simulation durations, with the majority of simulations
concluding within around 400 frames. This analysis ex-
cludes simulations in which the pedestrian either did not
collide with the vehicle or remained standing on top of
the car for extended periods, as these were capped at a
maximum duration of 4 seconds. In other words, exclud-
ing the largest bin in the histogram, the dataset exhibits
a diverse range of simulation lengths, reflecting various
initial conditions. Longer simulations were restricted
due to practical considerations, including computational
limitations and concerns related to feasibility and envi-
ronmental impact. Simulations where pedestrian-car col-
lisions did not occur, as well as those extending longer
times beyond the collision event, fall outside the scope
of our study and were therefore excluded from the anal-
ysis. Further analysis could be conducted to perform
binary classification of collision occurrences (‘yes’ and
‘no’). This would involve assessing whether collisions
occur within specific sequences. However, this analysis
is beyond the scope of the current study.

9.2 Metrics in other protocols
To demonstrate comparability across protocols, we con-
ducted a diverse set of experiments to complement the
main results. These metrics may provide researchers
with the ability to select the most relevant experiments
for their specific needs and perform the comparison.

Figure 6: Dataset generation workflow.
s

Figure 7: Histogram of the simulation lengths.

Specifically, the 3 models we selected for this paper
were applied for the protocols pro4A (Tab. 9), pro40
(Tab. 10), pro44 (Tab. 11), pro49 (Tab. 12), pro10 (Tab.
13), pro19 (Tab. 14), pro14 (Tab. 15). Additionally, we
extended the experiments to include the car joint, and
we present the in Tab. 16. For the sake of simplicity, we
used only MotionMixer Bouazizi et al. [2022] for these
experiments.

10 PROCESS WORKFLOW
In Fig. 6, we illustrate the generation workflow for
sequence generations. Initially, the workflow sets the
physics parameters required for generating a sequence.
If the sequence exceeds 10,000 frames, it is truncated
and filtered. Subsequently, we examine the sequence
for any anomalies, such as excessive acceleration peaks,
high force impacts, or violations of physics constraints.
Following this, a subsampling is applied to the sequence,
with timestamps recorded every 5 milliseconds. We then
verify whether the sequence meets the minimum oper-
ational criteria for other benchmarks. Specifically, the
sequence must contain at least 35 frames, and a collision
must occur within the first 10 frames. Lastly, we as-
sess whether the collision occurred before the humanoid
falls or during the humanoid’s descent towards the floor.
This step ensures that the collision reflects more realistic
‘walking’ and ‘running’ scenarios.
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H1-walk H2-walk H3-walk
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 19.1 29.9 58.8 72.7 99.5 173.3 15.0 24.0 46.6 57.1 76.6 121.4 14.5 24.9 46.6 55.8 72.1 111.8
MotionMixer Bouazizi et al. [2022] 12.1 23.9 47.5 59.9 86.2 163.5 10.2 18.7 35.2 43.8 61.0 104.4 10.1 18.3 31.4 36.9 47.5 82.7

CIST-GCN Medina et al. [2024] 14.3 23.9 45.4 58.5 78.4 120.1 10.3 20.9 42.4 52.5 71.4 116.1 10.1 20.5 39.5 47.6 61.4 95.6

H4-walk H1-run H2-run
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 11.9 20.4 37.0 43.6 55.3 90.2 18.4 28.0 56.0 70.0 97.3 171.2 15.3 24.8 47.8 58.5 78.1 123.4
MotionMixer Bouazizi et al. [2022] 7.9 14.6 25.3 29.3 36.1 60.0 11.8 23.7 48.3 61.4 89.1 168.8 11.0 20.3 38.2 47.3 65.6 113.6

CIST-GCN Medina et al. [2024] 11.7 17.5 27.2 33.2 40.3 69.5 14.6 16.2 23.0 33.0 37.0 69.7 13.3 12.1 22.1 31.4 38.5 67.2

H3-run H4-run Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 14.2 23.6 43.0 51.2 65.8 103.1 12.6 21.5 39.8 47.4 61.1 99.0 15.1 24.7 46.9 57.0 75.7 124.2
MotionMixer Bouazizi et al. [2022] 10.1 17.9 30.4 36.0 46.7 80.8 8.6 16.4 29.4 34.6 43.6 72.1 10.2 19.2 35.7 43.6 59.5 105.7

CIST-GCN Medina et al. [2024] 11.0 22.3 45.1 56.0 76.0 123.5 10.1 19.7 37.3 45.3 59.4 53.9 12.15 19.2 35.25 44.7 57.8 89.4

Table 9: Performance comparison using MPJPE across all action-subject cases in the MujAmass dataset under
protocol pro4A.

H1-walk H2-walk H3-walk
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 95.4 173.8 240.9 259.7 283.0 302.2 17.9 28.9 64.9 87.0 126.3 174.1 18.0 28.5 54.3 66.5 89.8 156.8
MotionMixer Bouazizi et al. [2022] 82.2 167.9 256.8 269.8 283.8 300.3 14.4 31.3 72.7 94.4 127.8 177.7 13.6 27.4 54.5 65.4 86.5 144.5

CIST-GCN Medina et al. [2024] 92.1 169.5 233.7 255.3 279.9 301.9 15.9 34.9 90.1 123.5 185.8 230.1 15.2 27.4 55.1 70.7 102.5 172.3

H4-walk H1-run H2-run
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 22.3 37.5 65.4 77.0 98.0 155.9 104.4 180.1 244.3 262.5 288.7 319.6 19.4 32.6 71.8 93.3 130.4 196.5
MotionMixer Bouazizi et al. [2022] 18.2 33.8 56.3 64.3 80.0 133.1 87.5 173.1 252.6 262.9 275.4 309.4 16.5 35.4 78.8 100.5 135.2 202.5

CIST-GCN Medina et al. [2024] 19.6 33.4 54.8 63.4 78.9 134.8 100.4 180.2 243.7 263.5 286.2 317.2 17.4 36.6 91.2 121.3 174.7 234.7

H3-run H4-run Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 19.1 31.1 58.9 71.3 94.4 156.8 24.9 42.9 74.8 88.1 111.1 167.9 40.2 69.4 109.4 125.7 152.7 203.7
MotionMixer Bouazizi et al. [2022] 14.1 28.5 56.4 67.8 88.9 144.2 20.7 39.7 67.0 76.8 95.2 148.1 33.4 67.1 111.9 125.2 146.6 195.0

CIST-GCN Medina et al. [2024] 16.0 29.0 55.5 69.8 97.8 161.9 21.9 38.8 63.6 73.7 91.8 147.1 37.3 68.7 111.0 130.1 162.2 212.5

Table 10: Performance comparison using MPJPE across all action-subject cases in the MujAmass dataset under
protocol pro40.

H1-walk H2-walk H3-walk
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 83.2 161.1 232.6 251.5 282.1 296.5 17.7 30.6 70.1 93.1 138.4 191.7 19.0 30.0 56.8 69.2 92.9 159.6
MotionMixer Bouazizi et al. [2022] 83.5 168.7 250.1 263.9 279.0 298.9 15.8 33.0 70.1 88.8 124.9 169.7 15.1 29.1 53.6 63.6 83.5 137.2

CIST-GCN Medina et al. [2024] 84.2 171.7 255.0 266.7 280.7 312.6 16.4 35.2 88.4 121.2 187.4 239.0 15.2 27.3 53.2 67.3 96.6 164.4

H4-walk H1-run H2-run
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 23.0 38.8 66.9 78.0 98.1 156.0 87.6 166.4 237.1 252.2 278.3 315.9 19.4 34.8 77.9 101.4 144.1 208.0
MotionMixer Bouazizi et al. [2022] 19.5 35.5 56.6 64.2 78.9 129.3 90.0 172.6 243.3 251.7 264.0 304.2 18.3 38.2 81.1 103.2 144.6 203.8

CIST-GCN Medina et al. [2024] 20.0 34.6 55.6 63.8 78.0 132.4 91.7 177.8 248.6 261.5 280.0 318.7 17.2 36.6 90.5 121.8 179.5 238.9

H3-run H4-run Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 20.1 32.6 60.3 72.5 96.1 158.5 25.8 44.4 76.0 88.2 109.9 166.4 37.0 67.3 109.7 125.8 155.0 206.6
MotionMixer Bouazizi et al. [2022] 15.8 30.9 56.8 66.7 86.5 135.7 22.6 41.8 67.2 76.1 93.6 144.0 35.1 68.7 109.9 122.3 144.4 190.3

CIST-GCN Medina et al. [2024] 16.4 29.4 55.5 69.0 96.2 159.2 22.3 39.5 64.2 73.5 90.2 143.6 35.4 69.0 113.9 130.6 161.1 213.5

Table 11: Performance comparison using MPJPE across all action-subject cases in the MujAmass dataset under
protocol pro44.
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H1-walk H2-walk H3-walk
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 73.8 157.8 235.2 251.0 274.3 300.2 19.8 32.5 68.5 85.4 120.8 181.7 20.6 32.1 55.7 65.4 84.9 150.2
MotionMixer Bouazizi et al. [2022] 87.8 168.4 231.3 239.4 266.8 305.5 19.2 37.6 72.6 88.1 120.1 171.8 18.1 32.3 54.7 64.0 81.6 132.0

CIST-GCN Medina et al. [2024] 75.9 142.7 212.7 224.9 245.6 288.6 15.9 32.7 72.7 94.9 145.6 208.6 16.8 28.8 50.2 59.9 80.5 144.0

H4-walk H1-run H2-run
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 24.8 41.1 67.9 77.8 95.7 153.2 79.7 160.0 230.4 246.7 274.5 310.8 21.8 36.0 74.7 94.2 131.0 199.3
MotionMixer Bouazizi et al. [2022] 21.8 37.0 54.8 61.7 74.9 124.5 89.8 169.0 231.3 240.8 257.0 300.5 22.3 43.4 86.6 108.6 151.4 218.3

CIST-GCN Medina et al. [2024] 21.5 37.1 57.8 64.9 78.1 129.8 77.2 164.1 211.8 242.1 254.4 309.4 17.6 35.1 75.8 99.3 148.0 217.3

H3-run H4-run Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 22.0 35.1 60.6 70.7 90.1 152.1 28.4 47.5 78.0 89.2 109.4 164.6 36.4 67.8 108.9 122.5 147.6 201.5
MotionMixer Bouazizi et al. [2022] 18.7 33.3 57.0 66.8 84.7 133.4 26.0 44.5 66.2 74.5 90.2 141.5 38.0 70.7 106.8 118.0 140.8 190.9

CIST-GCN Medina et al. [2024] 18.2 31.4 54.7 64.6 85.5 145.6 24.5 42.5 67.4 75.5 91.1 143.3 33.45 64.3 100.4 115.8 141.1 198.3

Table 12: Performance comparison using MPJPE across all action-subject cases in the MujAmass dataset under
protocol pro49.

H1-walk H2-walk H3-walk
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 11.1 15.6 32.0 42.1 64.7 134.7 8.8 13.5 26.0 32.8 46.9 86.3 9.5 15.5 28.9 35.3 47.0 78.4
MotionMixer Bouazizi et al. [2022] 5.9 13.3 32.6 43.7 68.0 139.2 5.6 11.7 25.8 33.2 48.6 87.6 6.5 12.2 23.5 28.8 39.1 68.7

CIST-GCN Medina et al. [2024] 6.2 13.7 32.3 43.3 67.5 138.9 5.3 11.5 25.6 33.1 48.7 92.0 6.1 12.3 24.4 30.0 40.6 72.1

H4-walk H1-run H2-run
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 8.8 14.9 28.0 33.6 43.8 71.9 11.2 15.9 32.5 42.6 64.7 133.2 9.4 14.3 28.0 35.4 50.5 92.3
MotionMixer Bouazizi et al. [2022] 5.9 11.0 19.8 23.3 29.5 50.0 5.9 13.6 33.9 45.6 70.8 142.6 5.8 12.1 27.1 35.1 51.5 95.0

CIST-GCN Medina et al. [2024] 6.0 11.6 20.8 24.6 31.4 55.3 6.3 13.8 32.5 43.5 66.9 137.1 5.6 12.1 27.2 35.1 51.2 95.3

H3-run H4-run Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 9.7 15.6 29.3 35.7 47.8 80.7 9.6 16.2 31.0 37.8 50.0 81.9 9.8 15.2 29.5 36.9 51.9 94.9
MotionMixer Bouazizi et al. [2022] 6.5 12.1 23.2 28.2 38.1 67.7 6.5 12.7 23.9 28.4 36.6 62.0 6.1 12.3 26.2 33.3 47.8 89.1

CIST-GCN Medina et al. [2024] 6.3 12.5 25.0 30.6 41.5 78.9 6.5 12.8 24.1 28.8 37.3 65.1 6.0 12.5 26.5 33.6 48.1 91.9

Table 13: Performance comparison using MPJPE across all action-subject cases in the MujAmass dataset under
protocol pro10.

H1-walk H2-walk H3-walk
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 13.4 21.9 42.6 53.7 76.4 139.7 12.2 21.9 41.5 50.7 68.1 108.9 11.8 22.5 42.0 50.2 64.6 98.9
MotionMixer Bouazizi et al. [2022] 9.2 18.3 38.9 50.5 75.3 145.8 10.7 19.1 35.3 43.3 59.3 98.0 9.9 17.3 30.1 35.5 46.1 77.1

CIST-GCN Medina et al. [2024] 13.1 24.7 45.8 57.8 77.3 155.0 10.1 20.4 41.4 51.7 70.1 114.0 9.7 19.7 38.7 47.2 60.9 94.1

H4-walk H1-run H2-run
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 9.4 17.2 31.3 37.2 47.6 77.4 13.7 22.3 42.9 54.0 76.6 139.4 13.0 23.3 44.7 54.9 74.1 118.3
MotionMixer Bouazizi et al. [2022] 7.5 13.4 22.9 26.6 33.1 55.0 9.8 19.4 41.1 52.9 77.9 149.8 11.4 20.9 39.1 48.0 65.6 109.5

CIST-GCN Medina et al. [2024] 7.2 13.6 23.3 27.2 33.9 58.5 14.4 23.9 46.1 59.5 78.5 150.1 12.1 26.1 48.0 47.5 65.3 105.5

H3-run H4-run Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 12.2 21.9 40.1 47.8 61.8 97.3 10.5 18.8 34.5 41.2 53.3 86.5 12.0 21.2 40.0 48.7 65.3 108.3
MotionMixer Bouazizi et al. [2022] 9.8 17.0 29.1 34.5 45.0 75.9 8.2 15.2 26.7 31.4 40.0 66.7 9.6 17.6 32.9 40.3 55.3 97.2

CIST-GCN Medina et al. [2024] 9.5 18.6 35.7 43.5 56.5 89.7 7.9 15.0 26.5 31.2 39.5 67.7 10.5 20.3 38.2 45.7 60.3 104.3

Table 14: Performance comparison using MPJPE across all action-subject cases in the MujAmass dataset under
protocol pro19.
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H1-walk H2-walk H3-walk
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 39.1 83.9 162.6 198.2 262.2 386.2 30.9 69.4 127.4 149.2 183.3 242.2 20.9 46.9 90.9 108.1 135.4 186.6
MotionMixer Bouazizi et al. [2022] 31.3 68.2 123.2 146.8 190.7 289.2 22.3 45.9 75.6 86.0 103.3 145.8 14.5 28.8 50.1 58.4 72.1 108.2

CIST-GCN Medina et al. [2024] 35.1 77.9 155.5 178.9 244.3 369.9 27.5 69.7 115.3 166.3 167.3 244.1 17.4 44.1 89.0 106.4 135.1 186.4

H4-walk H1-run H2-run
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 15.4 29.3 56.6 69.1 90.8 141.3 39.0 83.5 163.4 198.3 259.1 373.2 30.7 67.1 122.5 143.8 178.4 241.7
MotionMixer Bouazizi et al. [2022] 11.4 23.2 43.9 53.1 68.4 108.5 31.1 68.4 124.3 146.9 186.4 273.5 22.8 49.3 83.4 95.8 116.7 167.1

CIST-GCN Medina et al. [2024] 14.3 26.3 52.4 64.6 88.9 135.8 34.7 80.1 145.9 190.6 243.5 366.9 26.5 61.3 121.2 145.8 170.1 230.9

H3-run H4-run Average
Time (ms) 80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000

STS-GCN Sofianos et al. [2021] 23.2 45.5 82.8 97.9 123.4 178.6 17.5 31.9 59.8 72.1 93.5 144.2 27.1 57.2 108.3 129.6 165.8 236.8
MotionMixer Bouazizi et al. [2022] 16.4 30.7 51.0 58.9 72.8 111.3 13.1 26.1 49.1 59.0 75.9 119.6 20.4 42.5 75.1 88.1 110.8 165.4

CIST-GCN Medina et al. [2024] 19.3 42.8 81.3 96.5 122.9 175.9 13.2 27.0 51.6 62.3 80.9 128.4 23.5 53.6 101.5 126.4 156.6 229.8

Table 15: Performance comparison using MPJPE across all action-subject cases in the MujAmass dataset under
protocol pro14.

Dataset Time (ms)
Protocol Train Car 80 160 320 400 560 1000 Avg.

Pro40

MujAmass 33.4 67.1 111.9 125.2 146.6 195.0 127.7
MujAmass X 2.3 4.3 7.3 8.4 10.3 15.3 9.4
MujH36m 43.3 84.1 138.0 156.3 182.9 239.3 158.5
MujH36m X 3.2 5.8 9.4 10.8 12.8 17.7 11.5

Pro44

MujAmass 35.1 68.7 109.9 122.3 144.4 190.3 130.7
MujAmass X 2.0 4.1 6.8 7.8 9.7 14.9 8.8
MujH36m 45.2 87.8 140.2 156.6 183.2 237.3 159.2
MujH36m X 3.4 6.1 9.6 10.9 13.1 17.8 11.7

Pro49

MujAmass 38.0 70.7 106.8 118.0 140.8 190.9 124.9
MujAmass X 2.5 4.7 7.6 8.6 10.9 15.7 9.8
MujH36m 45.5 88.6 140.0 155.6 182.6 236.5 158.7
MujH36m X 3.3 6.0 9.7 11.0 13.4 18.5 12.0

Pro4A

MujAmass 9.1 17.3 31.5 37.7 48.8 73.4 43.3
MujAmass X 8.8 16.8 30.4 36.3 46.8 69.5 41.8
MujH36m 13.1 25.2 47.9 58.6 79.4 136.2 73.2
MujH36m X 8.0 15.1 27.3 32.5 41.8 61.6 37.3

Pro10

MujAmass 6.1 12.3 26.2 33.3 47.8 89.1 44.8
MujAmass X 1.3 2.6 5.1 6.2 8.4 14.8 7.8
MujH36m 9.4 18.3 36.8 46.5 66.1 119.6 61.6
MujH36m X 1.8 3.4 6.8 8.5 11.7 20.7 10.9

Pro14

MujAmass 9.6 17.6 32.9 40.3 55.3 97.2 51.4
MujAmass X 1.9 3.7 6.6 7.9 10.5 18.0 9.8
MujH36m 12.9 24.7 46.9 57.5 78.0 132.4 71.6
MujH36m X 2.7 5.2 9.7 11.7 15.4 25.4 14.1

Pro19

MujAmass 20.4 42.5 75.1 88.1 110.8 165.4 98.3
MujAmass X 4.0 7.4 12.5 14.6 18.5 28.7 16.9
MujH36m 26.9 56.6 97.5 114.1 143.3 209.1 126.5
MujH36m X 5.1 10.0 17.1 20.0 25.3 38.2 22.9

Pro1A

MujAmass 10.7 19.4 35.3 42.9 58.3 102.4 54.4
MujAmass X 8.8 16.8 30.4 36.3 46.8 69.5 41.8
MujH36m 13.1 25.2 47.9 58.6 79.4 136.2 73.2
MujH36m X 8.0 15.1 27.3 32.5 41.8 61.6 37.3

Table 16: Evaluation of MotionMixer Bouazizi et al. [2022] models trained on MujAmass and MujH36m including
the car joint. ‘X’ indicates that the car joint is incorporated into the model. But it was not used to compute the
MPJPE metric.
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