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ABSTRACT
Ensuring the correctness of annotations in training datasets is one way to increase the trustworthiness and reli-
ability of Machine Learning. This study aims to detect semantic shifts in datasets using Feature-Based Out-Of-
Distribution and outlier detection methods, assuming Out-Of-Distribution samples are far from In-Distribution
data. The experiments began with distance-based methods, such as k-Nearest Neighbours and Mahalanobis, fol-
lowed by feature pyramids and dimensionality reduction techniques to address high-dimensional challenges. The
results showed that the k-Nearest Neighbours detector performed robustly, achieving 100% AUROC when using
ResNet50 on the Caltech-101 dataset, while the Mahalanobis detector showed unstable results with scores close
to 50%. Moreover, selecting the right backbone model and feature levels, particularly low-level features from
ResNet50, improved performance achieving AUROC score of 96% on the DelftBikes dataset for both k-Nearest
Neighbours and Local Outlier Factor. The study highlights that k-Nearest Neighbours, Local Outlier Factor, along-
side feature pyramids and dimensionality reduction constitute an effective setup for Out-of-Distribution detection,
but optimal performance depends on tailored configurations across varying data conditions.

Keywords
Machine Learning · Neural Networks · Convolutional Neural Networks · Feature-Based Out-Of-Distribution De-
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1 INTRODUCTION
In recent years, Neural Networks (NN) have been
incorporated into numerous fields, such as autonomous
driving [7], medical diagnosis [22], and smart build-
ings [21], driving significant improvements in daily
life. In applications where even small errors can
have catastrophic consequences, such as self-driving
cars or medical decision-making, the reliability of
Machine Learning (ML) models becomes crucial. One
of the key factors affecting model performance is the
quality of the training datasets used. Models trained on
poor-quality, noisy, or incorrectly annotated data can
make unreliable predictions, undermining their utility
and trustworthiness. One key aspect that determines a
dataset’s quality is the correctness of annotations of its
samples. The reliance on large datasets, often collected
from diverse sources, introduces the risk of annotation
errors and distributional shifts, which can significantly
degrade the performance of ML models [25]. These
issues can go undetected unless robust mechanisms
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are in place to identify such anomalies. Finding
and, as a next step, improving the quality of training
datasets through automated Out-of-Distribution (OOD)
detection methods represents a vital step toward
enhancing model reliability. This study explores the
potential of feature-based OOD detection techniques
for identifying annotation errors in image datasets. It
leverages distance-based methods, including K-Nearest
Neighbors (k-NN) and Mahalanobis distance, as well
as density-based approaches like the Local Outlier
Factor (LOF). Furthermore, feature pyramids, which
aggregate multilevel representations, and dimensional-
ity reduction techniques, such as UMAP, are explored
to improve detection accuracy in high-dimensional
feature spaces.

2 RELATED WORK
This section covers key concepts in OOD detection,
including feature extraction networks, distance-based
methods like Mahalanobis, k-NN, and LOF, and the
role of dimensionality reduction and feature pyramids
in improving accuracy. Unlike classification-based
methods, the feature-based OOD detection approach
uses feature embeddings from pre-trained neural
networks, making it a post-hoc method that reduces
computational cost [25]. The method can be paramet-
ric, assuming a Gaussian distribution in feature space,
as in Mahalanobis distance-based approaches [18], or
non-parametric, making no distributional assumptions
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for greater flexibility [23]. In the parametric case,
Mahalanobis distance defines confidence scores based
on proximity to class distributions, while in the non-
parametric case, k-NN distance thresholds are used to
detect OOD samples [16].
The Local Outlier Factor (LOF) is an unsupervised
machine learning algorithm that detects outliers based
on local density differences, assigning outlier scores by
comparing the local reachability density of a sample to
that of its neighbors [1]. While effective for anomaly
detection, LOF, like k-NN, suffers from the curse of
dimensionality, which limits its performance in high-
dimensional feature spaces.
High-dimensional feature spaces can hinder distance-
based OOD detection methods due to the curse of di-
mensionality [15], and dimensionality reduction tech-
niques like PCA, LDA, and UMAP are used to address
this issue by removing redundant features and improv-
ing detection accuracy [24]. In this work, UMAP is
employed to project high-dimensional feature embed-
dings into a lower-dimensional space while preserving
their structure, with key parameters such as the number
of neighbors and minimum distance affecting its perfor-
mance [19].
Convolutional Neural Networks (CNNs) are widely
used in feature-based OOD detection to extract fea-
ture embeddings that help distinguish OOD from in-
distribution (ID) samples, with layers capturing essen-
tial patterns from low-level edges to high-level ob-
ject components [27]. Common feature extraction net-
works include ResNet, DenseNet, EfficientNet, Vis-
Former, and Vision Transformer, each offering unique
advantages, such as ResNet’s residual learning for deep
networks [8], DenseNet’s improved feature propaga-
tion [11], and Vision Transformer’s use of image patch
embeddings [4].
Pre-trained models, particularly those trained on Im-
ageNet [3], are biased towards recognizing textures
rather than shapes, with CNNs struggling when texture
and shape cues conflict [6]. Research by Hermann et
al. [10] and Islam et al. [12] found that shape infor-
mation is primarily extracted in later layers of CNNs,
and aggregating features from multiple stages, such as
through feature pyramids, can mitigate the loss of shape
information and improve performance.
Feature pyramids have gained popularity in computer
vision tasks like object detection and image recogni-
tion due to their ability to aggregate multi-scale fea-
tures, with earlier layers capturing high-resolution fea-
tures and later layers encoding more context at lower
resolutions [2, 17, 26]. However, excessive feature ag-
gregation can lead to redundancy, and skipping connec-
tions have been shown to improve performance, espe-
cially when removing high-level features to mitigate the
ImageNet bias [6, 11].
This study uses the PyTorch-OOD library for detect-
ing OOD samples, which follows a three-stage ap-
proach: training a Deep Neural Network (DNN), de-
signing an OOD detector around it, and evaluating the

detector [14]. The library includes state-of-the-art de-
tectors like k-NN, based on scikit-learn’s implemen-
tation [20], the Mahalanobis distance for multivariate
Gaussian estimation. Due to its absence in the PyTorch-
OOD library, we utilized the implementation of the
LOF algorithm from scikit-learn.

3 METHOD
Three workflows were employed to detect ID and OOD
samples using distance-based methods. Each workflow
involves extracting feature embeddings from images
with a pre-trained model, followed by the application
of distance-based techniques to identify OOD samples.
The steps for each workflow were as follows: first, we
imported the pre-trained models using the timm library
and removed the classification layer to extract feature
embeddings, applying model-specific transformations
to the imported images. Next, we imported the dataset;
for detectors like k-NN and Mahalanobis, we created
both a training and a test set, while for LOF, only a
test set was needed as no training was required. Fi-
nally, detection was performed, followed by evaluation
using metrics such as the area under the receiver op-
erating characteristic curve (AUROC), the area under
the precision-recall curve (AUPR), and the false posi-
tive rate at 95% true positive rate (FPR95TPR) scores.
AUROC was chosen as the comparison metric as it re-
flects the combined classification behavior. It can be
sensitive to class imbalances, therefore, the minority
class (out of distribution) was chosen as the positive la-
bel. AUPR provides a more informative comparison
of model performance in the presence of class imbal-
ance, as it focuses on the trade-off between precision
and recall. Since the base rate of the positive class
heavily influences the AUPR score, it is important to
specify which class is considered positive. In this con-
text, AUPRIN refers to treating in-distribution samples
as the positive class, while AUPROUT refers to treating
out-of-distribution samples as positive [9]. The aver-
age precision (AP) is computed as the weighted average
of precision values across different thresholds, where
weights are the increases in recall. The FPR95TPR
score examines the number of false positives a model
generates when the true positive rate is at 95%.
In the Mahalanobis and k-NN-based workflow, we
used various pre-trained models, including ResNet50,
DenseNet, EfficientNetV2, and Vision Transformer, to
extract feature embeddings. For this experiment, we se-
lected the "faces" class as the ID class and the "bonsai"
class as the OOD class from the Caltech-101 dataset.
To ensure the validity of the experiment, we verified
that these classes were not included in the ImageNet-
1K dataset, as all the pre-trained models were trained
on ImageNet-1K. Models are trained on examples of
the ID class, and tested against a test set consisting of
examples from the ID class and the OOD class. Addi-
tionally, we conducted experiments where we polluted
the training set with a number of OOD samples, specif-
ically 0%, 1%, 5%, and 10% - to assess their impact on
the detector’s performance.
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In both the k-NN (supervised) workflow and the LOF
(unsupervised) workflow, we incorporated feature
pyramids and applied dimensionality reduction using
UMAP, to assess whether these approaches could
enhance performance. Furthermore, the outliers for
multiple dataset classes were analyzed within these
two workflows.
To create the feature pyramid, we extended the frame-
work with a custom class that leverages layers from
conv1 to layer of the ResNet50, capturing features at
varying levels of abstraction. These lower-level fea-
ture maps are resized to match the spatial resolution
of higher-level maps, and then concatenated along the
channel dimension. The concatenated multi-scale fea-
ture maps are subsequently flattened into a single vector
for further processing.

3.1 Datasets
In this study two datasets were used for the experi-
ments: Caltech-101 and DelftBikes. The following sec-
tion provides an overview of each dataset.
The Caltech-101 [5] dataset is a well-known benchmark
dataset for object detection and consists of 101 cate-
gories with 40 to 800 images per class, most around 50.
The size of these images is approximately 300 x 200
pixels and vary in background, orientation, and scale,
which makes it difficult for model evaluation. Notable
classes include faces, saxophones, llamas.
The DelftBikes dataset [13], consisting of around 8,000
bicycle images with 22 annotated parts per image, was
used in our experiments. Each part is labeled by con-
dition (intact, absent, occluded, or damaged), enabling
precise segmentation. A key challenge was defining
inliers and outliers when using the LOF detector, as
bounding boxes often included unintended parts or ex-
cluded relevant details. Non-overlapping components,
such as the saddle or steering, were preferred for LOF-
based detection, as they allowed more accurate inlier-
outlier classification.

4 EVALUATION
We conduct three experiments on two datasets
(Caltech-101 and DelftBikes) to evaluate the work-
flows: Experiment 1 (Mahalanobis and k-NN-based
workflow, supervised) solely uses distance-based meth-
ods, such as the k-NN and Mahalanobis detector to
evaluate a classfier to distinguish between ID and OOD
for classes of the Caltech-101 dataset. We initially
trained the detectors using a training set consisting
solely of ID data. This was followed by examinations
where we progressively increased the proportion of
OOD samples in the training set.
In Experiment 2 (k-NN workflow, supervised), fea-
ture pyramids and dimensionality reduction techniques
were introduced and combined with the k-NN detector
to classify samples in the DelftBikes data set. The class
used was saddles, where the ID class is based on intact
images, and the OOD class consists of images of the
absent class. For the setup, we used the ResNet50 as a
backbone, and the k-NN detector, 150 ID images to fit

the detector, 75 images per class for testing. The train-
ing and test size remained the same for all subsequent
experiments.
Subsequently, the setup for Experiment 3 (LOF work-
flow, unsupervised) included the LOF detector to de-
tect outliers in several classes of the DelftBikes dataset
(steer, back wheel, back light, and saddle class), which
are known to contain label errors. Unlike the other de-
tectors, this detector did not require training and per-
formed the outlier detection directly on the test data
set. For evaluation, the images had to be manually la-
beled as outliers or inliers for the test set. A challenge
was deciding which images to label as outliers, as some
bounding boxes included too many or too few parts.
Additionally, distinct appearances in parts, especially
for the saddle and back light classes, contributed to fur-
ther labeling difficulties.
The summary of the experiment evaluations, i.e. the
best results, is presented in Table 1.

4.1 Experiment 1 (Mahalanobis and k-
NN workflows, supervised)

As seen in Table 2, the k-NN detector’s performance is
consistently high with average precision scores close to
or at 1.00. In contrast, the Mahalanobis detector per-
forms moderately, with average precision scores rang-
ing from 0.39 to 0.77. It shows variability across mod-
els. Moreover, it can be observed that a small amount
of OOD data in the training set is beneficial for the
Mahalanobis detector whereas it is not affecting the k-
NN detector’s performance. Conversely, introducing
too much OOD data can overwhelm the Mahalanobis
detector but only impacts the k-NN detector’s perfor-
mance negatively for some models.
In Figure 1 the precision-recall curve can be observed
for both detectors using ResNet50 as a backbone.
The average precision (AP) score indicates optimal
performance for the k-NN detector while illustrating
mediocre performance for the Mahalanobis detector.
From these results, it can be derived that the k-NN de-
tector is highly effective for OOD detection across dif-
ferent models and configurations whereas Mahalanobis
performs moderately and inconsistently. This is due
to the fact that the ID and OOD samples in this ex-
periment ensured minimal overlap in the feature space
which demonstrates that k-NN can perform very well
when the features are distinct enough.
The results of the Mahalanobis detector indicate that the
ID features might not conform to a Gaussian distribu-
tion, which lead to the detector not being able to esti-
mate the boundaries of the features. Additionally, high-
dimensional data has a negative impact on the detector’s
performance, as the estimation of the covariance ma-
trix is inaccurate. Therefore, for the subsequent exper-
iments using the k-NN detector, i.e. a non-parametric
approach, is preferable for its robustness and reliability
when it comes to OOD detection.
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Table 1: Overview of experiments, detectors, and the best AUROC score for different configurations using ResNet50 as a
backbone.

Exp. Description Detector Dims. Layers AUROC
Exp 1 Bonsai and Face (Caltech-101) with 0% OOD in training data k-NN - - 100
Exp 1 Bonsai and Face (Caltech-101) with 1% OOD in training data k-NN - - 100
Exp 1 Bonsai and Face (Caltech-101) with 5% OOD in training data k-NN - - 100
Exp 1 Bonsai and Face (Caltech-101) with 10% OOD in training data k-NN - - 100
Exp 2 Baseline, Saddle (DelftBikes) k-NN - - 85.14
Exp 2 Saddle (DelftBikes) k-NN 30 3 96.30
Exp 3 Steer (DelftBikes) LOF 10 5 96.40
Exp 3 Back Wheel (DelftBikes) LOF 10 1 96.15
Exp 3 Back Light (DelftBikes) LOF 10 4 54.94
Exp 3 Saddle (DelftBikes) LOF 20 1 67.02

Figure 1: (Experiment 1) Precision-recall curves for ID data
using the ResNet50 as a backbone, Caltech-101 as the dataset,
the k-NN and Mahalanobis detector with various pollutions of
OOD samples in the training set.

4.2 Experiment 2 (k-NN workflow, super-
vised)

This experiment contains an analysis of various meth-
ods of feature extraction and dimensionality reduction.
Our results are compared to a baseline with an AUROC
of 85.14, AUPR-IN of 81.31, AUPR-OUT of 88.52,
and FPR95TPR of 37.33. For the baseline, we used
the ResNet50 as a backbone, and the k-NN detector
without feature pyramids or dimensionality reduction.
For the remaining experiments, both feature pyramids
and dimensionality reduction were applied. Figure 2
shows the results for the ResNet50 backbone trained
exclusively on ImageNet-1K. The analysis focuses on
AUROC as the main evaluation metric, with layers in-
dicating the number of layers in the feature pyramid.
The configuration using 3 layers and 30 dimensions
provides the best performance in AUROC. This sug-
gests that earlier layers, capturing low-level features
like edges, are sufficient for this dataset. Additionally,
using 30 dimensions preserves both global and local
structures of high-dimensional data. A dimensionality
trade-off is observed, where smaller dimensions capture
essential features, while higher dimensions can intro-
duce noise. Increasing the number of layers negatively
affects performance, likely due to ImageNet bias. In
Figure 3, we compare the detector’s performance with
and without applying dimensionality reduction when
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Figure 2: (Experiment 2) OOD detection for the saddle class
of DelftBikes, showing ROC curves for ResNet50 pre-trained
on ImageNet-1K using different configurations concerning
the the number of used layers and dimensional feature reduc-
tion using UMAP. A wide variation in performance can be
observed.

applying the detector on the features obtained from the
first 3 layers. AUROC performance is observed to in-
crease by a large margin from 47.91% without reduc-
tion to 95.32% with reduction to 10 dimensions and
96.30% with reduction to 30 dimensions, respectively.

4.3 Experiment 3 (LOF workflow, unsu-
pervised)

The detector was tested on classes with varying con-
figurations and appearances, revealing that parts with
diverse angles and appearances were harder to detect
accurately. For example, the steer class, which had
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Table 2: Results of models and detectors at various OOD pol-
lution rates in the training set (Experiment 1).
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many outliers such as pedals, showed strong perfor-
mance with higher nearest neighbors, achieving an AU-
ROC score of 96.40%. The back wheel class, which
had more consistent angles, also performed well with a
high AUROC score of 96.15%, and outliers like misla-
beled front wheels were successfully detected. Con-
versely, the saddle and back light classes performed
poorly due to diverse appearances, lighting conditions,
and varying part types. The back light class achieved
an AUROC score of 54.94%, while the saddle class
reached 67.02%. The results indicated that increas-
ing the number of neighbors helped performance for
more complex configurations, while simpler configura-
tions worked better for the saddle class. In general, the
model struggled to distinguish between the saddle and
back light classes, with most scores falling below 50%.
These findings suggest that for certain classes, like sad-
dles and back lights, the model’s ability to differentiate
between outliers is limited.

5 CONCLUSION
This study evaluated feature-based Out-of-Distribution
(OOD) detection methods, including k-NN, Ma-
halanobis, and Local Outlier Factor (LOF), using
pre-trained model embeddings. The results showed
that k-NN performed robustly, particularly when
combined with feature pyramids and dimensionality
reduction techniques; it requires a training set of
clean labels. In the case where no ground truth is
known, the LOF method is applicable, but it struggled
with classes exhibiting high visual variability. The
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AUROC Curve Using Resnet50 as Backbone, KNN as Detector,
Feature Pyramids and Dimensionality Reduction

03 Layers, 30 Dimensions, AUROC: 96.30

03 Layers, 10 Dimensions, AUROC: 95.32

03 Layers, 02 Dimensions, AUROC: 82.40

03 Layers, 20 Dimensions, AUROC: 48.32

03 Layers, 00 Dimensions, AUROC: 47.91

Figure 3: (Experiment 2) Evaluating the impact of dimension-
ality reduction for OOD detection: using a feature pyramid of
the activations from the first 3 convolutional layer, we observe
a large increase in OOD performance when using UMAP to
reduce the features to 30 or 10 dimensions.
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Figure 4: (Experiment 3) A visualization of outliers detected
using the LOF algorithm on features obtained via UMAP for
dimensionality reduction. A high diameter indicates outliers
and the prediction error denotes the number of samples that
were wrongly predicted by the detector.

Mahalanobis detector was highly sensitive to class
variations, often resulting in performance comparable
to random guessing.
Dimensionality reduction, particularly UMAP, signifi-
cantly improved OOD detection by enhancing feature
separation. However, these approaches also introduced
trade-offs, including the potential loss of critical infor-
mation in visually complex classes (for dimensionality
reduction) or increased computational complexity (for
feature pyramids). Future research could explore ad-
vanced techniques to address these limitations, such as
ensemble models, feature selection methods, and more
sophisticated explainability tools.
These findings contribute to improving OOD detection
and refining Machine Learning (ML) models for real-
world applications. By understanding the strengths and
weaknesses of different approaches, researchers can de-
velop more effective solutions for reliable model de-
ployment.
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ABSTRACT
Computer-Aided Design (CAD) has revolutionized design and manufacturing by enabling precise, complex mod-
els in collaborative environments. While similar CAD models with application-specific modifications are often
required, designs are typically created from scratch due to challenges in retrieving existing models or generating
editable ones. Although parametric CAD modeling has advanced through deep generative approaches treating
CAD as a language task to generate user-editable designs, building truly scalable multi-modal datasets and net-
works tailored for 3D design tasks, particularly in engineering domains remains a significant challenge. Developing
such datasets, especially those incorporating images, point clouds and user-like text and hand-drawn sketches is
difficult as these modalities demand fine-grained geometric understanding and extensive human-in-the-loop evalu-
ations. While large foundational models like CLIP have improved cross-modal retrieval, they are primarily trained
on natural images and fail to capture the geometric and structural complexities inherent to CAD data.
In this paper, we propose a novel multi-modal pipeline for CAD command sequence generation using state-of-the-
art Vision-Language Models (VLMs). We introduce a unique multimodal CAD dataset comprising hand-drawn
sketches, CAD command sequences, images and basic text prompts. These modalities are integrated through
a Multi-modal Retrieval-Augmented Generation (MM-RAG) framework to enable user-editable CAD model re-
trieval and generation. Our RAG-based pipeline streamlines the CAD design process by enabling iterative, user-
guided model generation based on simple sketches or text queries. This approach aims to streamline CAD model
design by creating an advanced, end-to-end pipeline that supports design workflows. The dataset and code will be
made publicly available at: https://github.com/ananthu2014/cadrag.

Keywords
Computer Aided Design(CAD), 3D shape retrieval, Multi-modal dataset

1 INTRODUCTION
Computer-Aided Design (CAD) has been the torch-
bearer of modern design and manufacturing, transform-
ing traditional workflows with greater precision, pace
and efficiency. From small-scale 3D printed artifacts to
large machinery and systems, the need for high-quality
designs remains crucial. However, the development of
skilled designers continues to be essential, necessitat-
ing investments in training to ensure that individuals
are industry-ready to design using CAD software such
as SolidWorks, Fusion 360 and others. With the advent

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

of deep learning and advanced architectures, significant
attention has been paid to data-driven approaches that
help designers create better designs, with a primary fo-
cus on 3D representation learning for retrieval and gen-
eration of CAD models [1].

Retrieval systems focus primarily on searching and lo-
cating relevant 3D shapes in large databases through se-
mantic/similarity matching. This includes point cloud-
based and image-based [2] approaches among others.
Given an input and a target modality, training aim to
bring similar models closer in the embedding space and
dissimilar ones farther apart. 3D model understand-
ing lies at the crux of this problem, where models are
trained to extract relevant features from the data and
align them within a shared embedding space [3, 4, 5].

Earlier, content-based retrieval (CBR) systems (where
relevant items are searched by analyzing their intrinsic
features) employed rule-based techniques such as Pois-
son histograms [6] and Histograms of Orientation [7].
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Model Sketch Text Recall MAP
k=1 k=2 k=5 k=10 k=1 k=2 k=5 k=10

Ours (SBIR) × ✓ 7.94 10.42 17.37 26.05 7.94 9.18 10.93 13.12
Ours (TBIR) ✓ × 14.14 22.08 34.74 47.39 14.04 18.11 21.68 23.37

Ours (STBIR) ✓ ✓ 18.11 24.81 37.47 48.64 18.11 21.46 24.95 26.47
Table 1: Zero-shot (Baseline) performance for Sketch-based (SBIR), Text-based (TBIR) and Sketch-Text based
(STBIR) Image retrieval on our model measured by Recall and Mean Average Precision (MAP) at top-k retrieval
for 403 test samples of CAD-RAG dataset.

With the development of learning-based approaches,
useful features were extracted and learned from images,
videos, sketches, text, point clouds and more, further
advancing retrieval systems. Among these modalities,
sketches and text are the most practical for user queries,
particularly in the CAD domain, though point cloud
could also be considered.

Significant developments have been made in sketch-
based content retrieval, particularly in Sketch-Based
Image Retrieval (SBIR) methods which mostly uti-
lize dual-encoder Siamese networks to map a given
sketch to its corresponding image(s) [8]. A major
challenge in adopting this approach is the scarcity
of large sketch-based CAD datasets corresponding to
engineering shapes. Further, until the development of
large pre-trained CLIP-like models [9], using text as
a query was not feasible due to the unavailability of
datasets that correlate text queries with other modalities
to enable cross-modal retrieval.

Over the years, considerable attention has been directed
toward geometric deep learning due to advancements
in architectures capable of learning such complex
representations. Many studies have focused on learning
3D representations from discrete forms. ComplexGen
[10] reconstructs B-Rep models from point clouds,
Sketch2Mesh [11] generates meshes from sketches
while SDFusion [12] performs 3D reconstruction and
completion in the form of Signed Distance Functions
(SDFs) from multi-modal inputs such as images and
text. Although these advancements enhance user
control over the generation process, the resulting
parametric representations remain non-editable, which
is undesirable in a design workflow.

Further advances were introduced in DeepCAD [13],
enabling the sequential generation of user-editable
CAD models by treating modeling as a language-based
task. Models such as Point2Cyl [14], Free2CAD [15],
OpenECAD [16] and Text2CAD [17] support cross-
modal generation, improving user control and bringing
significant attention to parametric CAD generation.

With the advent of large models like CLIP [9], their ap-
plication in self-supervised learning and adaptation to
zero-shot downstream tasks has gained significant at-
tention [18]. However, these models were trained on
large-scale internet datasets, which differ significantly
from the CAD domain leading to reduced zero-shot per-

formance (see Table 1), particularly in text-to-image re-
trieval. This highlights the need for a comprehensive
text dataset tailored to CAD.

Furthermore, the results reveal that the fine-grained nu-
ances of engineering shapes make sketches a more ex-
pressive modality, achieving better performance com-
pared to textual queries. This reinforces the need for a
quality sketch dataset as well, one that mimics actual
user queries. Additionally, large foundational models
such as GPT [19] have demonstrated strong generaliza-
tion capabilities in zero- and few-shot tasks, especially
with retrieval-augmented generation (RAG) [20], sug-
gesting promising avenues for CAD applications.

Hence, in this paper, a multi-modal dataset integrating
text, point clouds, CAD command sequences, free-hand
sketches and images is introduced, created through a
combination of human-in-the-loop processes and deep
learning methodologies leveraging SOTA foundational
models for text and generative models for sketches.
Furthermore, a novel RAG-based network is proposed,
enabling sequential retrieval and refined generation of
user-editable CAD models from simple user prompts.
The entire pipeline is designed to be compute-efficient,
with training conducted on low-end GPUs such as the
NVIDIA RTX 3080 Ti and 4070 Ti.

The key contributions of this paper are:

• A one-of-its-kind multi-modal dataset, incorporat-
ing free hand-drawn sketches, command sequences,
images, point clouds and 3-level text prompts based
on DeepCAD[13].

• A novel multi-modal RAG pipeline, which is per-
haps the first work in the field that performs sequen-
tial retrieval and generation of user-editable engi-
neering/CAD shapes.

2 RELATED WORKS
2.1 CAD as a Language Task
Wu et al., in their work DeepCAD [13] proposed a
Transformer-based autoencoder for the sequential gen-
eration of CAD models, treating CAD design similarly
to a language task. To achieve this, a dataset was cre-
ated from the Sketch-and-Extrude subset of the ABC
Dataset [21] with a domain-specific language designed
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