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ABSTRACT

In 3D monocular object detection, optimizing the loss function is crucial for balancing multiple competing metrics,
such as depth estimation, orientation, and object dimensions. Traditional approaches use a weighted sum of indi-
vidual losses, allowing metric prioritization but risking training instability due to competition between terms. To
address this, we first experimented with different loss function configurations to see how different loss interactions
could emphasize specific metrics. These initial results demonstrated that abrupt changes in loss functions cause sig-
nificant precision drops, therefore we decided to try dynamic loss functions adjustment, using transition functions
to gradually shift metric emphasis over the training process. Among the tested transition functions, the Smoothstep
function had the best balance across all metrics, followed by the Linear function, while the Smootherstep function
provided strong initial performance but was eventually outperformed. Our results suggest that controlled, smooth
transitions between different loss functions can enhance training stability and final detection accuracy, providing a

way to improve 3D object detection models without overhauling their architecture.
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1 INTRODUCTION

Monocular 3D object detection is a challenging task
in computer vision, as it requires estimating an ob-
ject’s position, orientation, and dimensions using only
a single image. This contrasts with stereo or LIDAR-
based methods that have access to additional sensor
data, making monocular methods particularly difficult.
In this paper, we explore improvements to the loss func-
tion of a modified version of YOLOv7[1] adapted for
3D monocular object detection, focusing on dynamic
adjustments to enhance performance across multiple
key metrics.
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Our current approach involves formulating the loss
function as a weighted sum of individual terms, each
corresponding to a critical detection metric: 2D object
score, depth, orientation, dimensions, and central
position. Each of these terms is assigned a coefficient,
which is refined during training using an evolutionary
adjustment process. This design has the advantage of
flexibility, allowing the model to prioritize specific
detection metrics at different stages of training. For
example, the model can prioritize depth accuracy
early in training and focus more on orientation or
localization as training progresses.

While this modular approach offers significant flexibil-
ity, it also has potential drawbacks. Specifically, there
may be competition between the different loss terms.
For example, optimizing one metric (such as depth)
may inadvertently cause a degradation in another (such
as orientation or center position). Moreover, as certain
metrics may perform poorly, the overall loss can be-
come misleading, indicating progress even when some
critical components of the model’s performance have
not improved.
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One potential alternative to this modular loss design
is the adoption of a unified 3D loss function, which
has been used by some recent methods. This strategy
can help mitigate the competition between individual
metrics, but it comes at the cost of reduced modular-
ity and flexibility in prioritizing specific metrics. Given
the trade-offs associated with this approach, we have
opted to retain our modular loss design, as it offers
the flexibility to prioritize different aspects of detec-
tion. However, to further enhance this framework, we
have decided to experiment with dynamic coefficient
adjustment throughout the training process. This allows
the model to adaptively prioritize specific components,
such as depth and dimensions in the early stages, and
localization and orientation in the later stages. This
adaptive strategy enables the model to better balance
the competing requirements of different metrics, ulti-
mately maximizing overall performance while preserv-
ing the advantages of a modular loss structure.

2 RELATED WORK

2.1 Loss Functions for 2D Object Detec-
tion

Intersection over Union (IoU) is the standard metric for
assessing localization performance in object detection,
focusing on the overlap between predicted bounding
boxes and ground-truth bounding boxes. Loss IoU di-
rectly optimizes this metric but suffers from problems
such as reaching a plateau in cases where boxes do not
overlap, limiting its usefulness for model learning in
challenging scenarios.

Loss Generalized IoU (GlIoU) [2] improves on IoU by
addressing its limitations in the case of non-overlapping
boxes. It incorporates additional geometric properties
of bounding boxes, such as the bounding area of their
union, ensuring a more consistent optimization pro-
cess. GIoU loss has demonstrated performance im-
provements in popular detection frameworks such as
Faster R-CNN, Mask R-CNN, and YOLO.

Traditional losses such as cross-entropy for classifica-
tion and smooth L1 for localization don’t always man-
age to establish an adequate correlation between the
two tasks, which can lead to sub-optimal performance.
The IoU-Balanced (IoU-B) [3] loss remedies this prob-
lem by focusing on examples with a high utility index,
thus strengthening the link between classification and
localization. This approach has proved particularly ef-
fective for single-stage detectors, significantly improv-
ing their localization accuracy without sacrificing effi-
ciency.

[4, 5] introduce different Alternating Losses (AL),
adding dynamic switching between loss functions as a
function of training conditions, targeting universal ad-
verse disturbances. The 3 alternating loss functions
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for UAP training are : Batch Alternating Loss (B-AL),
Epoch-Batch Alternating Loss (EB-AL), and Progres-
sive Alternating Loss Training (P-AL). We will take up
this idea of switching and alternating loss functions for
monocular 3D detection.

Distance-based IoU variants. [6] proposes both Dis-
tance IoU loss (DIoU) as well as Complete IoU loss
(CIoU). DIoU introduces a penalty term that minimizes
the normalized distance between the centers of the pre-
dicted bounding boxes and the ground truth. By in-
corporating this distance, DIoU achieves faster conver-
gence and better accuracy than IoU and GloU. Its incor-
poration into algorithms such as YOLO v3 and SSD has
led to significant performance gains, and DIoU has also
been used in non-maximal suppression (NMS) for more
robust occlusion management. Based on DIoU, CloU
loss takes into account three geometric factors: overlap
area, distance from center point and aspect ratio. By
integrating these factors, CloU provides a comprehen-
sive optimization strategy for bounding box regression,
enabling faster learning and improved performance.

Mabhalanobis loss IoU (MIoU) [7] extends DIoU by
incorporating the Mahalanobis distance between pre-
dicted and target bounding boxes. This modification
solves gradient inconsistency problems and improves
localization accuracy. MIoU has shown notable im-
provements in applications such as night-time vehicle
detection, where traditional IoU-based losses are diffi-
cult to achieve.

In addition to this work, [8] exhaustively analyzes 31
classic loss functions in machine learning, classifying
them into the traditional and deep learning domains.
With regard to deep learning, it focuses on specific tasks
such as object detection and face recognition, and pro-
vides detailed descriptions of the formula, meaning and
algorithmic impact of each loss function.

2.2 Loss Functions for 3D Object Detec-
tion

Among works dedicated to loss functions for 3D object
detection, [9] introduces global geometric constraints
into monocular 3D object detection by exploiting the
relationships between objects in a scene. It uses ho-
mography to reinforce consistency between the image
plane and the bird’s-eye view, guaranteeing precise rel-
ative positions between objects. This loss integrates 2D
and 3D spatial information and is designed to be a plug-
and-play module compatible with various 3D detectors.

MonoRUn [10] introduces robust KL loss, which mini-
mizes uncertainty-weighted reprojection errors for 3D
localization. By projecting dense 2D-3D correspon-
dences onto the image plane, the loss function opti-
mizes pose estimation in a self-supervised manner. This
design improves pose depth and accuracy without the
need for additional annotations.
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YOLOFM [11] contains a Focal-SIoU loss function,
which handles bounding box regression by combining
SIoU and Focal L1 losses, effectively balancing angle,
distance, shape and IoU parameters. This loss acceler-
ates network convergence and improves localization ac-
curacy, particularly for tasks requiring efficient feature
fusion and robust detection in resource-limited environ-
ments.

Finally, [12] proposes a quasi-isometric (K, B, €) loss
function that uses metric learning to organize object
descriptors according to actual depth while preserving
geodesic distances in feature space. This loss preserves
depth discrimination properties while minimizing inter-
ference with other detection tasks. An auxiliary depth
estimation head further improves depth prediction dur-
ing learning, without increasing model complexity or
inference time.

3 METHOD
3.1 [Initial Experiments

In order to explore how the prioritization of specific
metrics affects training, we began by experimenting us-
ing a modified YOLOv7[1] model trained on the KITTI
dataset[13] with various loss configurations. These ini-
tial attempts involved multiplying the depth loss term
with others, or combining all loss terms multiplica-
tively. The aim was to determine whether certain loss
interactions could better emphasize specific measures
or improve overall training results. We used an 80% /
20% training/validation split, with strict separation be-
tween the two to ensure generalization and reduce the
risk of overfitting. All reported evaluations were per-
formed exclusively on the validation set, unless other-
wise specified.

The formulas of the different loss functions are defined
as follow:

Function 1: Basic Loss

L= Lbox +Lobj +Lcls +Lcem + Ldepth + Ldim +L0rient
Here, Ly« the loss associated with the 2D bounding
box, it uses the Complete Intersection over Union

(CIoU) loss as defined by [6], which can be ex-
pressed in the following way (Equation (1)):

p?(b,b%)
CZ

Leiou =1—ToU—+ +ov (D
Lovj and Lgs use the Classification Head Label
Smoothing introduced by [1], as well as Binary
Cross Entropy (BCE) Loss. For the rest of the loss
functions, we use the smooth L1 loss for Lcey,

Ldepth’ Lgim, and Lorient.-

Function 2: Depth-weighted Sum
L= Ldepth (Lbox + Lobj + Lets + Leent + Laim + Lorient)
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Prioritize depth estimation, so that depth errors have
more influence on the total loss.

Function 3: Multiplicative Loss
L= Lyox 'Lobj “Legs - Leent - Ldepth “Laim * Lorient

If one of the terms is large, the total loss increases
considerably. This approach favors balanced learn-
ing between all measurements but could suffer from
instability if one of the terms becomes too small or
too large.

Function 4: Euclidean Loss

2 2 2
+ Lobj + Lcls + Lcent

2 2 2
+ Ldepth + Ldim + Lorient

1;2

box

This method reduces the effect of outliers compared
to a simple sum, smoothing out large errors. It
is commonly used in distance-based optimization,
where squared errors emphasize larger deviations.

Function 5: Multiplicative Shift Loss

L= (1 +Lb0x) : (1 +L0bj) : (l +Lcls) . (1 +Lcem) .
(1 +Ldepth) . (1 +Ldim) : (1 +L0rient)

This variant of loss #3 avoids the collapse of zero
losses (when a loss term becomes too small and re-
duces the impact of learning). The offset of 1 pre-
vents any term from reaching O completely, while
still applying multiplicative interactions between the
different terms.

The evaluation itself is done using usual 2D metrics
(Precision, Recall, and Average Precision (AP) at IoU
thresholds of 0.5 and 0.95) combined with the Depth
Error, the Center offset & Dimension Score defined by
[14] and the Orientation Score. We can see the re-
sults of training the different loss functions below in
figures 1, 2 and 3.

MAR %50

300 400

Epochs

Figure 1: mAP@0.5 Score of the different loss func-
tions during training

According to figure 1, loss function 2 performed best at
mAP@0.5 compared to the base function, while func-
tions 4 and 3 performed worst.
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Figure 2: Depth error of the different loss functions dur-
ing training

For depth scores, (Fig. 2) functions 1, 4, and 5 have the
best scores, while loss function 2 has the worst depth
score, despite supposedly theoretically having to prior-
itize depth loss over the other functions. Its elevated
score at mMAP@0.5 seems to indicate that multiplying
all the loss terms by the depth loss decreases the latter’s
impact rather than increasing it.

Finally, there is not much difference in the behavior of
the functions for the CS score (Fig. 3), except for func-
tion 2, which fails to learn these predictions. Worse
still, their scores decline during training. Changes made
by switching to function 5 after training with function 2
compensate for these problems, as seen in function 2+5,
however, it causes a sudden map@0.5 score collapse.

1.0 = loss 1

= loss2

loss 3
- loss4
- loss5

loss 2+5

cs

0 100 200 300 400

Epochs

Figure 3: Center Score of the different loss functions
during training

During these first experiments, we observed that:

e The abrupt change in the loss function during train-
ing led to a significant drop in accuracy, which dis-
rupted the learning stability of the model.

e Despite this pronounced drop in accuracy, the
maximum performance achieved during training
exceeded that of a normal training configuration.
This suggests that dynamic modification of the loss
function holds promise for improving the overall
training process.

Based on these results, we concluded that sudden tran-
sitions between loss configurations are too disruptive.
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We therefore proposed a gradual approach: the imple-
mentation of an epoch-dependent loss function that al-
lows smooth transitions from one configuration to an-
other. By employing a transition function, we sought
to take advantage of the benefits of dynamic loss prior-
itization while maintaining drive stability and avoiding
abrupt performance degradation.

3.2 Transition functions

In this section, we present the various transition func-
tions used to dynamically adjust the coefficients of in-
dividual loss components during training. Our main ob-
jective is to find a method that allows loss coefficients to
evolve adaptively throughout the learning process, pri-
oritizing specific parameters at different stages. This
approach aims to mitigate the challenge posed by com-
peting metrics in our loss function, where one metric
may improve while another deteriorates. By experi-
menting with transition functions, we explore the possi-
bility of dynamically modifying the training orientation
without sacrificing modularity and priority control of
individual metrics.

To this end, we have introduced transition functions
that dynamically modulate coefficient values. These
transition functions interpolate between two extreme
states (e.g., giving priority to one measure or another)
as learning progresses. We describe several transition
functions below, each designed to provide different lev-
els of smoothness and control over the prioritization
process.

These functions are the linear transition (Fig. 4), the
sigmoid transition (Fig. 5), the smoothstep transition
(Fig. 6), the smootherstep transition and the Gaussian
transition (Fig. 7).

Linear Transition

Coefficient Value

— Linear Transition
--- nb=100
0.04 —-- n_e =400

200 300 500
n (Training Steps)

0 100 400

Figure 4: Linear Transition Function

Linear Transition. Linear transition (Fig. 4) provides a
simple and constant rate of change between two states.
This function guarantees a gradual transition of coef-
ficient values from one metric to another as the drive
progresses. Its expression is the equation 2:

n—n
b +a

ne—n

2

x(n)=b-

Ne —Nnp Ne —np
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With a and b our two loss functions, n;, the epoch at the
start of the transition and 7, the epoch at the end of the
transition.

Sigmoid Transition

—— sigmoid Transition

Coefficient Value

200 300 500

n (Training Steps)

0 100 400

Figure 5: Sigmoid Transition Function

Sigmoid Transition. The sigmoid transition is charac-
terized by a smooth curve (Fig. 5). It starts slowly, ac-
celerates in the middle and slows down again towards
the end, providing a smooth transition between the two
functions to avoid a drop in accuracy. It is defined by
the equation 3:

x(n)

o(n)

a-c(n)+b-(1-0(n)),
1

ny,+n,
%)

o 1+e—k(n—

3

With o(n) the sigmoid function and k the slope of the
transition around the midpoint “23"¢.

Smoothstep Transition The smoothstep function tran-
sitions between two values using a cubic polynomial. It
ensures a smooth change of coefficient values with zero
slope at both ends, offering a more gradual and natu-
ral transition than the linear function. We can see this
function in figure 6 and it is defined by the equation 4:

x(n)=a-(1-32+26%) +b- (3> - 21°)

n—np

“)
=
Ne — Ny,

Smootherstep Transition. The smootherstep function
is an extension of smoothstep with a quintic polyno-
mial, offering an even smoother transition. The differ-
ence between the two functions can be seen in figure 6.
It is defined by the equation 5:

x(n) =a-(1—6>+15* —1063) + b (6:° — 15* + 10¢

n—np
t=—2
ne —np

Gaussian transition
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Smoothstep vs Smootherstep Transition

— Smoothstep
Smootherstep
—-- n_b =100

Coefficient Value

200 300 500

n (Training Steps)

0 100 400

Figure 6: Comparison between Smoothstep and
Smootherstep Transition Functions

Gaussian Transition with Bell Curve

Coefficient value

+ --- Original Gaussian (Bell Curve)
—— Modified Gaussian Transition
——- n_b =100

4 =-- ne=400

'
0 100 200 300

n (Training Steps)

400 500

Figure 7: Gaussian Transition Function

The Gaussian transition (Fig. 7) uses a bell-shaped
curve to blend between two coefficient values. It is de-

fined by the equation 6 :
Joven(-5)

(n—np)? (e —n)?
(6)
With o the transition control coefficient.

202 202

x(n) =a-exp (—

4 EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the various tran-
sition functions, we used several performance metrics :
mAP@0.5, mAP@0.95, Depth Error, Orientation Score
(OS), Center Score (CS), and Dimension Score (DS).

MAP 0.5 and mAP 0.95 metrics. For mAP@0.5, the
Smoothstep transition function performed best, closely
followed by the Smootherstep, Linear, Sigmoid, and
Gaussian functions, with the reference method achiev-
ing the lowest score. Although Smootherstep showed
the best initial performance, it was eventually surpassed
3by Smoothstep. The same ranking was observed for
AP@0.95, but with one notable difference: the linear
transition also managed to outperform the Smoother-
step transition at the end of training. Figures 8 illustrate
these results.
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MAP_0.5 Over Epochs

MAP_0.95 Over Epochs

epoch

Figure 8: Comparison of mAP 50% and mAP 95% for
the different transition functions

Depth errors. In terms of depth estimation (Fig. 9),
the linear transition produced the lowest depth error,
outperforming all other transition functions. Smooth-
step and the reference method followed closely, while
Smoothstep, Gaussian, and Sigmoid showed higher er-
ror rates.

depth_err Over Epochs

depth_err

0065

0060

depth e

0045

100 150 200 250 300 350 00 50 500

Figure 9: Comparison of depth errors between the dif-
ferent transition functions

Orientation Score (OS). For orientation estimation
(Fig. 10), the linear function again achieved the
best results, followed by the Smoothstep function.
Smootherstep and Gaussian achieved similar results,
while Sigmoid and the reference model obtained the
lowest scores.
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05 Over Epochs

—— smoothstep
0.60 —— smootherstep

0 100 200 300 400 500
Epoch

Figure 10: OS metric scores for the different transition
functions

Center Score (CS). The ranking of center position ac-
curacy (Fig. 11) was similar to that of OS : Linear tran-
sition performed best, followed by Smoothstep and then
Smootherstep. The sigmoid and Gaussian models were
tied, with the reference model performing least well.

CS Over Epochs

— Reference
—— Linear
— sigmoid
— Gaussian
0.90{ — Ssmoothstep

0 100 200 300 400 500
Epoch

Figure 11: CS metric scores for the different transition
functions

Dimension Score (DS). For object dimension estima-
tion (Fig. 12), the Smoothstep transition provided the
best performance, followed by the linear transition and
then the Gaussian transition. The Smoothstep and Sig-
moid transitions performed less well, with the reference
model again ranking last.

DS Over Epochs

0.86 1 —— Reference
Linear

— sigmoid

— Gaussian

—— smoothstep

—— smootherstep

0 100 200 300 400 500
Epoch

Figure 12: DS metric scores for the different transition
functions
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score Over Epochs

0.35 1" — Reference

Linear
Sigmoid
Gaussian
Smoothstep
Smootherstep

0.25 1

0.20

score

0.15 4

0.10 4

0.00

Epoch

Figure 13: Overall performance of the various transition functions

For OS, CS, and DS metrics, the first 100 Epochs of
training showed significant instability for all functions.
In all cases, scores initially peaked before declining
as training progressed. This can be explained by the
fact that the focus shifted to other loss components at
the start of training. Since there is not yet a transition
between functions during these Epochs, all transition
functions follow the same pattern during this initial
phase, variations in performance are due to training
noise rather than inherent differences in the functions
themselves.

Overall performance: To evaluate overall per-
formance, we use a global score following the
equation 7, the mAP3D evaluation being too long to be
included in the training.

Global Score = mAP@0.5 x CS x OS x DS @)
X (1 — +/Depth Err)

From the Score results (Fig. 13), Smoothstep emerged
as the best-performing transition function, followed by
Linear and Smootherstep. Sigmoid and Gaussian func-
tions performed less well, and the reference model ob-
tained the lowest overall score. These results suggest
that Smoothstep provides the most balanced optimiza-
tion between the different metrics, making it the most
efficient loss transition function in our experiments.

Among the transition functions, Loss 1 performed bet-
ter than most, while Gaussian achieved the worst over-
all score.

5 CONCLUSION

In this paper, we investigated various loss transition
functions to enhance the learning process for monocular

http://www.doi.org/10.24132/CSRN.2025-17

3D object detection. Our experimental findings demon-
strated that dynamically adjusting the loss function over
time can lead to improvements in overall performance
when compared to a static learning approach.

Among the transition functions evaluated, Smoothstep
demonstrated the most balanced performance across all
key metrics, attaining the highest overall score. It ex-
hibited particular strengths in mAP and dimension esti-
mation while maintaining adequate performance in ori-
entation and center position accuracy. The linear tran-
sition also performed well, particularly in depth esti-
mation, orientation, and center position accuracy, es-
tablishing it as a competitive alternative. Smootherstep
initially exhibited promising performance but was ulti-
mately surpassed by Smoothstep and Linear in subse-
quent training phases. Conversely, Sigmoid and Gaus-
sian functions demonstrated suboptimal performance
across most metrics, underscoring the constraints im-
posed by certain smooth transition methodologies in
this setting.

The findings of this study demonstrate that the adop-
tion of gradual transitions between disparate loss func-
tions enhances learning stability and final detection ac-
curacy. Notably, the efficacy of Smoothstep as a tran-
sition function is particularly pronounced. Future re-
search endeavors could involve the exploration of ad-
vanced refinements, such as adaptive transition func-
tions that respond dynamically to fluctuations in per-
formance in real-time, as opposed to adhering to a pre-
determined transition schedule.
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