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ABSTRACT
Image multilevel thresholding is used as a preprocessing step in computer vision or image processing applications.
In recent years, various methods and criteria have been tested to improve thresholding performance and efficiency.
State-of-the-art methods combine a metaheuristic optimization algorithm to optimize some objective function.
Commonly used objective functions include Otsu criterion and entropy-based methods. Masi entropy is one of the
objective functions that recently showed significant potential in image thresholding. It can deal with additivity and
non expandability of information. However, in order for applying Masi entropy, there is a parameter r that needs to
be tuned. Different works proposed different values and methods to determine the value of r. Nevertheless, there
is a lack of validation and comparisons between these methods. This work is an experimental study validating
a previously introduced method for selecting r. We compare the performance over two datasets including 700
various images while varying the number of thresholds from 1 to 15. Structural similarity index (SSIM) and
peak signal-to-noise ratio (PSNR) metrics are used to evaluate the performance. The collective and individual
performance improvements are elaborated. It is shown that the tested method achieves a significant improvement
in segmentation quality over all tested numbers of thresholds. Higher numbers of thresholds showed greater
improvement than smaller numbers. These results demonstrate the practical utility of the tested method in entropy-
based image multilevel thresholding.
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1 INTRODUCTION

Image thresholding is common task in gray-level image
processing applications pipelines. In particular, multi-
level thresholding is used as a preprocessing step in
analysis of medical images, satellite images and defects
in crop images [DDR+20]. Over the years, various im-
age segmentation techniques have emerged, each bal-
ancing different trade-offs. One widely used approach
is image thresholding, which classifies pixels based on
intensity thresholds. Pixels with values below a thresh-
old belong to one category, while those above it belong
to another. Despite its efficiency and simplicity, thresh-
olding has a major drawback: it disregards spatial re-
lationships between pixels, considering only intensity
values. Additionally, its effectiveness diminishes in im-
ages with uneven lighting conditions. Due to these limi-
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tations, thresholding is often employed as a preliminary
step in image processing workflows [ARM24].
Image thresholding can be categorized into bi-level
and multi-level methods. Bi-level thresholding divides
an image into two segments, typically foreground
and background, whereas multi-level thresholding
partitions an image into multiple segments. Over time,
various thresholding techniques have been introduced,
with many bi-level approaches being extended to
multi-level segmentation. Most of these methods
rely on an objective function that evaluates candidate
thresholds and selects the optimal set by maximizing
or minimizing a given criterion. Commonly used
objective functions include Otsu’s between-class
variance [Ots79], Kapur’s entropy [KSW85], Tsallis
entropy [Tsa88], Renyi entropy [SWY97], Masi
entropy [Mas05] and fuzzy entropy [DRD+19]. As
a result, multi-level thresholding is formulated as an
optimization problem. However, as the number of
thresholds increases, the computational complexity
grows exponentially, making exact optimization
impractical [Tub14].
To address this challenge, metaheuristic optimization
algorithms have gained popularity in recent years for
multi-level thresholding. While these algorithms do
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not guarantee a globally optimal solution, they strike
a balance between computational efficiency and seg-
mentation quality. Unlike exact methods, which re-
quire extensive computation to achieve optimal results,
metaheuristics produce near-optimal solutions in signif-
icantly less time [VTM23].

A growing trend in segmentation research is the integra-
tion of different metaheuristic algorithms with various
objective functions to enhance performance while
reducing computational cost. Several optimization
algorithms have been applied to multi-level threshold-
ing, including variations of the Whale Optimization
Algorithm (WOA) [MY22, ABMAA22], Battle Royale
optimizer [AOFD+24], improved African vultures
optimization algorithm [GI24], enhanced chameleon
swarm algorithm [MHH+24], the Coronavirus Opti-
mization Algorithm [AEMH23, HKHM23], the Chimp
Optimization Algorithm [EHR+23], and Particle
Swarm Optimization (PSO) [GZB+20, NLZ24]. These
approaches aim to accelerate the segmentation process
while maintaining high-quality results.

Out of these approaches, using Masi entropy as an ob-
jective function has shown an improvement in segmen-
tation quality results [NZLD17, SB19]. However, on
using Masi entropy, there is a parameter r that needs
to be set for thresholding an image. Traditionally, the
parameter r should be proportional to the degree of ad-
ditivity and/or nonextensivity of data. On experimenta-
tion on a set compromising non-destructive testing im-
ages, infrared images, and some standard benchmark
images, Nie et al. [NZLD17] found out that tuning r led
to values lying in the interval [0.5,1.5]. Moreover, they
pointed out that images from the same application or the
same imaging device and environment can use the same
value for r after tuning. Shubham and Bindary used the
specific value of 1.2 in their experiments to threshold a
set of natural and satellite images. This choice gave the
optimal results in their experiments [SB19]. Khairuz-
zaman et al. performed a comparison to determine a
suitable value of r [KC19]. They found that the values
of r < 1 give better performance. However, their ex-
periment was performed on only a single image using
only two thresholds. Mousavirad et al. incorporated the
parameter r into the optimization process [MOC+22].
Later on, Lei et al. proposed an adaptive technique
to calculate the value of r based on the histogram of
the image [LLWY24]. The effectiveness of this method
was illustrated on only one image using one threshold.

Therefore, there isn’t an agreed-upon way to select the
value of the parameter r. Moreover, there is a lack
of experimentation on each selection method. These
methods need to be tested using a bigger number of
pictures, from different types or modalities. Further-
more, the robustness of each selection method need to
be tested under different numbers of thresholds. This

can lead to better understanding of the interaction of the
value of r and the quality of thresholds found. Hence,
multilevel thresholding methods can be improved when
the parameter r is selected optimally. This paper per-
forms a comparison between these existing methods to
select the value of r. The performance of these methods
are compared together.

The remaining parts of this paper are structured as fol-
lows. Section 2 illustrates Masi entropy based image
thresholding and the role of parameter r, whereas Sec-
tion 3 presents the experimental results and discussion.
Section 4 concludes the paper and suggests possible di-
rections for future research.

2 METHODS
In this section, Masi entropy is reviewed where empha-
sis is given on the parameter r and its contribution to
the overall Masi entropy.

2.1 Masi Entropy
For multilevel image thresholding, Masi entropy is used
as an objective function to be maximized. The ob-
jective function takes as input n thresholds to segment
the image into n+ 1 classes. Let the n thresholds be
0 < T1 < T2 < ... < Tn < L− 1 where L is the number
of gray intensity levels in the image. For simplicity, we
assume T0 = 0 and Tn+1 = L. Moreover, we assume that
the class i for 1 ≤ i ≤ n+ 1 consists of all pixels with
intensity levels in the interval [Ti−1,Ti). We also let pi
be the probability of a pixel having intensity i in the im-
age. For 0 ≤ i ≤ L−1, pi is calculated by Equation (1)
where h(i) is the number of pixels in the image that
has intensity level i and M is the total number of pixels
in that image. The Masi entropy objective function for
multilevel thresholding is then given by Eq. (2).

pi =
h(i)
M

(1)

J(T1, ...,Tm, ...,Tn) =
n+1

∑
i=1

Hi (2)

where

Hm =
1

1− r
· log(1−(1−r) ·

Tm−1

∑
i=Tm−1

pi

wm
· log(

pi

wm
)) (3)

wm =
Tm−1

∑
i=Tm−1

pi (4)
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2.2 Adaptive method for selecting r
In the work of Lei et al. [LLWY24], an adaptive
method to set the value of the parameter r was pro-
posed . This method relies on the image itself and its
histogram. The value of r is set according to the fol-
lowing equation.

r =
imax

fmax
(5)

where
imax = arg max

0≤i<L
pi (6)

and
fmax = argmax({i | pi > 0}) (7)

Here, imax is the most frequent gray level in the image
(the gray level that is highest in the image histogram).
fmax is the brightest gray level in the image. fmax ≤ L−
1 since an image might have some gray levels missing.

Theoretically, it can be seen that fmax takes values in
the interval [0,L−1], while imax takes values in the in-
terval [0, fmax]. Hence, r values should range between
0 and 1 inclusively. However, Equation (3) wouldn’t be
computable for values of r = 0 and r = 1. Also, when
fmax = imax = 0, the parameter r is undefined. Accord-
ingly, the adaptive method sets r to 1.2 instead. In such
cases, it is obvious that the adaptive method would not
change the segmentation quality.

3 RESULTS
This section presents the experimental setup and the ob-
tained results. We begin by analyzing the average im-
provements achieved by the adaptive method. Follow-
ing that, we examine cases where the adaptive method
led to performance degradation and conduct a visual
analysis of such cases for further insight. Finally, we
explore the correlation between the amount of improve-
ment and the number of thresholds used.

3.1 Setup
The tested algorithms were implemented in Python 3.
The experimental setup was an i7-10750H CPU and
16GB of RAM on a Microsoft Windows 10 operating
system.

The experiment was carried out on the Berke-
ley Segmentation Data Set BSDS500 [AMFM11]
and Weizmann segmentation evaluation database
[AGBB07]. BSDS500 dataset contains 500 natural
images, while Weizmann database contains 200 im-
ages. For each image, mutlilevel thresholding using
Masi entropy is performed with number of thresholds
ranging from 1 to 15. The search is carried out using
the dynamic programming technique proposed by Lei
et al. [LLWY24] as it was shown to give optimal
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Figure 1: Mean and standard deviation (error bars)
SSIM values for each number of thresholds for r = 1.2
and the adaptive method
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Figure 2: Mean and standard deviation (error bars)
PSNR values for each number of thresholds for r = 1.2
and the adaptive method

result in a practical timeframe for high numbers of
thresholds. The experiment was repeated for r = 1.2
and r = imax/ fmax.

The segmentation quality is assessed using structural
similarity index (SSIM), and peak signal-to-noise ratio
(PSNR).

3.2 Average Improvement of SSIM and
PSNR

Figure 1 shows for each number of thresholds the mean
SSIM value for all 700 images tested when using the
adaptive method r = imax/ fmax and when using the
fixed value r = 1.2. The standard deviations are also
shown in the figures for reference. The figure demon-
strates that the adaptive method consistently achieves
higher SSIM values across all threshold numbers,
indicating an improvement in segmentation quality.
Notably, the difference between the two methods was
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Figure 3: Number of images where SSIM increased,
didn’t change or decreased by the adaptive method with
respect to r = 1.2

less apparent when using a single threshold but became
increasingly pronounced as the number of thresholds
increased. This suggests that the adaptive method
achieves higher improvement with higher numbers
of thresholds. Furthermore, the standard deviation of
the SSIM values in the original method was relatively
high, indicating a lack of robustness between different
images. In contrast, the adaptive method exhibited a
lower standard deviation, indicating a more consistent
performance across the data set. This implies that the
adaptive approach is better suited to varying image
conditions, and more adaptable to different subject
images.

Figure 2 shows the corresponding mean values of
PSNR together with standard deviation for each
number of thresholds. Similar observations can be
made. The adaptive method resulted in higher PSNR
mean values than the original method r = 1.2. The
adaptive method have smaller variance indicating more
consistency over tested images.

3.3 Individual Analysis of images
As computing the mean average over multiple images
may overlook important variations, we analyze how
many images improved, remained unchanged, or wors-
ened with the adaptive method. Figures 3 and 4 present
stacked bar charts visualizing this distribution for both
SSIM and PSNR respectively. It can be observed that
for each threshold count, the majority of images show
improvement.

For SSIM values, the highest number of improved im-
ages was at 4 and 5 thresholds (595 images, 85%),
while the lowest improvement was at 1 threshold (480
images, 68.57%). Similarly, for PSNR values, the
highest improvement occurred at 4 thresholds (611 im-
ages, 87.29%), followed by 5 thresholds (608 images,
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Figure 4: Number of images where PSNR increased,
didn’t change or decreased by the adaptive method with
respect to r = 1.2

86.86%), while the lowest was at 1 threshold (509 im-
ages, 72.71%). Notably, the highest number of wors-
ened images for both SSIM and PSNR occurred at 1
threshold (111 images, 15.86%), indicating that lower
threshold counts led to less consistent segmentation
performance.
Figures 5 and 6 visualize the difference between the
original method and the adaptive method on two im-
ages from BSDS500 dataset, where one of them got
improved and the other got worse. Each of the two fig-
ures contain the original image, and the thresholding
results using r = 1.2 and using the adaptive method.
These results are represented by the segmented image,
where each segment has all its pixels colored by the
same color and by the histogram of the image where
vertical red lines indicate the thresholds found by the
thresholding algorithm. In Fig. 5, we can see how the
adaptive method improved the thresholded (segmented)
image significantly with respect to the output from the
original method. Many details of the image are main-
tained. This can also be seen on the placement of
thresholds from both methods on the histogram. How-
ever, in Fig. 6, it can be seen that the adaptive method
weakened some of the features of the wolf in picture.
Some facial features can be recognized in the image
thresholded by r = 1.2 whereby they are unrecogniz-
able in the output of the adaptive method.

3.4 Comparison of performance in terms
of the number of thresholds

Figure 7 illustrates the average difference in SSIM be-
tween the adaptive and original methods. At n = 1,
the improvement is relatively small, then gradually in-
creases until n = 4, where it begins to stabilize with
minor fluctuations. The highest improvement occurs at
n = 12 and n = 13, followed by a slight decrease at
n = 14 and n = 15.
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(a) Original Image (b) Segmented (r = 1.2)

(c) Histogram with thresholds for r = 1.2

(d) Original Image (e) Segmented (radaptive)

(f) Histogram with thresholds for r = imax/ fmax

Figure 5: Comparison on image bsds500_175032 with
3 thresholds.

Figure 8 presents the same analysis for PSNR. Simi-
lar to SSIM, the improvement is smallest at n = 1 and
increases progressively, eventually saturating at higher
threshold values. However, the increase in PSNR im-
provement is more gradual compared to SSIM, suggest-
ing a less abrupt enhancement pattern.

4 CONCLUSION
In this paper, we examined the impact of an adaptive
selection method for the parameter r in Masi entropy-
based multilevel thresholding. By comparing the adap-
tive method r = imax/ fmax with the fixed value r =

(a) Original Image (b) Segmented (r = 1.2)

(c) Histogram with thresholds for r = 1.2

(d) Original Image (e) Segmented (radaptive)

(f) Histogram with thresholds for radaptive = imax/ fmax

Figure 6: Comparison on image bsds500_42078 with 4
thresholds.
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Figure 7: SSIM Average Improvement per number of
thresholds
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Figure 8: PSNR Average Improvement per number of
Thresholds

1.2, we assessed segmentation quality using SSIM and
PSNR across 700 images from the BSDS500 and Weiz-
mann datasets.

Results showed that the adaptive method consistently
outperformed the fixed approach, achieving higher
mean SSIM and PSNR values while maintaining
lower variance, indicating greater robustness across
different images. The performance gain became more
pronounced with increasing numbers of thresholds,
particularly beyond n = 3. Furthermore, an individual
image analysis confirmed that the adaptive method
improved segmentation quality in the majority of cases,
with the most significant improvements occurring at
n = 4 and n = 5.

These findings highlight the importance of adapting r
based on image characteristics rather than relying on a
fixed value. Future works include more thorough anal-
ysis on cases where the adaptive formula failed to im-
prove or maintain the segmentation quality. Also, per-
formance on other image modalities and other datasets
can be explored. Furthermore, refinements to the adap-
tive formula could be explored. Better alternatives may
be derived after a thorough analysis of Masi entropy
equation and its different terms. Additionally, opti-
mization of SSIM and PSNR with respect to the pa-
rameter r may be performed to reach optimal values of
r. Performing that over a large number of images could
help find a general formula for computing r.
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